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Parameterization and orbital angular
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Waves that have an isotropic intensity distribution about the propagation axis may carry well-defined, quan-
tized orbital angular momentum. The angular momentum is nonzero in the presence of screw dislocations.
It is shown that these dislocations can be represented by a complete orthogonal set of functions (such as the
Gauss–Laguerre set, which is valid for the paraxial approximation). Representing anisotropic dislocations
by a superposition of isotropic ones provides easy derivation of various quantities related to the angular mo-
mentum, such as its expectation value and the uncertainty. Concentrating on dislocations that are solutions
of the Laplace equation, we propose two natural and convenient ways of parameterization that bring forth
their isotropic components as well as the geometrical properties of their phase map.  1996 Optical Society
of America
1. INTRODUCTION
More than two decades ago, Nye and Berry1 introduced
the concept of wave dislocations. In recent years the
issue has regained interest. Optical dislocations were
produced by use of computer-generated holograms,2,3

and their propagation in free space was studied. In-
tensive research on dislocations, such as investigations
of spatiotemporal phenomena in laser cavities, has been
done.4 – 6 At the same time, while paraxial laser beams
were treated with Laguerre–Gaussian modes, it was
found that each such mode has a well-defined orbital
angular momentum.7 – 14

In the present paper we investigate some aspects of
anisotropic dislocations with emphasis on the derivation
of angular momentum. We concentrate on linear so-
lutions of the Laplace equation. Such dislocations are
dominant in speckle fields and were parameterized in
previous studies.15,16 However, those parameters are in-
convenient for physical interpretation, and we propose
more convenient parameterizations that are well suited
for analysis and interpretation. Most of the conclusions
are valid for screw dislocations that occur in any scalar
wave, and are not restricted to optics.

In Section 2 a background is provided on some ba-
sic principles and characteristics of dislocations, on the
Gauss–Laguerre function set, and on the relevance of the
Laplace equation. In Section 3 we discuss anisotropic
dislocations that obey the Laplace equation and vari-
ous parameterizations for them. The orbital angular mo-
mentum of waves with anisotropic dislocations is treated
in Section 4 with the derivation of their expectation val-
ues and standard deviations. Conclusions are provided
in Section 5.
0740-3232/96/050967-07$10.00 
2. BACKGROUND ON SCREW
DISLOCATIONS
A screw dislocation is a line in space, along the direc-
tion of a wave propagation, where the phase is not deter-
mined and the amplitude vanishes. The phase changes
by 2pm for a revolution around the dislocation, where
m can be any integer, positive or negative.1 Viewed in
space, a cophasal surface (wave front) traces a helicoid (as
its name screw dislocation implies)2 with a phase pitch of
2pjmj. The handedness of the helix (dislocation) is de-
termined by the sign of m.

A. Paraxial Basis
In free space the three-dimensional monochromatic wave
field is uniquely defined by its values over one plane. Let
the scalar wave be

F sr, td ­ F0usrdexpfiskz 2 vtdg , (1)

where v is the frequency and k is the wave number.
The paraxial wave equation, for propagation along the

z axis (x and y are the transversal coordinates),√
≠2

≠x2
1

≠2

≠y2

!
usrd ­ 22ik

≠

≠z
usrd , (2)

is analogous to the Schrödinger equation of a free par-
ticle in two dimensions if the z coordinate in Eq. (2) is
replaced by the time variable.10 This analogy allows us
to use the formalism of quantum mechanics to analyze
wave functions. As we shall see, the problem reduces to
two dimensions, and the z dependence is given by a prop-
agator U such that
1996 Optical Society of America
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j uszdl ­ U szd j usz ­ 0dl . (3)

Considering this two-dimensional function, it is prefer-
able to look for a complete orthogonal basis that
matches the present application. Expansion in a set
of Gauss–Laguerre functions appears to be most appro-
priate because

1. These wave functions are typical laser beams and
hence are frequently encountered in laboratory experi-
ments.

2. These functions are stationary in the z coordinate
(in analogy to stationary states in time, in quantum me-
chanics), except for a z-dependent scale change and a ra-
dial phase factor. So some properties, such as the shape
and the azimuthal dependence, remain invariant.

