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General solutions representing rotations of intensity distributions around and along the propagation axis are
derived for the paraxial wave equation. The formalism used is a key for understanding and synthesizing such
waves as experimentally demonstrated. A necessary and sufficient condition for rigid rotation as well as
limitations on the rotation rate are obtained.@S1063-651X~96!50507-6#
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Wave fields containing invariant features have recently
stimulated the interest of the scientific community. Typical
examples of such fields are Gaussian modes, Bessel beams
@1#, and wave fronts containing phase dislocations@2#.
Bessel beams are solutions of the wave equation that propa-
gate with invariant intensity. Phase dislocations are disconti-
nuities of the phase in a wave front such that the circulation
of the phase around its axis is an integral multiple of 2p.
Thus, they determine lines of zero intensity in space. Experi-
mental evidences of optical dislocations can be found, for
example, in Refs.@3–5#. It was noted in Refs.@4,6# that,
under certain circumstances, an array of dislocations nested
in a Gaussian beam rotates byp/2 rad from the waist to the
far field, expanding with the host beam.

The objective of this paper is to investigate general solu-
tions having rotating intensity distributions around and along
the propagation axis. We start by demonstrating that these
solutions are easily obtained in terms of the superposition of
Gauss-Laguerre~GL! modes. The rotation rate along the
propagation is then derived and the set of all possible solu-
tions presenting a specific total rotation angle is character-
ized. Finally, we analyze the limit of the rotation rate and
present experimental results for optical beams.

Let a scalar wave be represented by the function

F~r ,t !5u~r !exp@ i ~kz2vt !#, ~1!

wherer5~r,w,z! in cylindrical coordinates,v is the angular
frequency, andk is the wave number. The paraxial wave
equation for propagation along thez axis is analogous to the
Schrödinger equation of a free particle in two dimensions,
where thez coordinate is replaced by the time variable@7,8#.
This analogy allows us to use the formalism of quantum
mechanics to analyze paraxial wave fields. Although the
three-dimensional wave is stationary in time, we use time
domain semantics to describe this evolution.

We seek solutions of the paraxial wave equation with
scaled and rotated transversal intensity distributions. Our ap-
proach is to use a complete orthogonal set in which each
basis function is stationary~except for scale! in the z direc-
tion, and is an eigenmode of rotation about thez axis. The
GL function set satisfies both these requirements and the
paraxial wave equation@8,9#. In analogy to quantum me-

chanics, dynamic behavior~in thez direction! is achieved by
superposition of these modes. We found it convenient to
write each GL mode as

un,m~r !5^r un,m&5Cn,mG~r,z!Rn,m~ r̃ !Fm~w!Zn~z!
~2a!

where

G~r,z!5
w0

w~z!
exp@2 r̃ 2#exp@ ikr2/2R~z!#exp@2 ic~z!#,

~2b!

Rn,m~ r̃ !5@A2r̃ # umuL ~n2umu!/2
umu @2r̃ 2#, ~2c!

Fm~w!5exp@ imw#, ~2d!

Zn~z!5exp@2 inc~z!#, ~2e!

while r̃5r/w(z) is the radial coordinate, scaled by the
Gaussian spot size, which is given by

w~z!5w0@11~z/z0!
2#1/2, ~2f!

z05pw0
2/l ~2g!

is the Rayleigh length,

c~z!5arctan~z/z0! ~2h!

is the Gouy phase. The function~2b! is common to all
modes, and comprises the radial Gaussian envelope of the
beam, a Gouy phase, and a radial quadratic phase factor,
with

R~z!5z@11~z0 /z!2# ~3!

being the radius of curvature of the wave front.L (n2umu)/2
umu are

the generalized Laguerre polynomials, and the integersn,m
obey the relation

n5umu, umu12, umu14, ... . ~4!

We use the factorsCn,m to normalize the constant multipli-
catives in~2c! around the axis~small r̃!, leading to the ex-
pression
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Cn,m5F S n2umu
2 D ! umu! G YFA2umuS n1umu

2 D ! G . ~5!

In Eq. ~2a!, the azimuthal dependence of each mode is
given exclusively byFm(w) through the indexm, while the
dynamic behavior is determined byZn(z) through the index
n. To observe any kind of azimuthal change in transverse
planes the wave must possess the following two characteris-
tics.

~i! Anisotropy ~no circular symmetry! about thez axis.
~ii ! Nonstationary behavior in thez-direction.

The first characteristic can be achieved only by superposing
modes with differentm’s, while the second is fulfilled only
by superposing modes with differentn’s.

Let us examine a superposition of such modes. Assuming,
without loss of generality, thatnj<nj11 . The intensity dis-
tribution is given by

I ~r !5U (
j51

M

aj^r unj ,mj&U2

5uG~ r̃ !u2H (
j51

M

uAj u2Rnj ,mj

2 ~ r̃ !

1(
j51

M

(
p5 j11

M

2uAj uuApuRnj ,mj
~ r̃ !

