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2 Statistical Estimation: Basic Concepts

2.1 Probability

We briefly remind some basic notions and notations from probability theory that

will be required in this chapter.

The Probability Space:

The basic object in probability theory is the probability space (Ω,F ,P), where

Ω is the sample space (with sample points ω ∈ Ω),

F is the (sigma-field) of possible events B ∈ F , and

P is a probability measure, giving the probabilty P(B) of each possible event.

A (vector-valued) Random Variable (RV) X is a mapping

X : Ω → IRn .

X is also required to be measurable on (Ω,F), in the sense that X−1(A) ∈ F for

any open (or Borel) set A in IRn.

In this course we shall not explicitly define the underlying probability space, but

rather define the probability distributions of the RVs of interest.
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Distribution and Density:

For an RV X : Ω → IRn, the (cumulative) probability distribution function (cdf) is

defined as

FX(x) = P(X ≤ x)
△
= P{ω : X(ω) ≤ x} , x ∈ IRn .

The probability density function (pdf), if it exists, is given by

pX(x) =
∂nFX(x)

∂x1 . . . ∂xn

.

The RV’s (X1 , . . . , Xk) are independent if

FX1 ,..., Xk
(x1 , . . . , xk) =

K∏
k=1

FXk
(xk)

(and similarly for their densities).

Moments:

The expected value (or mean) of X:

µX ≡ E(X)
△
=

∫
IRn

x dFX(x) .

More generally, for a real function g on IRn,

E(g(X)) =

∫
IRn

g(x) dFX(x) .

The covariance matrices:

cov(X) = E{(X − E(X))(X − E(X))T}

cov(X1, X2) = E{(X1 − E(X1))(X2 − E(X2))
T} .

When X is scalar then cov(X) is simply its variance.

The RV’s X1 and X2 are uncorrelated if cov(X1, X2) = 0.
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Gaussian RVs:

A (non-degenerate) Gaussian RV X on IRn has the density

fX(x) =
1

(2π)n/2 det(Σ)1/2
e−

1
2
(x−m)T Σ−1(x−m) .

It follows that m = E(X), Σ = cov(X). We denote X ∼ N(m,Σ).

X1 and X2 are jointly Gaussian if the random vector (X1;X2) is Gaussian.

It holds that:

1. X Gaussian ⇐⇒ all linear combinations
∑

i aiXi are Gaussian.

2. X Gaussian ⇒ Y = AX is Gaussian.

3. X1, X2 jointly Gaussian and uncorrelated

⇒ X1, X2 are independent.

Conditioning:

For two events A,B, with P(B) > 0, define:

P(A|B) =
P(A ∩B)

P(B)
.

The conditional distribution of X given Y :

FX|Y (x|y) = P(X ≤ x|Y = y)
.
= lim

ϵ→0
P(X ≤ x | y − ϵ < Y < y + ϵ) .

The conditional density:

pX|Y (x|y) =
∂n

∂x1 . . . ∂xn

FX|Y (x|y) =
pXY (x, y)

pY (y)
.

In the following we simply write p(x|y) etc. when no confusion arises.

Conditional Expectation:

E(X|Y = y) =

∫
IRn

x p(x|y) dx .
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Obviously, this is a function of y : E(X|Y = y) = g(y).

Therefore, E(X|Y )
△
= g(Y ) is an RV, and a function of Y .

Basic properties:

∗ Smoothing: E(E(X|Y )) = E(X).

∗ Orthogonality principle:

E([X − E(X|Y )]h(Y )) = 0 for every scalar function h.

∗ E(X|Y ) = E(X) if X and Y are independent.

Bayes Rule:

p(x|y) = p(x, y)

p(y)
=

p(y|x)p(x)∫
p(y|x)p(x) dx

.
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2.2 The Estimation Problem

The basic estimation problem is:

• Compute an estimate for an unknown quantity x ∈ X = IRn,

based on measurements y = (y1 , . . . , ym)
′ ∈ IRm.

Obviously, we need a model that relates y to x. For example,

y = h(x) + v

where h is a known function, and v a “noise” (or error) vector.

• An estimator x̂ for x is a function

x̂ : y 7→ x̂(y) .

• The value of x̂(y) at a specific observed value y is an estimate of x.

Under different statistical assumptions, we have the following major solution con-

cepts:

(i) Deterministic framework:

Here we simply look for x that minimizes the error in y ≃ h(x). The most

common criterion is the square norm:

min
x

∥y − h(x)∥2 = min
x

m∑
i=1

|yi − hi(x)|2 .

This is the well-known (non-linear) least-squares (LS) problem.
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(ii) Non-Bayesian framework:

Assume that y is a random function of x. For example,

Y = h(x) + v, with v an RV. More generally, we are given, for each fixed x,

the pdf p(y|x) (i.e., y ∼ p(·|x)).
No statistical assumptions are made on x.

The main solution concept here is the MLE.

(iii) Bayesian framework:

Here we assume that both y and x are RVs with known joint statistics. The

main solution concepts here are the MAP estimator and the optimal (MMSE) estimator.