3. The functions have a definite dislocation of order m.

The wave functions are given by

un,msrd ­ kr j n, ml ­ Cn,mGsr, zdexpf2incszdg

3

hp
2 rywszd

i
jmj

Ljmj

sn2jmjd/2f2r2yw2szdgexpsimfd ,

(4)

where r ­ sr, f, zd,

w2szd ­ w2
0 f1 1 szyz0d2g , (5a)

z0 ­ pw2
0yl (5b)

is the Rayleigh length, and

cszd ­ arctanszyz0d (6)

is the Gouy phase. The function

Gsr, zd ­
w0

wszd
expf2r2yw2szdgexpfikr2y2Rszdg

3 expf2icszdg (7)

is common to all modes and comprises the radial Gauss-
ian envelope of the beam, a Gouy phase, and a radial
quadratic phase factor. The radius of curvature of the
wave front is given by

Rszd ­ zf1 1 sz0yzd2g , (8)

Ljmj
sn2jmjd/2 are the generalized Laguerre polynomials, and

the integers n and m obey the relation

n ­ jmj, jmj 1 2, jmj 1 4, . . . . (9)

Cn,m are constants, chosen so thatZZ `

2`

dxdy j un,mj2 ­ 1 . (10)

Inspecting Eq. (4), we see that the only azimuthal de-
pendence is through the term expsimfd. Hence it has
one azimuthal degree of freedom smd. Because the phase
changes linearly with the azimuth for all f and the inten-
sity pattern is isotropic, these dislocations (with jmj fi 0)
will be referred to as isotropic dislocations. The radial
dependence is the product of Gsr, zd and a polynomial
with powers jmj, . . . , n of r. Hence the radial depen-
dence has its own degree of freedom snd.
B. Laplace Equation
Let us consider solutions to the case in which

usrd ­ usx, yd . (11)

For the function of Eq. (1) to obey the wave equation,
usx, yd should be a solution of the Laplace equation

≠2u
≠x2

1
≠2u
≠y2

­ 0 . (12)

These solutions describe plane waves and stable non-
diffracting beams that propagate without change along
the z axis, but they need an infinite aperture. However,
for a finite aperture, Eq. (12) can be satisfied approxi-
mately, for example, near the waist of Gaussian beams
as in Eq. (4); that is, jzj , z0 and r ,, w0. In the case in
which N dislocations appear, as in a speckle field, it was
shown15 that the approximation is valid for jzj , sz0yN d.
Moreover, this invariance is demonstrated at the far field
of a paraxial wave, except for a z-proportional scale factor.
One can see this from Eqs. (4)–(8) by taking z .. z0, kr2,
performing the transformation sryzd ! r̃, and replacing
the coordinates in Eq. (12) by scaled ones (x̃ ­ xyz and
ỹ ­ yyz).

If a dislocation is embedded in a slowly varying enve-
lope, the field of the dislocation is dominant near its core.
Using these assumptions, we can approximate the jn, 61l
modes of Eq. (4) by

usx, yd , sx 6 iyd . (13)

3. ANISOTROPIC jmj ­ 1jmj ­ 1jmj ­ 1 DISLOCATIONS
In this section we broaden the jmj ­ 1 family of solutions
of the Laplace equation discussed in Subsection 2.B to in-
clude anisotropic functions. For this purpose it is useful
to parameterize these functions. We introduce a new pa-
rameterization that provides better insight and overcomes
some drawbacks of an earlier one.15,16

A. Solutions in a Linear Approximation
Let u in Eq. (1) be written as

usx, yd ­ uRsx, yd 1 iuI sx, yd . (14)

The functions uR sx, yd and uI sx, yd describe two-
dimensional surfaces that may have complicated shapes.
Constant values of these functions are projected as
curves on the sx, yd plane. Some of these lines may be
described by the relations

uR sx, yd ­ 0 , (15a)

uI sx, yd ­ 0 , (15b)

and then dislocations may appear at points of their in-
tersections. For the linear case there will be only one
intersection, and, for simplicity, we shall take this as the
origin [if Eqs. (15a) and (15b) coincide, we obtain a dark
fringe].

Following Refs. 15 and 16, we approximate the surfaces
uR sx, yd and uI sx, yd in the close vicinity of the dislocation
by their tangent planes:

uR ­ aRxx 1 aRyy , (16a)

uI ­ aIxx 1 aIyy . (16b)
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We shall not deal here with higher-order dislocations
sjmj . 1d, for which this approximation is invalid. The
saRx, aRy , aIx, aIy d parameters do not explicitly give infor-
mation about the properties of the dislocation. Therefore
we propose two ways of parameterization that describe its
geometrical and physical properties.

