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Articles for Seminary Paper 
 
General Guidelines  
 
You are required to prepare a written summary of two related research articles 
(primary and secondary) in the area of approximate dynamic programming (ADP) and 
Reinforcement Learning. 
  
The primary article may be chosen from the list below, or from any other source, but 
should get my approval. It is generally required to be a full journal paper (not a 
conference paper), and to have a significant theoretical part. 
 
In any case send me an e-mail with your choice for approval. 
 
The secondary article should be related to the primary one (but not a conference 
version thereof), and chosen by you. For example, it may be chosen from papers that 
are cited in or cite the main paper.  
 
Your seminary paper should contain two parts. Part one is a summary of the two 
articles, and should be up to 5 pages long. The summary should describe the basic 
problems, methods and ideas, focusing on the main issues. Part 2 should contain a 
critical assessment and comparison of the two articles. For example, you may point 
out the good and bad points, emphasize the main contribution and new ideas, put them 
in the context of what we learned in the course, and compare the two papers in terms 
of their inter-relation and contribution.  
 
Paper List 
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112:181{211. 
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Reinforcement Learning, Journal of Machine Learning Research 11, pp. 1563-1600. 
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