A problem related to estimation is the regression problem: given measurements

(xk, yk)
N
k=1, find a function h that gives the best fit yk ≃ h(xk). h is the regressor,

or regression function. We shall not consider this problem directly in this course.
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2.3 The Bayesian Setting

In the Bayesian setting, we are given:

(i) pX(x) – the prior distribution for x.

(ii) pY |X(y|x) – the conditional distribution of Y given X = x.

Note that p(y|x) is often specified through an equation such as Y = h(X,v) or

Y = h(X) + v, with v an RV, but this is immaterial for the theory.

We can now compute the posterior probability of X:

p(x|y) = p(y|x)p(x)∫
p(y|x)p(x) dx

.

Given p(x|y), what would be a reasonable choice for x̂?

The two common choices are:

(i) The mean of X according to p(x|y):

x̂(y) = E(X|y) ≡
∫

x p(x|y) dx .

(ii) The most likely value of X according to p(x|y):

x̂(y) = argmax
x

p(x|y)

The first leads to the MMSE estimator, the second to the MAP estimator.
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2.4 The MMSE Estimator

The Mean Square Error (MSE) of as estimator x̂ is given by

MSE(x̂)
△
= E(∥X − x̂(Y )∥2) .

The Minimial Mean Square Error (MMSE) estimator, x̂MMSE, is the one that mini-

mizes the MSE.

Theorem: x̂MMSE(y) = E(X|Y = y).

Remarks:

1. Recall that conditional expectation E(X|Y ) satisfies the orthogonality princi-

ple (see above). This gives an easy proof of the theorem.

2. The MMSE estimator is unbiased : E(x̂MMSE(Y )) = E(X).

3. The posterior MSE is defined (for every y) as:

MSE (x̂|y) = E(∥X − x̂(y)∥2 |Y = y) .

with minimal value MMSE(y). Note that

MSE(x̂) = E
(
E(∥X − x̂(Y )∥2 |Y )

)
=

∫
y

MSE(x̂|y)p(y)dy .

Since MSE(x̂|y) can be minimizing for each y separately, it follows that mini-

mizing the MSE is equivalent to minimizing the posterior MSE for every y.

Some shortcomings of the MMSE estimator are:

– Hard to compute (except for special cases).

– May be inappropriate for multi-modal distributions.

– Requires the prior p(x), which may not be available.

Example: The Gaussian Case.
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Let X and Y be jointly Gaussian RVs with means

E(X) = mX , E(Y ) = mY ,

and covariance matrix

cov

(
X

Y

)
=

(
ΣXX ΣXY

ΣY X ΣY Y

)
.

By direct calculation, the posterior distribution pX|Y=y is Gaussian, with mean

mX|y = mX + ΣXYΣ
−1
Y Y (y −mY ) ,

and covariance

ΣX|y = ΣXX − ΣXYΣ
−1
Y YΣY X .

(If Σ−1
Y Y does not exist, it may be replaced by the pseudo-inverse.) Note that the

posterior variance ΣX|y does not depend on the actual value y of Y !

It follows immediately that for the Gaussian case,

x̂MMSE(y) ≡ E(X|Y = y) = mX|y ,

and the associated posterior MMSE equals

MMSE(y) = E(∥X − x̂MMSE(y)∥2|Y = y) = trace(ΣX|y) .

Note that here x̂MMSE is a linear function of y. Also, the posterior MMSE does not

depend on y.
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2.5 The Linear MMSE Estimator

When the MMSE is too complicated we may settle for the best linear estimator.

Thus, we look for x̂ of the form:

x̂(y) = Ay + b

that minimizes

MSE (x̂) = E
(
∥ X − x̂(Y ) ∥2

)
.

The solution may be easily obtained by differentiation, and has exactly the same

form as the MMSE estimator for the Gaussian case:

x̂L(y) = mX + ΣXYΣ
−1
Y Y (y −mY ) .

Note:

• The LMMSE estimator depends only on the first and second order statistics

of X and Y .

• The linear MMSE does not minimize the posterior MSE, namely MSE (x̂|y).
This holds only in the Gaussian case, where the LMMSE and MMSE estima-

tors coincide.

• The orthogonality principle here is:

E
(
(X − x̂L(Y ))L(Y )T

)
= 0 ,

for every linear function L(y) = Ay + b of y.

• The LMMSE is unbiased: E(x̂L(Y )) = E(X).
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2.6 The MAP Estimator

Still in the Bayesian setting, the MAP (Maximum a-Posteriori) estimator is defined

as

x̂MAP(y)
△
= argmax

x
p(x|y) .

Noting that

p(x|y) = p(x, y)

p(y)
=

p(x)p(y|x)
p(y)

,

we obain the equivalent characterizations:

x̂MAP(y) = argmax
x

p(x, y)

= argmax
x

p(x)p(y|x) .

Motivation: Find the value of x which has the highest probability according to the

posterior p(x|y).

Example: In the Gaussian case, with p(x|y) ∼ N(mX|y,ΣX|y) , we have:

x̂MAP(y) = argmax
x

p(x|y) = mX|y ≡ E(X|Y = y) .

