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1 Introduction: Basic Problems of Interest

Our main interest in this course will be in the following problem:

• State estimation in dynamic systems, for which the state cannot be fully ob-

served.

Some related problems that we shall also consider:

• Parameter estimation in dynamic systems (system identification).

• Joint state and parameter estimation.

Our emphasis will be on algorithms which are optimal in a statistical (stochastic)

sense.

The basic system models that we will deal with are:

• Continuous-state systems: We will develop the celebrated Kalman Filter for

state estimation in linear state-space models, and its extensions.

• Discrete-state models: the so-called Hidden Markov Models.

We will also consider various extensions of these basic models and problems.

We next give a brief outline of the basic problems and illustrative applications.
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1.1 State Estimation in Linear Systems

Consider a discrete-time linear state-space model of the form:

xk+1 = Fxk +Guk + vk ,

zk = Hxk + wk .

Here: x ∈ IRn is the state vector, which is unknown to us

z ∈ IRm is the measurement vector

u is a known input signal

v and w are unobserved noise sequences

F, G, H are the system matrices

The basic state-estimation problem: The systems matrices are given, and so are some

properties of the noise sequences. Our goal is to find an estimate x̂k+1 for the state

vector xk+1, given the measurements {zk, zk−1 . . . }.

The proposed solution is of the following (state-observer) form:

x̂k+1 = Fx̂k +Guk +Kk(zk −Hx̂k) .

This is a recursive filter, which can be operated in an on-line mode (i.e., the

estimate is updated each time a new measurement is obtained).

Kk is a gain matrix, to be “properly” chosen.

The Kalman Filter is obtained by an optimal choice of these gains, under appropriate

statistical model assumptions and error criteria.

Extensions: Most models of interest in practice are non-linear. Various (sub-

optimal) extensions of the Kalman filter to non-linear problems now exist are are

widely used, we will cover these as well.

Applications: The Kalman filter is routinely used in navigation systems (own

position, velocity and acceleration estimation), tracking systems (same, for other

objects), control systems (state estimation for state feedback control), along with

numerous other application in signal processing and related fields.
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Examples: We next sketch a few simplified examples for problems that can be cast

in this form.

Example 1: Position Estimation

Consider an object moving in 1-dimensional space, with position p(t).

We are given noisy (inaccurate) measurements of this position at some discrete

times:

z(t) = p(t) + nz(t), t = t0, t1, . . . .

Required: to estimate the position p̂(t).

To formulate this problem in state space form, several options are available:

1. Random acceleration model (2nd order model):

d

dt
p(t) = v(t)

d

dt
v(t) = a(t) ≡ nv(t)

where nv(t) is “white”, 0-mean noise signal with known statistics. This noise

reflects the expected object “maneuverability”.

We have arrived at the following state model:

d

dt

[
p(t)

v(t)

]
=

[
0 1

0 0

][
p(t)

v(t)

]
+

[
0

nv(t)

]

where x(t) = (p(t), v(t))′ is the state vector.

This state equation may be discretized to obtain a discrete-time state model

over the measurement times, of the form:

x(tk+1) = A(k)x(tk) + n(k) .

The measurement equation is

z(t) = [1, 0]

[
p(t)

v(t)

]
≡ [1, 0]x(t) t = tk
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2. Random acceleration-change model (3nd order model):

When velocity cannot change abruptly, the following model is more suitable:

ṗ(t) = v(t)

v̇(t) = a(t)

ȧ = na(t)

Furthermore, when acceleration cannot change abruptly we can add a simple

low path filter:

ȧ = −βa+ na(t)

with β a properly chosen costant. With state x(t) = [p(t), v(t), a(t)]′, we

obtain the following state model:

ẋ(t) =

 0 1 0

0 0 1

0 0 −β

x(t) +

 0

0

na(t)


and measurement equation:

z = [1, 0, 0]x+ nz .

3. Additional measurements:

We may, for example, have also direct velocity measurements of the moving

object. Then the measurement equations are:

z1(tk) = p(tk) + n1(tk)z2(tk) = v(tk) + n2(tk)

In matrix form (for x = [p, v, a]′):

z(tk) =

[
1 0 0

0 1 0

]
x(t) + nz(t)

with nz = (n1, n2)
′.

Position estimation (with Kalman filtering) has many variants and applications,

including:

• Navigation: Using odometry, inertial sensors, GPS, vision,. . .

