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Abstract

We seek to sense the three dimensional (3D) volumetric
distribution of scatterers in a heterogenous medium. An im-
portant case study for such a medium is the atmosphere. At-
mospheric contents and their role in Earth’s radiation bal-
ance have significant uncertainties with regards to scatter-
ing components: aerosols and clouds. Clouds, made of wa-
ter droplets, also lead to local effects as precipitation and
shadows. Our sensing approach is computational tomogra-
phy using passive multi-angular imagery. For light-matter
interaction that accounts for multiple-scattering, we use the
3D radiative transfer equation as a forward model. Volu-
metric recovery by inverting this model suffers from a com-
putational bottleneck on large scales, which include many
unknowns. Steps taken make this tomography tractable,
without approximating the scattering order or angle range.

1. Introduction
Scattering and refractive media are increasingly consid-

ered in computer vision [19, 20, 38, 39, 46, 48], typically
for observing background objects [47, 35, 56]. However,
in important cases, the medium itself is of interest. For ex-
ample, remote sensing of the atmosphere seeks to assess
the distribution of various airborne scatterers. Image data
is used to fit a physical model of light propagation through
the medium and recover scatterer properties. Similar efforts
use refractive propagation models to recover properties of
refractive media [6, 24, 25, 49, 55].

This paper seeks volumetric recovery of a three dimen-
sional (3D) heterogeneous highly scattering medium. Fur-
thermore, this work performs recovery in a very large scale:
the atmosphere embedded with clouds. The data comprises
images acquired from multiples directions [50], as illus-
trated in Fig. 1. Such a setup samples the scene’s light-
field [1, 3, 23, 26, 28]. 3D volumetric recovery is achieved
in various domains using tomography, finding wide use in
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Figure 1. A multi-angular imager passing over an atmospheric do-
main enables multi-pixel multi-view acquisition [16, 46]. Incom-
ing solar radiation is a boundary condition. A bidirectional re-
flectance distribution function characterizes the bottom surface.
Light scatters in the medium, generally multiple times, creating
a scatter field J . Integrating J and the boundary radiation using
corresponding attenuation, yields the radiance I (x,ω).

biomedical imaging [15, 52] and computational photogra-
phy [6, 29, 49, 53]. However, this work faces several im-
portant challenges. First, due to the large volumes involved,
our setup is passive, using the steady, uniform and col-
limated Sun as the radiation source. This is contrary to
most tomography setups, in which the source is control-
lable. Second, in most tomographic models, as in X-ray,
direct-transmission [34] forms the signal, while small-angle
scattering has been treated as a perturbation. In contrast, in
a medium as a cloud, the source and detector are generally
not aligned: scattering including high orders is the domi-
nant signal component.
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Previous works on scattering tomography focus on lim-
its of the scattering order: either diffusion [9, 21] or single-
scattering [2]. However, scattering objects, as clouds, are
complex: they can exhibit diffusion in their core, low-order
scattering in their boundaries and interaction with their sur-
rounding. To avoid reliance on such scattering order ap-
proximations, we use the 3D radiative transfer equation
(RTE) as the image formation model. However, avoid-
ing such scattering approximations significantly compli-
cates the model, jeopardizing the prospects of its inversion.
To make any type of tomography a practical tool, the in-
verse problem must be tractable. It is thus necessary to find
means to efficiently invert the model, as this paper derives.

The derived mathematical multi-scatter heterogeneous
model and algorithm principles can be applied to various
media. This paper makes further focus on clouds, which are
scattering media made of suspended water droplets. Clouds
reflect much of the Sun’s radiation out to space, while trap-
ping emitted terrestrial radiation. Clouds thus play a major
role in the Earth’s radiation budget and the understanding
of climate evolution [44], yet their influence over climate
change still has a large uncertainty [11]. There is thus mo-
tivation to sense clouds in detail.