3Rnp ,mp
~ r̃ !cos@~mj2mp!w2~nj2np!c~z!2q jp#J

~6!

where the amplitudeAj comprises the complex amplitude
aj and the constantCn,m of mode j, while q jp[@arg(aj )
2arg(ap)#. The first sum on the right hand side of Eq.~6! is

isotropic about the axis and stationary inz. Each term in the
second sum represents a wave rotating linearly withc(z) at
the local rotation rate

ẇ jp~z!5S dw

dzD
jp

5
Dnjp
Dmjp

dc~z!

dz
, ~7!

where Dnjp[nj2np and Dmjp[mj2mp . Terms having
mj5mp are isotropic and they do not satisfy the first condi-
tion above. Therefore, they will not be considered further. If
all the waves rotate at the same rate, scaled-rigid rotation
will be observed. That is the case when (dw jp /dc)5const
for all j,p, leading to

nj112nj
mj112mj

5
Dnj
Dmj

5const[V, j51,2,...,M21. ~8!

If Eq. ~8! is not fulfilled, additional ‘‘harmonics’’ will appear
in the rotation. Hence Eq.~8! is a necessaryand sufficient
condition for rigid rotation of images in transverse planes.
This result is in agreement with Ref.@10#.

The total rotation from the waist~z50!, to the far field
~z5`! is then Dwtotal5Vp/2, as it is fromz52` to the
waist. Half ofDwtotal is obtained at the Rayleigh distance.

We now study the limit of the achievable rotation rate
with paraxial waves. As opposed to the spot size, which
changes quadratically in the waist at a minimum rate~zero
limit !, the absolute azimuth changes linearly in the waist at
its maximum rate@see Eqs.~2h! and ~7!#. We assume the
superposition of only two modes, since the rate is uniquely
defined by their ratioV. In order to maximize the angular
rate we assumeuDmu51 andn150, which leads to

ẇmax~0!5n2l/pw0
2. ~9!

Apparently, we can make this rate infinitely large by increas-
ing the indexn2. However, the paraxial approximation im-
poses a trade-off betweenn2 andw0

2. To show this, we cal-
culate the effective width of the beam as the standard
deviation of the intensity distribution. We did so by using the
analogs to the quantum-mechanical circular destruction and
creation operators@11#. We thus get

^~Dx!2&5
^uuX2uu&

^uuu&
5
n11
4

w2~z! ——→
z@z0

n11
4 S lz

pw0
D 2.
~10!

Hence the effective half-angular-beam-spread for a GL beam
obeys

FIG. 1. ~a! The theoretical intensity distribution at the waist and
the far field.~b! Photograph of the far field.

FIG. 2. Cross-sectional photographs along thez axis within the Rayleigh range. The middle photograph is taken near the waist.
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tan~ubeam)5An11
l

pw0
. ~11!

Using relation~11! in Eq. ~9!, we obtain the upper bound for
the rotation rate as

ẇmax~0!5 S p

l
D tan2~ubeam!

n2
n211

——→
n2→`

S p

l
D tan2~ubeam!.

~12!

The paraxial approximation limitsubeamand thus we assume
tan~ubeam!&1/2. A similar criterion for the validity of the
paraxial approximation was employed in Ref.@12#. Accord-
ingly, we have

ẇmax~0!&
p

4l
. ~13!

Although the rotation rate increases asymptotically with
n2 , it gets close to the limit of Eq.~12! even for smalln2 .
As a consequence of relation~12!, if the beam is to pass
effectively through an apertureD placed atuzu5 f@z0 , then

ẇmax~0!'S p

l D S D2 f D
2

. ~14!

We note that this rate is in accordance with the axial-spatial-
frequency cutoff, which measures how fast the intensity can
change along the direction of the optical axis@13#.

As an example, we show experimental results of a beam
with Dw total5p. The beam consists of a superposition of two
GL modes:

uu&56u4,2&1u0,0&. ~15!

We realized~15! by using a computer generated hologram.
The beam hadw050.2 mm, using a He-Ne laser~l5632.8
nm!. The hologram was positioned atz522 m, and had
dimensions of 131 cm2. It encoded the superposition of~15!
and a plane wave at off axis angle of 0.35° on 120131201
binary pixels@14#. These figures were selected in order to
obtain enough separation of the orders and exploit the reso-
lution of the plotter, film, and camera, while keeping the
physical dimensions of the beam and setup convenient for
laboratory work. The theoretical transversal intensity distri-
bution at the waist~and also at the far field! is shown in Fig.
1~a!. The experimental photograph of the far field is given in
Fig. 1~b!. We show, in Fig. 2, cross-sectional photographs at
several planes along thez axis within the Rayleigh range.
The frame in the middle was taken approximately at the
waist. Each image is rotated approximately by 30° relative to

the adjacent ones. Note that the spot size is almost constant,
while the rotation is substantial. The measured rotation angle
along the propagation axis, compared to the theoretical
curve, is presented in Fig. 3.

In conclusion, we characterized the set of all possible
paraxial solutions presenting scaled-rotating intensity distri-
butions along the propagation. We defined the rotation rate
and observed that the total rotation angle from waist to far
field is a rational multiple ofp/2. The experimental demon-
stration showed good agreement with the theoretical predic-
tions. The limits of the rotation rate in the paraxial regime
were derived.

We further note that the total rotation, as well as the ro-
tation rate, not only depend on the existence of phase dislo-
cations~m numbers!, but also on the envelope of the beam
that hosts them~n numbers!. The relation between rotations
and self-imaging is presently under investigation.

It is worth nothing that the superposition of GL modes,
having different optical frequencies, may lead to temporal
rotations of the intensity distribution at fixed distances from
the beam waist. This effect has been observed@5# in multi-
mode beams generated by lasers.
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FIG. 3. The measured rotation angle along the propagation axis
~black points!, and the theoretical curve. The first five points to the
left correspond to the frames of Fig. 2.
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