• Tracking: Using radar, vision, cellular phones....
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Example 2: Signal Detection

Consider a discrete-time signal s(k) which is transmitted through a noisy channel

with ISI; the received signal is

z(k) =
N−1∑
i=0

his(k − i) + nz(k)

with nz a white noise sequence, say nz(k) ∼ N(0, σz).

It is required to recover the transmitted signal s(k) from the measurements z(k′), k′ ≤
k. This is a classical signal filtering problem.

To use statistical methods, we use a statistical model for the transmitted signal: e.g.,

s is a white noise sequence with s(k) ∼ N(0, σs). For N = 2, the state variables

and equations are:

x1(k) = s(k) ⇒ x1(k + 1) = ns(k + 1)

x2(k) = s(k − 1) ⇒ x2(k + 1) = x1(k)

x3(k) = s(k − 2) ⇒ x3(k + 1) = x2(k)

and in matrix form:

x(k + 1) =

 0 0 0

1 0 0

0 1 0

x(k) +

 ns(k + 1)

0

0


z(k) = [h0, h1, h2]x(k) + nz(k) .
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Example 3: Higher harmonics detection

We are given a sinusoidal signal, with basic frequency f1 = 50. We need to detect

the higher-order (say, 3nd order) harmonic content of the signal. (A 2nd order

harmonic is usually absent in power systems.)

With ω1 = 2πf1, we write this signal as

s(t) = A sin(ω1t+ ϕ1) + B sin(3ω1t+ ϕ3) (+other terms) .

It is assumed that the amplitude and phases may (slowly) vary with time. The

signal is measured every T = 0.1 sec. We wish to track B(t) and ϕ1(t) over time.

The problem may obviously be approached in the frequency domain, using standard

filtering methods. We give here the alternative Kalman-filter formulation.

We start by writing the harmonic signal model as:

s(t) = A1(t) cos(ω1t) + A2(t) sin(ω1t) +B1(t) cos(3ω1t) +B2(t) sin(3ω1t)

The state is taken as the four amplitudes: x = [A1, A2, B1, B2]
′. Focusing on the

measurements instances tk = kT , we have the following model:

A1(tk+1) = A1(tk) + nA1(k)
...

B2(tk+1) = B2(tk) + nB2(k)

The noise variances are taken as small quantities related to the allowed rate of

change of the amplitudes. The state equation is then

x(tk+1) = Ix(tk) + n(k)

where I is the unit matrix.

The measurement model is:

z(tk) = s(tk) + nz(k)

with nz the measurement error. It may be taken as a white Gaussian sequence, with

nz(k) ∼ N(0, σz). This gives

z(tk) = [cos(ω1tk), sin(ω1tk), cos(3ω1tk), sin(3ω1tk)]x(tk) + nz(k)
.
= H(k)x(tk) + nz(k) .
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1.2 Hidden Markov Models (HMMs)

HMMs are state models with discrete state, which cannot be directly observed, and

with discrete or continuous measurements.

Let xk ∈ {1, 2, . . . , N} be a Markov chain specified by the transition law

p(xk+1 = j |xk = i} = pij

and initial distribution p(x0). Let the zk be the measurement, say discrete, related

to xk through,

p(zk = z |xk = i) = q(z|i) .

The basic problems here are:

1. Given the model parameters, and measurements (zn, zn−1, . . . , z1}, estimate

the state sequence {xn, xn−1, . . . , x1}.

We shall develop the Maximum Likelihood (ML) estimator for that problem, which

is efficiently implemented using the so-called Viterbi algorithm.

2. Given the measurements (zn, zn−1, . . . , z1}, estimate the model parameters,

namely: find the model that best describes the data.

The standard solution for this problem is joint state and parameter estimation, using

the EM (Expectation Maximization) algorithm.
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HMM Applications: HMMs are a basic tool for pattern recognition (or machine

learning) in temporal or sequential data. Major application areas include speech and

language processing, computational biology (bioinformatics), gesture recognitions,

along with many others.

Consider the application to speech processing, in particular speech recognition. The

HMM may be used at different levels of speech modeling, such as:

Word level: The state x is a complete word; the measurement is the recorded sound

of the word; and the dynamics p(j|i) represents the likelihood of word j appearing

after word i.

Phonetic level: Using a phonetic alphabet to model the inner structure of each word.

In that context, “estimating the state sequence” means identifying the spoken word

sequence; and “estimating the model parameters” relates to the training phase when

the model is tuned to a specific speaker.
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