Lidars and in-situ sampling provide local small-scale
data. Current optical remote sensing of Earth’s atmosphere
generally does not yield 3D volumetric mapping. Rather,
remote sensing methodology has largely assumed a plane-
parallel atmospheric geometry, with horizontally uniform
properties. This crude geometry limits recovery to simple
parameters [36, 37, 42]. Moreover, this approximation of
atmospheric structure causes biases of the retrieved param-
eters in most cases [14]. Our 3D volumetric recovery avoids
the plane-parallel assumption. The method is demonstrated
on images captured from a high altitude aircraft. It is also
validated using established atmospheric models coupling
fluid dynamics and cloud micro-physics.

2. Theoretical background
2.1. Image Formation Model: Radiative Transfer

Our image formation (forward) model is steady-state 3D
radiative transfer. A domain Ω ⊂ R3 has boundary ∂Ω,
whose outward facing normal is ϑ (Fig. 1). At position x ∈
Ω and direction of propagation ω ∈ S2 (unit sphere), the
radiation field is I (x,ω). Dependency on wavelength λ is
omitted, to simplify the explanation. Let ω · ϑ < 0 define
incoming radiation. The boundary condition is

I (x,ω) , IBC (x,ω) when ω · ϑ < 0, x ∈ ∂Ω. (1)

Radiative transfer satisfies [10]:

ω · OI (x,ω) = β (x) [J (x,ω)− I (x,ω)] x ∈ Ω, (2)

Figure 2. The RTE is a recursive interplay between J (x,ω) and
I (x,ω), given by Eqs. (3,4), thus spanning multiple scattering.
Numerically, this forward-model is iterated to convergence.

where β is the x-dependent extinction coefficient, while

J (x,ω) =
$

4π

∫
S2

p (x,ω · ω′) I (x,ω′) dω′, (3)

is the source function (in-scattering term) [10], neglecting
visible light emission by the medium. Here $ is the sin-
gle scattering albedo and p (x,ω · ω′) is the phase function
at x. The phase function describes the fraction of energy
scattered from ω′ to ω by an infinitesimal volume. Equa-
tions (1–3) define a complete radiative transfer forward
model for an externally illuminated, non-emitting medium.

Integrating Eq. (2) along a specific direction ω results in
an integral form of the 3D RTE [10, 31]

I(x,ω) = IBC(x0,ω) exp

[
−
x0∫
x

β (r) dr

]
+
x0∫
x

J(x′,ω)β (x′) exp

[
−
x′∫
x

β (r) dr

]
dx′. (4)

Here x0 is a point on the boundary (see Fig. 1). Equa-
tion (4) accumulates scattered radiance along a line of sight,
weighted by the corresponding extinction. By

∫ x′
x
f(r)dr,

we mean a line integral over a field f(x) along the segment
extending from x to x′. Numerically, this is preformed by
back-projecting a ray through the medium.

Equations (3,4) express a recursive interplay of the fields
J and I , as illustrated in Fig. 2. A recursion effectively
amounts to a successive order of scattering, or a Picard it-
eration [18]. Had J (x,ω) been computed only through in-
coming solar radiation, without recursion, the result would
have been a single scattering approximation.

2.2. Spherical Harmonics Discrete Ordinates
Numerically solving the radiative transfer is a balance

between speed and accuracy. Monte Carlo (MC) methods
can handle very complex media, including sharp changes in
optical parameters. This makes MC particularly accurate in
rendering of surfaces. In MC, radiometric quantities are at-
tained by random sampling the infinite domain of possible
light paths. This computational process is very slow, par-
ticularly for multi-view images. Faster rendering using less
random samples increases noise.



Deterministic RTE solvers discretize the spatial and
angular domain. Discretization biases I (x,ω) towards
smooth solutions. Nevertheless, volumetric clouds are
smoother than surfaces, thus a computed smooth I (x,ω)
is consistent with the nature of cloud fields. Determinis-
tic solvers are thus prime tools in atmospheric rendering.
Moreover, when seeking many radiometric outputs of the
same scene, e.g. in multiple viewpoints, a model that solves
the RTE directly has favorable computational cost.