B. Geometrical Parameterization
The difference between the phase maps of anisotropic and
isotropic dislocations (which are linear solutions of the
Laplace equation) is the crowding of cophasal lines along
a specific line in the sx, yd plane, as if the phase map were
stretched along this line (assumed, for simplicity, to go
through the origin). Thus the two most important char-
acteristics of the anisotropic dislocation are the amount
of stretching and its direction. The other two character-
istics are the global phase and the mean intensity, as in
any wave. Each of the above four intuitive and function-
ally independent characteristics will be represented by a
parameter.

Let us assume a stretch along the x axis, defined by s:

sx ­ cos e, sy ­ sin e, s ­ syysx , (17)

usx, yd ­ I 1/2 expsigd
p

2 sx cos e 1 iy sin ed . (18)

I and g are the mean intensity and global-phase parame-
ters, respectively. Without losing generality, we impose
cos e . 0, for uniqueness.

Transformation to the coordinate system

X ­ x
p

2 cos e , Y ­ y
p

2 sin e (19)

leads to a form similar to relation (13):

usx, yd ­ I 1/2 expsigdsX 1 iY d

­ I 1/2 expsigdMsr, fdexpfiQsr, fdg . (20)

The local phase is

Q ­ arctansYyXd ­ arctanstan e tan fd , (21)

where sr, fd are the standard cylindrical coordinates of
the sx, yd plane. The quadrant of Q is the same as the
quadrant of f sgn e. The modulus M obeys

M2 ­ X2 1 Y 2 ­ r2s1 1 cos 2e cos 2fd . (22)

If the stretching is along a line that makes an angle f0

with the x axis, the above relations are retained after the
transformation

f ! f 2 f0. (23)

As can be seen from Eq. (22), constant-intensity contours
form ellipses, with their major (minor) axes along (per-
pendicular to) the stretch for jsj . 1 (see Fig. 1).

For uniqueness, some of the parameters can be bounded
in a finite region. For the interval

2py2 , f0 # py2 (24)

we may have

spy4d # jej , spy2d ,

1 # jsj , ` (25a)
Fig. 1. Intensity images and phase maps of dislocation, all with
the same I and g parameters. Solid contours indicate cophasal
lines, each of which is different from its consecutive line by
py6. Dashed contours indicate isointensity lines. (a) Isotropic
dislocation. (b) Anisotropic dislocation with e ­ 3py8 (that
is, h ­ 2py8) and f0 ­ py6. (c) Annihilation with e ­ py2
(h ­ 2py4) and the same f0 as in (b). Note that the phase
changes by p as a solid line crosses the dislocation. In the dark
fringe (dotted) the cophasal lines are infinitely crowded, whereas
in each bright lobe the phase is uniform.
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Fig. 2. Ranges of the e and h parameters. Lighter-shaded re-
gions indicate m ­ 1 dislocations; darker-shaded regions indicate
m ­ 21 ones. (a) and (b) correspond to the intervals defined by
inequalities (25); (c) and (d) are the corresponding intervals for
h, given by inequalities (33).

or, alternatively,

spy4d $ jej . 0 ,

1 $ jsj . 0 (25b)

(see Fig. 2). For an isotropic dislocation, jej ­ py4, cor-
responding to jsj ­ 1.

Transformation from the se, f0, I , gd parameterization
to saRx, aRy , aIx, aIy d is accomplished by the relations

aRx ­
p

2I scos f0 cos g cos e 1 sin f0 sin g sin ed ,

(26a)

aRy ­
p

2I ssin f0 cos g cos e 2 cos f0 sin g sin ed ,

(26b)

aIx ­
p

2I scos f0 sin g cos e 2 sin f0 cos g sin ed ,

(26c)

aIy ­
p

2I ssin f0 sin g cos e 1 cos f0 cos g sin ed .

(26d)

The inverse transformation of Eqs. (26) is obtained by
the following equations:

I ­ s1y2dsaRx
2 1 aRy

2 1 aIx
2 1 aIy

2d , (27)

k ­ arcsin

√
aRxaIy 2 aIxaRy

I

!
, e ­ ky2 , (28)

where, for choice (25a), k is in the range spy2d # jkj # p,
and for choice (25b) jkj # py2.
For jej fi spy4d, we define 2p # t # p:

t ­ arcsin

√
aRxaRy 1 aIxaIy

I coss2ed

!