Hence, x̂MAP ≡ x̂MMSE for this case.
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2.7 Non-Bayesian Setting – The ML Estimator

The MLE is defined in a non-Bayesian setting:

∗ No prior p(x) is given. In fact, x need not be random.

∗ The distribution p(y|x) of Y given x is given as before.

The MLE is defined by:

x̂ML(y) = argmax
x∈X

p(y|x) .

It is convenient to define the likelihood function Ly(x) = p(y|x) and the log-likelihood

function Λy(x) = logLy(x), and then we have

x̂ML(y) = argmax
x∈X

Ly(x) ≡ argmax
x∈X

Λy(x) .

Note:

• Often x is denoted as θ in this context.

• Motivation: The value of x that makes y “most likely”.

This justification is merely heuristic!

• Compared with the MAP estimator:

x̂MAP(y) = argmax
x

p(x)p(y|x) ,

we see that the MLE lacks the weighting of p(y|x) by p(x).

• The power of the MLE lies in:

∗ its simplicity

∗ good asymptotic behavior.
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Example 1: Y is exponentially distributed with rate x > 0, namely x = E(Y )−1.

Thus:

F (y|x) = (1− e−xy) 1{y≥0}

py|x(y) = x e−xy 1{y≥0}

x̂ML(y) = argmax
x≥0

x e−xy

d

dx
(x e−xy) = 0 ⇒ x = y−1

x̂ML(y) = y−1 .

Example 2 (Gaussian case):

y = Hx+ v (y ∈ IRm , x ∈ IRn)

v ∼ N(0, Rv)

Ly(x) = p(y|x) = 1

c
e−

1
2
(y−Hx)T R−1

v (y−Hx)

log Ly(x) = c1 −
1

2
(y −Hx)T R−1

v (y −Hx)

x̂ML = argmin
x

(y −Hx)T R−1
v (y −Hx) .

This is a (weighted) LS problem! By differentiation,

HTR−1
v (y −Hx) = 0 ,

x̂ML = (HTR−1
v H)−1HT R−1

v y

(assuming that HTR−1
v H is invertible: in particular, m ≥ n).
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2.8 Bias and Covariance

Since the measurement y is random, the estimate X̂ = x̂(Y ) is a random variable,

and we can relate to its mean and variance.

The conditional mean of x̂ is given by

m̂(x)
△
= E(X̂|x) ≡ E(X̂|X = x) =

∫
x̂(y) p(y|x) dy

The bias x̂ is defined as

b(x) = E(X̂|x)− x .

The of estimator x̂ is (conditionally) unbiased if b(x) = 0 for every x ∈ X .

The covariance matrix of x̂ is,

cov(x̂|x) = E((X̂ − E(X̂|x))(X̂ − E(X̂|x)′|X = x)

In the scalar case, it follows by orthogonality that

MSE(x̂|x) ≡ E((x− X̂)2|x) = E((x− E(X̂|x) + E(X̂|x)− X̂)2|x)
= cov(x̂|x) + b(x)2 .

Thus, if x̂ is conditionally unbiased, MSE(x̂|x) = cov(x̂|x).

Similarly, if x is vector-valued, then MSE(x̂|x) = trace(cov(x̂|x)) + ||b(x)||2.

In the Bayesian case, we say that x̂ is unbiased if E(x̂(Y )) = E(X). Note that the

first expectation is both over X and Y .
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2.9 The Cramer-Rao Lower Bound (CRLB)

The CRLB gives a lower bound on the MSE of any (unbiased) estimator. For

illustration, we mention here the non-Bayesian version, with a scalar parameter x.

Assume that x̂ is conditionally unbiased, namely Ex(x̂(Y )) = x. (We use here Ex(·)
for E(·|X = x)). Then

MSE(x̂|x) = Ex{(x̂(Y )− x)2} ≥ J(x)−1 ,

where J is the Fisher information:

J(x)
△
=− Ex

{
∂2 ln p(Y |x)

∂x2

}
= Ex

{(
∂ ln p(Y |x)

∂x

)2
}

.

An (unbiased) estimator that meets the above CRLB is said to be efficient.
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2.10 Asymptotic Properties of the MLE

Suppose x is estimated based on multiple i.i.d. samples:

y = yn = (y1 , . . . , yn) , with p(yn|x) =
n∏

i=1

p0(yi|x) .

For each n ≥ 1, let x̂n denote an estimator based on yn. For example, x̂n = x̂n
ML.

We consider the asymptotic properties of {x̂n}, as n → ∞.

Definitions: The (non-Bayesian) estimator sequence {x̂(n)} is termed:

∗ Consistent if: lim
n→∞

x̂n(Y n) = x (w.p. 1).

∗ Asymptotically unbiased if: lim
n→∞

Ex(x̂n(Y n)) = x .

∗ Asymptotically efficient if it satisfies the CRLB for n → ∞, in the sense that:

lim
n→∞

Jn(x) ·MSE (x̂n) = 1 .

Here MSE(xn) = Ex(x̂n(Y n)− x)2), and Jn is the Fisher information for yn.

For i.i.d. observations, Jn = nJ (1).

The ML Estimator x̂n
ML is both asymptotically unbiased and asymptotically efficient

(under mild technical conditions).
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