A very efficient, deterministic solver is the spherical
harmonic discrete ordinates method (SHDOM) [18, 31],
which relies on two principles. (i) A spherical harmonics
representation for the scatter field allows for efficient
computation of angular integrals. (ii) Discrete ordinates
models radiation flow along specific directions within the
domain. Ref. [41] compares atmospheric MC and SHDOM.

2.3. Air and Cloud Water Droplets
For air molecules and cloud water droplets, $ ' 1 in

visible light. Molecules follow the Rayleigh scattering law,
which uniquely determines the spatially invariant molecular
phase function [2] pR (ω · ω′). The Rayleigh scattering co-
efficient βR is analytically known per air density. Air den-
sity varies mainly with altitude z. With localized tornadoes
as exception, air density varies slowly in space and time,
and mapped over Earth using long established systems.

The change of refractive index between air and cloud wa-
ter droplets creates scattering, represented by a cloud scat-
tering coefficient βc(x) and phase function pc (ω · ω′). The
total extinction and phase function are respectively

β(x) = βc(x) + βR(z) (5)

p (x,ω · ω′) =
pc (ω · ω′)βc(x) + pR (ω · ω′)βR(z)

β(x)
.

(6)
The function pc is determined through Mie theory by the
droplet size distribution. The size varies mainly vertically,
within typical air masses. Vertical variations follow curves,
whose parameters are measured from satellites [45]. 3D
variations are thus mainly attributed here to βc(x).

3. Tomographic Recovery - Inverse Model
We seek to recover β(x) within the volume of a cloud.

This is equivalent to seeking βc(x), since βR(z) is known.
The recovery is based on images, with a complex image-
formation model. An efficient approach must be derived
for such a complex recovery to be contemplated. Note that
Eq. (4) depends on β(x) in two ways. One dependency
on β is explicit, through line integrals over straight back-
projected rays, that are easy to compute. The other depen-
dency is implicit, through J . The implicit dependency is
complicated and non-local: a change in β(x1) can cause a

change in J(x2). However, for a given, fixed J , it is easy
to compute, through (4), the radiance I and ∂

∂β I . This ob-
servation provides a key for computationally realistic tomo-
graphic recovery, which is now explained.

3.1. Operator Notation
Following [5, 7], we use operator notations. For a

given boundary condition, the radiance forward mapping
I (x,ω) = I (β) is an operator that transforms an extinc-
tion field β into a radiation field I . Let us decompose this
mapping into two operators, I (β) = T (β)J (β). Here
J (x,ω) = J (β) is the in-scatter forward mapping from a
field β to a field J . The operation T (β) transforms an in-
scatter field J to a measurable radiance field by the simple
line integrals of Eq. (4).

An aperture function w ∈ Ω× S2, defines collection of
radiance by a detector, over a spatial and angular support.
Measurements are thus an operator

MwI (β) = 〈w, I〉Ω, where 〈· , ·〉Ω ≡
∫
Ω

∫
S2

· · dωdx.

(7)
For an idealized single-pixel detector positioned at x∗, col-
lecting radiation flowing in direction ω∗,

MwI = 〈δ (x− x∗) δ (ω − ω∗) , I〉Ω = I (x∗,ω∗) . (8)

Consequently, the forward model is

Fw (β) =MwI (β) =MwT (β)J (β) . (9)

For numerical recovery, the sought field is discretized

β (x) =

Ngrid∑
k=1

βkbk (x) , (10)

where {βk}
Ngrid

k=1 are discrete parameters, bk (x) is a unit-
less interpolation kernel and Ngrid is the number of grid
points. Let y be a measurement vector and ( · )T denote
transposition. Tomographic reconstruction is an estimation
of β =