­ arccos

"
aRx

2 1 aIx
2 2 aRy

2 2 aIy
2

2I coss2ed

#
, (29a)

f0 ­ ty2 , (29b)

and we define f0 ­ 0 for jej ­ spy4d. For f0 fi 0,

g ­ arccos

"
aRy cos e 1 aIx sin e

p
2I coss2edsin f0

#

­ arcsin

"
aIy cos e 2 aRx sin e

p
2I coss2edsin f0

#
. (30a)

If f0 ­ 0

g ­ arccos

√
aRxp

2I cos e

!
­ arcsin

√
aIxp

2I cos e

!

­ arccos

√
aIy

p
2I sin e

!
­ arcsin

√
2aRy

p
2I sin e

!
, (30b)

where the last two definitions in Eq. (30b) should be used
in the case cos e ! 0 and the first two if sin e ! 0.

C. Decomposition into Isotropic Modes
The radial dependence of the amplitude of Eq. (20) is pro-
portional to r, and in Eq. (4) it is proportional to rjmj

(when the approximation assumptions of Subsection 2.B
are used ). Therefore, when the close vicinity of the dis-
location described by Eq. (20) is considered, the jmj ­ 1
isotropic modes are dominant. We define the parameter
h, so that

cos h ­
1

p
2

scos e 1 sin ed ,

sin h ­
1

p
2

scos e 2 sin ed . (31)

If f0 ­ 0, Eq. (18) can be written as

usx, yd ­ I 1/2 expsigdfsx 1 iydcos h 1 sx 2 iydsin hg

­ I 1/2 expsigdrfexpsifdcos h 1 exps2ifdsin hg ;

(32)

otherwise this relation is retained after the transforma-
tion f ! f 2 f0. Hence an anisotropic dislocation that
is a linear solution of Eq. (12) is merely a superposition
of jm ­ 61l modes, which are not fully annihilated. For
choice (25a),

s3py4d $ h $ spy2d ,

s2py4d # h # 0 (33a)

(see Fig. 2). The left-hand equalities of relations (33a)
are cases of annihilation, and the right-hand equalities
are cases of isotropic dislocations. For choice (25b),

spy2d $ h $ 0 . (33b)

We can thus use sh, f0, I , gd to parameterize the dislo-
cations. The isotropic intensity wave functions such as
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Eq. (4) span a space in which the jm ­ 61l modes span a
subspace. In this subspace we represent u as

jul ­ I 1/2 expsigd j f0, hl , (34)

jf0, hl ­

"
exps2if0dcos h

expsif0dsin h

#
. (35)

The upper (lower) component of Eq. (35) is the projection
onto the jm ­ 1l (jm ­ 21l) subspace.

In concluding this section it is worth noting that
Eq. (35) represents a more general state than does
Eq. (32) since it does not contain the radial depen-
dence explicitly. Therefore all jn, jmj ­ 1l modes (with
n ­ 1, 3, 5, . . .) of Eq. (4) can be used. These functions,
however, obey the Laplace equation only close to the
dislocation. Moreover, modes with jmj . 1 can also be
components of u, but their contribution near the z axis
is negligible. If only one dislocation is involved, the pa-
rameters I and g can be absorbed into F0 of Eq. (1).

D. Notes on a Previous Parameterization
A different parameterization, which uses another four-
dimensional vector, was proposed in Refs. 15 and 16. An
adaptive coordinate system sx0, y 0 d, having its origin at the
dislocation, was defined, with the unit vectors x̂0 and ŷ 0

perpendicular to the lines defined in Eqs. (15a) and (15b),
respectively. In this system

usx0, y 0d ­ asx0 1 iay 0d , (36)

where a was termed in Ref. 16 “the amplitude factor”
and a the “anisotropy.” Two additional parameters were
“the skewness,” s, the deviation from orthogonality of
ŷ 0 relative to x̂0, and r, the angle between x̂ and x̂0,
both measured counterclockwise. In the sx, yd system we
obtain

usx, yd ­ ahx cos r 1 y sin r 1 iaf2x sinsr 1 sd

1 y cossr 1 sdgj . (37)

We found the sa, a, r, sd parameterization inconve-
nient for several reasons. Consider the wave

usx, yd ­ bsx 1 ibyd . (38)

Comparing Eq. (38) with Eq. (36), we see that x0 ­ x,
y 0 ­ y, a ­ b, a ­ b, r ­ 0, and s ­ 0. If we add
to Eq. (38) a global phase of py2, that is, multiply the
equation by i, we obtain

up/2sx, yd ­ bb

√
2y 1

i
b

x

!
. (39)

The adaptive coordinates are x00 ­ 2y and y 00 ­ x, so

up/2sx00, y 00d ­ bb

√
x00 1 i

1
b

y 00

!
. (40)

Hence, the anisotropy parameter becomes a ­ 1yb and
the amplitude factor becomes a ­ bb.