(
β1, ..., βNgrid

)T
, that minimizes a data fit cost

β̂ = arg min
β
E [y,F (β)] . (11)

Solving the minimization problem utilizes the gradient of
E with respect to β. In Eq. (5), βR(z) is known, thus
[dE/dβ] = [dE/dβc]. The gradient is traditionally esti-
mated iteratively, which would require O (Ngrid) simula-
tions of the forward model, per iteration. The complexity is
exacerbated by the complicated and non-linear form of the
forward operator F . Differentiation using an adjoint RTE
was theorized in [32]. A theory and initial results of inverse
rendering using Pn approximation are shown in [54]. In
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Figure 3. Illustrating a surrogate function. (a) Computing the cost
function gradient has very high computational complexity, making
gradient based methods expensive. (b) The gradient of a surro-
gate function E [y,F (β|Jn)] is easily computed, driving the min-
imization forward by iterations. In each iteration a minimum of
the surrogate function is attained (Eq. 13), followed by its evolu-
tion (Eq. 12), using SHDOM and the newly found βn.

works that do not attempt 3D volumetric recovery, stochas-
tic gradients [22] are used in a homogeneous medium, while
numerical differentiation estimates unidirectional path inte-
grals [13, 30]. Despite seeking non-volumetric recoveries,
these works report prohibitive computational complexity.

3.2. Scalable Approach
To turn the hypothetical (11) to a feasible, tractable

method, we simplify [27] the computations. Instead of op-
timizing a function whose gradient is complex to compute,
we efficiently optimize β using surrogate functions that
evolve through iterations (Fig. 3). Let βn be an estimate
of β in iteration n. The first step computes the in-scatter
field, which corresponds to the current estimate βn

Jn = J (βn) . (12)

This is the computationally complex part, hence we do not
estimate its gradient. In fact, we hold Jn constant for a
while, despite evolution of β. Let F(β|Jn) =MT (β)Jn
serve as a surrogate function in which Jn is fixed. In the
second step, keeping Jn fixed, the following optimization
finds the next estimate of β

βn+1 = arg min
β
E [y,F (β|Jn)] . (13)

Data-fit using weighted least squares has the form

E [y,F (β|Jn)]

= 1
2 [y −MT (β) Jn]

T
Σ−1

meas [y −MT (β) Jn] .(14)

Here Σmeas is the covariance matrix of the (uncorrelated)
measurements. The variance of measurement w is σ2

w.
Given measurement vector y of length Nmeas and Jn,

solving (13,14) is simple using gradient-based methods.
∂
∂βk
E [y,F (β|Jn)]

=
Nmeas∑
w=1

1
σ2
w

[Fw (β|Jn)− yw]Mw

[
∂
∂βk
T (β)

]
Jn.(15)

For a detector defined in (8),

Mw

[
∂

∂βk
T (β)

]
Jn = Aw,k +Bw,k, (16)

where

Aw,k = ck(x0)IBC(x0,ω
∗) exp

[
−
x0∫
x∗
β (r) dr

]
,

Bw,k =
x0∫
x∗
Jn (x,ω∗) [bk(x) + ck(x)β(x)]

× exp

[
−

x∫
x∗
β (r) dr

]
dx. (17)

The factor ck(x) = −
∫ x
x∗
bk(r)dr can be pre-computed,

as it does not depend on the sought field. Given the gradi-
ent (15), Eq. (13) can be solved using gradient descent

βt+1
n = βtn −∆ · ∂

∂β
E [y,F (β|Jn)] , (18)

where t indexes a gradient-descent step, and ∆ is the step
size. After every Nβ gradient descent steps, the field J
is updated using SHDOM. Then, gradient-descent is re-
sumed, using the updated J , for another set of Nβ gra-
dient descents, and so on. Starting with an initial guess
β0, Eqs. (12,13,18) define an iterative optimization process.
Eqs. (12,13) are alternated repeatedly until convergence.

In optimization problems, particularly nonlinear ones,
the step size ∆ needs to be well set. As a preliminary rule
of thumb, we found that for stability, ∆ needs to be lower,
when the effective optical depth (not a 3D function) of a
cloud is lower. Optical depth is currently retrievable using
1D radiative transfer methods [36].

3.3. Computational Efficiency

The surrogate function enables a major reduction in com-
putational complexity, enabling for the first time, feasible
3D recovery. The most expensive part of the process is
3D rendering including multiple scattering, expressed byJ .
Hence, J must be performed sparingly. Let there be NDOF

degrees of freedom (unknowns) to recover. In the pioneer-
ing work of Ref. [22], focusing on retrieval of a homoge-
neous anisotropic medium, each gradient descent operation
requires O(NDOF) operations of J (rendering operator).

In our optimization of β, a gradient descent of the sur-
rogate function uses a fixed Jn, hence no operation of J is
made, irrespective of NDOF = Ngrid. The operator J is
applied sporadically over time, with frequency that is un-
related to Ngrid. Hence, our approach accelerates the most
expensive part of gradient descent by O(Ngrid), facilitat-
ing optimization of O(105) unknowns in a short time. Our
method is thus scalable.
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Figure 4. [Top] A cumulus cloud field created by LES [33] is ren-
dered using SHDOM [18]. The clouds in the marked boxes are
analyzed by tomography; [Bottom] SHDOM-generated radiance
measurements, at five out of the nine viewing angles.

4. Limitations
We have so far not encountered basic limitations that are

attributed to the surrogate-function method. Limitations we
found in simulations at various scales appear to be due to
the basic definition of the problem of passive 3D recovery:
• It is a non-convex problem, having local minima to which
gradient descent converges. This can be mitigated by an in-
formed initial guess e.g., using a layered model retrieval or
an estimate of where the cloud’s outer boundary lies [8].
• At very high optical depth, the signal coming from deep
within the cloud is outweighed by sensor noise. This desen-
sitizes airborne/space-borne signals to cloud densities there.
We hypothesize that this problem may be countered using
good priors or regularization on cloud structure via fluid dy-
namics, and ground or in-situ measurements.

5. Simulations
5.1. Scene and Image Rendering

To test the approach in a realistically complex yet
controlled scene, we use a large eddy simulation
(LES) [12, 33] to generate a cloud field (Fig. 4). The
LES is a comprehensive tool used by atmospheric scientists
to computationally-create physically correct clouds [50].
The key output of the LES is liquid water content over a
3D grid. The clouds here hover above open ocean, whose
reflectance [51] is affected by a 10 m/s wind and a typical

chlorophyll concentration of 0.01 mg/m3 [40]. Here are
additional scene parameters.

Atmospheric Constituents: The droplet size is Gamma-
distributed, with effective droplet radius reff = 10µm
effective variance veff = 0.1, which are typical values [43].
Mie scattering theory converts these quantities into βc(x)
and pc (ω · ω′), the cloud phase function. We model
molecular scattering using a summer mid-latitude vertical
distribution [4], at altitudes ranging within z ∈ [0,20] km.
We use λ = 672 nm, where Rayleigh total optical thick-
ness [16, 17] of non-cloudy air is only ∼ 0.05.

Image Rendering: The top of the atmosphere is irradi-
ated by collimated sunlight, directed as described in Fig. 4.
An SHDOM code [18] which is popular in atmospheric
3D radiative transfer, emulates1 measurements similar to
those taken by the Multi-angle Spectro-Polarimeter Imager
(AirMSPI) [17] at 20 m resolution. The 9 viewing zenith
angles are ±70.5◦, ±60◦, ±45.6◦, ±26.1◦, and 0◦, where
± indicates forward/backward along the flight path. Images
as viewed from the instrument are rendered in Fig. 4. Pois-
son and quantization noise are included, according to the
specifications of AirMSPI [17].