Alternatively, if we add a global phase of py4, we obtain
jaj ­ 1, s ­ arctansbd 2 arctans1ybd ,

r ­ 2 arctansbd . (41)

It is obvious that the a and s parameters depend
strongly on the global phase. Thus these parameters are
inappropriate to describe fundamental wave characteris-
tics. One can also see that the parameters are not func-
tionally independent from each other.

This parameterization is also problematic from the
mathematical point of view. For example, dislocations
with a ­ b and a ­ 1yb have the same phase map, ex-
cept for a coordinate system rotation. Therefore, in a
random field, we expect to find such dislocations with
equal probability. So the interval 0 , a # 1 has the same
weight as 1 , a , ` in sa, a, r, sd space. Hence infini-
tesimal intervals of a in different places in parameter
space do not have the same weight. The a coordinate is
not homogeneously dense. Incautiously using this space
in integrals or differentials may lead to improper conclu-
sions. In Ref. 16 the probability-density function (pdf) of
a was calculated and was found to be

pdfsad ­
jaj

s1 1 a2d2
. (42)

Since this pdf has a maximum (when differentiated with
respect to a) at jaj ­ 320.5, it was implied that this
is the most probable value of jaj. This may indicate
a tendency for increasing the phase gradient (crowding
cophasal lines) near the imaginary axis, implying a pre-
ferred global phase (changing the global phase changes
a, as noted above).

4. ORBITAL ANGULAR MOMENTUM
OF DISLOCATIONS
In quantum mechanics, if we are in a state jcl, a rotation
of the system yields a state jc 0l ­ Rjcl, where R is the
rotation operator. If the rotation is about the z axis,
through an infinitesimal angle da, then

R ­ Rzsdad . (43)

The definition of the angular-momentum operator Lz

is through the connection17

Rzsdad ­ 1 2 siy"dLzda . (44)

Rotation through a finite angle a about the z axis is
obtained by consecutive infinitesimal rotations:

Rzsad ­ expf2siy"dLzag . (45)

The orbital angular momentum in the jrl representa-
tion is

krjLz ­
"

i
≠

≠f
krj . (46)

A. Isotropic Dislocations
In general, isotropic dislocations have the form

kr j ul ­ f sr, zdexpsimfd . (47)
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Rotation by an angle a of this function about the z axis
yields

kr j u0l ­ f sr, zdexpfimsf 2 adg ­ kr jexps2imad j ul .

(48)

Using Eq. (45), one can write

kr j u0l ­ kr j Rzsad j ul . (49)

Comparing Eqs. (48) and (49), we conclude that jul is
an eigenstate of the rotation operator and hence also of
the angular-momentum operator. Thus it carries a well-
defined angular momentum.

The full time dependence of the state in Eq. (1) can be
written in the form

kr j F l ­ F0 expfiskz 2 vtdgkr j ul . (50)

If jul is given by Eq. (47), then, using Eq. (46), we obtain

kLzl ­ kF j Lz j F l ­ jF0j2"mku j ul . (51)

The energy of the state is

kEl ­
ZZ

dxdyFpsr, td

√
i"

≠

≠t

!
F sr, td ­ jF0j "vku j ul .

(52)

Therefore the ratio between the orbital angular momen-
tum carried by the wave to the energy that it carries is

kLzl
kEl

­
m
v

. (53)

This simple relation is valid classically as well as quan-
tum mechanically, since " does not appear in it and we did
not need to assume normalization of jul or jF l. In fact,
the more we enter into the classical wave (not particle)
characteristics regime (v decreases), the more the above
ratio increases. In the quantum-mechanical regime, as
in the case of photons, the state is normalized. Thus we
see from Eq. (51) that every photon in a Gauss–Laguerre
beam carries the quantized "m orbital angular
momentum.

To conclude this subsection several remarks are in
order.

(a) The above derivation is based on fundamental
physical considerations (i.e., connection between rotations
and angular momentum; the symmetry of wave functions)
and not on the specific relations that describe angular
momentum for a specific field. This indicates that the
conclusions are valid to any scalar field having a wave
function satisfying Eq. (47).

(b) We deal with orbital angular momentum that
originates from rotation of the scalar wave function about
the axis defined by the dislocation. The states consid-
ered are not eigenstates of rotation operators around a
different axis. This is in contrast to spin angular mo-
mentum, which arises from the vector character of some
wave fields (such as electromagnetism).