5.2. Recovery Results

We analyzed two atmospheric volumes, marked by green
and red boxes in Fig. 4. Their respective dimensions are
0.72× 0.72× 1.44km3, 1.32× 2.22× 2.2km3. The anal-
ysis used ∆ = 200 andNβ = 7 and open horizontal bound-
aries, expressing observation of an isolated cloud. Updates
of the surrogate function stopped when the cost function
declines to 1% of its initial value. MATLAB was used on
a 2.50 GHz Intel Xeon CPU. The rendering step, imple-
mented in FORTRAN, was parallelized on 8 cores.

The converged reconstructions are displayed in Figs. 5,6
along with the ground-truth and a 3D relative error map.
We quantify the recovery error using two measures defined
in [2]. For the cloud marked in green (Fig. 4), the relative
error in overall recovered mass is δ = (5± 0.1)%. The rel-
ative local error is ε = (33± 2)%. Fig. 7 displays ε in three
slices. The error is larger at more opaque regions within the
cloud. A scatter plot of true vs. estimated values is shown
in Fig. 7c: its correlation is ρ = 0.94. For the cloud marked
in red (Fig. 4), δ = 30%, ε = 70%, due to the loss of signal.
Here ρ = 0.76. These results evolve from an initialization
of no-cloud, with neither priors nor regularization on cloud
structure. Runtime analysis is displayed in Fig. 8.

1In [33], Fig. 4 is originally rendered using MC.
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Figure 5. The unknown extinction field is discretized to a 36× 36× 36 grid (46,656 unknowns). A volumetric comparison between the
true LES-generated cloud and the recovered cloud, based on initialization that assumed no cloud at all. It is evident from the relative error
map that the error is larger in the more opaque regions of the cloud.
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Figure 6. The unknown extinction field is discretized to a 66× 111× 43 grid (315,018 unknowns). A volumetric comparison between the
true LES-generated cloud and the recovered cloud, based on initialization that assumed no cloud at all. The cloud is extremely optically
thick here, completely dissipating the signal (down to sensor noise level) in some areas.

6. Large-Scale Field Experiment

6.1. Real Data and Its Pre-Processing

It is desirable to apply this approach to real data, cap-
tured in the huge outdoor field, from multiple remote
views [50]. In 2010 NASA initiated field campaigns with
AirMSPI [17] at 20 km altitude, aboard NASA’s ER-2 air-
craft. AirMSPI has an eight-band push-broom camera,
mounted on a gimbal for multi-angular observations over a
±67◦ along-track range. AirMSPI had undergone extensive
geometric and radiometric calibration, to enable highly ac-
curate quantitative measurements and subsequent products.
In a step-and-stare mode, the spatial resolution is 10m.

We use the 660nm channel of data from a Pacific flight2

done Feb/6/2013 at 20:27 GMT, around global coordinates
32N 123W. The flight path and three out of the nine view
angles are displayed in Fig. 9a. We examine an atmospheric
portion of 2.6 km× 3.4 km× 2.4 km in East-North-Up co-
ordinates.

Clouds move due to wind at their altitude, while
AirSMPI flies. Motion along-track is difficult to resolve
by images, since it aliases as parallax, globally affecting
altitude estimation. Motion across track was estimated by
aligning consecutive frames. This method yielded an as-
sessed cross-track motion of ≈ 37 km/h.

2https://eosweb.larc.nasa.gov/project/airmspi

https://eosweb.larc.nasa.gov/project/airmspi
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6.2. Results

The assumed open ocean parameters we used are chloro-
phyll concentration of 0.01 mg/m3 and surface wind of
15 km/h. The boundary conditions, droplet size distri-
bution, update scheme and convergence criteria are as de-
scribed in Sec. 5, while here ∆ = 10. The extinction
field is discretized to 43× 56× 35 grid points (86,688 un-
knowns). Based on the nine views, the converged volumet-
ric reconstruction is displayed in Fig. 9d. The extinction
values recovered by our reconstruction indicate an optical
mean-free-path of 100-300 meters inside this cloud.

For cross-validation of the method, we excluded the
nadir image data from the recovery process, thus using only
eight out of the nine raw views in the 3D recovery. After-
wards, we used the recovered cloud to render the missing
nadir view. Figure 9b,c compares the raw AirMSPI nadir
image to the rendered corresponding view. The same cross-
validation process was repeated for the +47o view angle
(Fig. 9e,f). The coarseness of the estimated images is due
to the cloud-voxel resolution (60m×60m×70m), which is
lower than the AirMSPI sampling resolution (10m× 10m).
Some of the artifacts evident in the volumetric reconstruc-
tion are due to the ocean, whose true parameters were not
calibrated by us.

7. Summary

This work derives a framework for 3D tomography in
scattering media, and in a large uncontrolled environment,
where clouds reside. In this type of tomography, the signal
is dominated by multiply scattered radiance and the source
may be uncontrolled. Neither small angle nor an approx-
imate scattering order limit are assumed by our work. To
solve the problem in a tractable way, we develop a surro-
gate function suitable for the image formation model. This
approach aims to enable large-scale tomography of the par-
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IterationsTime: 177 Minutes

Time: 13 Minutes

Figure 8. Convergence rate of the simulation corresponding to
Fig. 5, including current runtime in our implementation.

ticulate atmosphere, and thus advance our understanding of
the physical processes involved. It can also find use in bio-
medical tomography, away from the small-angle, single-
scattering or diffusion limits.

In computer vision, many recent studies attempt dehaz-
ing, i.e., background scene recovery through a scattering
medium. The dominant model used so far in dehazing
under natural lighting has been based on a single-scattering
approximation, ignoring higher-order scattering. Our
work herein suggests that an inverse problem including
an arbitrary order of atmospheric daylight scattering is
solvable. Hence, dehazing may benefit from methods
presented here.
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B. A. Baum, J. C. Riédi, and R. A. Frey. The MODIS cloud
products: Algorithms and examples from Terra. IEEE T.
Geosci. Remote. Sens., 41(2):459–473, 2003.

[43] R. R. Rogers and M. Yau. A Short Course in Cloud Physics.
International Series in Natural Philosophy, 1989.

[44] D. Rosenfeld. Aerosol-cloud interactions control of earth
radiation and latent heat release budgets. In Solar Variability
and Planetary Climates, pages 149–157. Springer, 2007.

[45] D. Rosenfeld, M. O. Andreae, A. Asmi, M. Chin, G. Leeuw,
D. P. Donovan, R. Kahn, S. Kinne, N. Kivekäs, M. Kulmala,
W. Lau, K. S. Schmidt, T. Suni, T. Wagner, M. Wild and
J. Quaas. Global observations of aerosol-cloud-precipitation-
climate interactions. Rev. Geophys., 52:750–808, 2014.

[46] Y. Y. Schechner, D. J. Diner and J. V. Martonchik, Space-
borne underwater imaging, In Proc. Proc. IEEE ICCP, 2011.

[47] Y. Tian and S. G. Narasimhan. Seeing through water: Image
restoration using model-based tracking. In Proc. IEEE ICCV,
2303–2310, 2009.

[48] T. Treibitz and Y. Y. Schechner, Polarization: Beneficial for
visibility enhancement? In Proc. IEEE CVPR, 2009.

[49] B. Trifonov, D. Bradley, and W. Heidrich. Tomographic re-
construction of transparent objects. Proc. EGSR, 2006.

[50] D. Veikherman, A. Aides, Y. Y. Schechner, and A. Levis.
Clouds in the cloud. Proc. ACCV, 2014.
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