(c) The operator of the total angular momentum of
the electromagnetic field can be separated into spin and
orbital parts, which are observables but are not proper
angular-momentum operators of the photon.12,13 There-
fore the separation of the total angular momentum into
spin and orbital angular momentum is generally impos-
sible. This separation, however, becomes possible in the
paraxial approximation. Moreover, it has been shown14

that, even for nonparaxial beams, the angular momentum
is related exactly to the orbital dependence if the pro-
jection of the polarization vector onto the sx, yd plane is
uniform and linear. Assuming that at least one of these
conditions is satisfied, our scalar analysis is valid for elec-
tromagnetic waves.

(d) The phenomenon of angular momentum of Gauss–
Laguerre laser beams was investigated intensively by
a group of researchers in the Huygens Laboratory.7 – 14

They give more formal but longer proofs for some of the
conclusions in this subsection.

B. Anisotropic Dislocations
In the jjmj ­ 1l subspace the orbital angular-momentum
operator may be written as

Lz ­ "sz , (54a)

with

sz ­

"
1 0
0 21

#
, (54b)

Lz
2 ­ "2sz

2 ­ "21 . s55d

For the state equations (34) and (35) the expectation value
of the orbital angular momentum is

Lz ­ kLzl ­ kf0, h jLzj f0, hl

­ "fexpsif0dcos h exps2if0dsin hg

"
1 0
0 21

#

3

"
exps2if0dcos h

expsif0dsin h

#
­ " coss2hd

­ " sins2ed . (56)

The expectation value of Lz
2 is calculated in a similar

manner from Eq. (55). Hence the rms deviation is

DLz ­ skLz
2l 2 kLzl2d1/2 ­ " j sins2hdj ­ " j coss2edj (57)

per photon. For pure jmj ­ 1 isotropic dislocations
Eq. (56) agrees with Eq. (53), and the uncertainty of the
orbital angular momentum is zero; hence the orbital an-
gular momentum is well defined. At total annihilation
fjej ­ py2 for choice (25a) or jej ­ 0 for choice (25b)], the
expectation value is zero but the uncertainty is maximal.

If N photons that constitute the anisotropic field are
absorbed, orbital angular momentum is transferred to the
detector. Although the average result of such measure-
ments is N times the result of Eq. (56), the rms deviation
is obtained from Eq. (57):

DLz ­ "
p

N j coss2edj ­ "
p

N j sins2hdj . (58)

Consequently the determination of the anisotropy from a
measurement of the orbital angular momentum has an
uncertainty that becomes negligible in the classical limit.
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By differentiating Eq. (56) and then using Eq. (58), we
obtain

Dh ­
DLz

2N" j sins2hdj
­

1
2
p

N
­

1
2

p
"vyE , (59)

where E is the absorbed energy. The same expression is
obtained for De.

The directional uncertainty demonstrates the oppo-
site behavior from the angular-momentum uncertainty
(Fig. 1). For the isotropic wave function it is maximal,
since there is no preferred direction. As the dislocation
becomes anisotropic, the isointensity curves, which can be
calculated by Eq. (22), become more elliptical, and the pat-
tern becomes darker (brighter) along their major (minor)
axes. At total annihilation [as can be seen by inspec-
tion of Eq. (32)], a dark fringe exists along the phase map
stretch, and the radiation is concentrated in two lobes
perpendicular to it.

5. SUMMARY
In this paper we have parameterized anisotropic wave dis-
locations, which are linear solutions of the Laplace equa-
tion, in ways that give better insight and convenience.
The first method is geometrical, as it describes the
stretching of the phase map of an anisotropic dislocation
relative to an isotropic one. The second method takes
advantage of the fact that anisotropic dislocations can be
decomposed into isotropic dislocations. This is a special
case, since any wave can be decomposed into a com-
plete isotropic function set, of which the Gauss–Laguerre
set seems to be the most appropriate in the paraxial
approximation.

Isotropic scalar wave functions carry well-defined or-
bital angular momentum, which is nonzero for dislo-
cations. The mentioned decomposition thus permits
straightforward calculation of various quantities related
to orbital angular momentum, such as the expectation
value and the rms deviation. Finally we obtained the
relations between these quantities, and the dislocations’
parameters.

We focused our treatment on the neighborhood of
the stable and most frequent dislocations1,2,15,16 as op-
posed to those with jmj . 1. The present research can
be further extended by use of the mentioned complete
orthogonal set.
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