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Abstract—Refraction causes random dynamic distortions in atmospheric

turbulence and in views across a water interface. The latter scenario is

experienced by submerged animals seeking to detect prey or avoid predators,

which may be airborne or on land. Man encounters this when surveying a scene by

a submarine or divers while wishing to avoid the use of an attention-drawing

periscope. The problem of inverting random refracted dynamic distortions is

difficult, particularly when some of the objects in the field of view (FOV) are

moving. On the other hand, in many cases, just those moving objects are of

interest, as they reveal animal, human, or machine activity. Furthermore, detecting

and tracking these objects does not necessitate handling the difficult task of

complete recovery of the scene. We show that moving objects can be detected

very simply, with low false-positive rates, even when the distortions are very strong

and dominate the object motion. Moreover, the moving object can be detected

even if it has zero mean motion. While the object and distortion motions are

random and unknown, they are mutually independent. This is expressed by a

simple motion feature which enables discrimination of moving object points versus

the background.

Index Terms—Motion detection, refraction, random media, classification,

distortion

Ç

1 INTRODUCTION

CHANGES in refractive index of a medium along a line of sight
(LOS) cause distortion [21], [31], [41]. Such changes are created by
atmospheric turbulence. They are also created when looking
through a water-air interface (WAI). In a wavy WAI, the refracted
view changes spatiotemporally, as in a turbulent atmosphere but
more strongly, even in mild weather conditions. In either case, the
result is random dynamic distortions. The distortions are particu-
larly strong when a submerged viewer looks obliquely upward
through a WAI (Figs. 1 and 2). Due to Snell’s Law, small changes in
the WAI slope are amplified to large angular changes of the
airborne LOS, particularly near the horizon.

The paper deals with vision under natural random distor-
tions. We focus on shallow oblique views upward through a
wavy WAI for several reasons. First, it is the most challenging
since the distortions in this scenario are strongest. Second, it is
related to biological vision: It is experienced by submerged
animals seeking to detect prey or avoid predators which are
airborne or on land. The archer fish [40] shoots down airborne
prey using a water jet, aiming while being submerged. It has also
been hypothesized that seals watch for ambushing polar bears,
prior to surfacing for air. There are also airborne and land

animals [25] that detect and hunt fish by looking down through
the WAI. Oblique upward vision through a WAI can function as
a virtual periscope for submariners and divers who wish to
avoid using attention-drawing physical periscopes.

Computer vision in random distortions has been studied
extensively, as we detail in Section 2. Most studies focused on
inverting the refractions. This is difficult, particularly when some
of the objects are moving. Those moving objects are the actual
interest, as they reveal animal, human, or machine activity.
However, detecting and tracking these objects does not necessitate
complete inversion of the medium and recovery of the scene.
Deciding whether the motion of an image feature is solely due to
refractive distortions or due to real object motion (compounded
with distortion) is a classification problem. Given a good feature
vector, classification can be obtained simply and computationally
cheaply. This is the task of this paper. Discriminating consistently
moving objects from a randomly moving background was studied
in open air background subtraction [5], [26], [32], tracking [8], [51],
and linear motion saliency [50]. In refractive distortions, however,
moving objects are not beside a random background. Instead, the
image of the moving object is prone to the same strong random
distortions as static objects. In fact, motion due to distortions often
dominates over object motion. In other words, motion noise can be
larger than the motion signal. As our experiments show, interframe
motion can span a significant portion of the field of view (FOV).
This is much larger than typically considered in atmospheric
turbulence [19], where local optical flow is used.

While the object and distortion motions are random and
unknown, they are mutually independent. We exploit this fact.
Being independent components, the location covariance due to
object motion is additive to covariance stemming from medium
dynamics. Hence, simple location covariance is a powerful
classification feature. Characterizing the features corresponding
to the class of static objects benefits from physics-based analysis of
distortion statistics.

2 RELATED WORK: VISION VIA A WAI

Approaches to vision through a WAI are as follows:

1. Analysis of flat water distortion. Distortions in oblique view
through a flat WAI were thoroughly analyzed [10], [20],
[36], [47]. Suiter et al. [43] introduce optical elements to the
camera, to correct for flat WAI distortion. Our conclusion is
that if a flat WAI is the only distortion source, then this
distortion can be compensated for using stereo [10]. The
remaining visual challenge is to overcome perturbations to
the flat-WAI case. These are caused by random WAI waves.

2. Physics-based recovery of a wavy WAI. To compensate for
WAI waves, some methods suggest detection of local flat
WAI instances or dynamic reconstruction of the WAI. The
former requires accumulation of sparse data from thou-
sands of frames and a pulsed laser [27] synchronized to
the camera. This complex and slow approach cannot
handle moving objects. To recover the water geometry in
real time, a theoretical work by Dolin [16] hypothesizes
that the WAI slope can be inferred by its specular
reflection1 of a cloudless sky. Multicamera methods have
also been applied to WAI recovery [15], [33], [37], [38],
[49]. A critical review of passive approaches to recover the
WAI is in [22]. Those studies focused on viewing
downward into water. Looking up through the WAI to
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create a virtual periscope is theoretically proposed [30]
based on a wave model constrained by self-occlusions.
Polarization-based WAI recovery for visual correction was
also theoretically proposed [39]. There are additional
methods for measuring the water surface using reflection
of structured light [3], [14]. They have not been tested as a
tool for visual correction.

3. Recovery of static objects via a wavy WAI. Some methods
bypass physical measurement of the WAI and directly aim
to recover static objects, using video. For small distortions,
Murase [34] uses optical flow to estimate the WAI normals,
leading to image correction. There are patch-based
versions of lucky imaging [17], [18], [48]. They accumulate
a large number of frames, out which a best representative
frame is selected per patch. Efros et al. [18] assume that
the distribution of local image distortion is Gaussian.
There, local patches are embedded in a feature space
manifold. Patches close to the center of their manifold
embedding are considered least distorted. Donate and
Ribeiro [17] select a best set of low-distortion subregions
from each video frame, using clustering. Then it combines
the set to an undistorted image of the observed object. Wen
et al. [48] select lucky patches aided by bispectral analysis
to undistort the image. Tian and Narasimhan [44] fit a
parametric distortion model to spatiotemporal data
acquired with a fast camera looking straight downward
into the water. The model is fitted to each frame to estimate
the water surface and then to recover the underwater
scene. In [35], multiple frames are registered to the
temporal averaged image. Residual distortions are sparse
and treated in a second stage. Tian and Narasimhan [45]
seek image alignment given an undistorted template
image. An undistorted template image is used to generate
training samples for a known distortion model. Their novel
pull-back operation utilizes these training images with
known deformations to predict the parameters of the test
image distortion. In contrast, our approach can work in
absence of an undistorted template.

These approaches assume that the object is static while data is
acquired. In our work, however, moving objects may exist in the
FOV and are actually a focus of interest.

3 MOTION INDEPENDENCE

Consider an airborne object at point plab
a in the lab coordinate

system (see Fig. 3). The system’s origin is at the center of projection
of a submerged camera. If the WAI interface is completely flat, plab

a

is projected to pixel xflat in the detector plane, and the image is

considered undistorted. We are only interested here in perturba-
tions to that state: When the WAI is wavy, plab

a is projected2 to pixel
x. Distortion thus takes the form of a shift,

smedium ¼ x� xflat; ð1Þ

in the image coordinates corresponding to the object point. Define

the covariance matrix of smedium:

�medium ¼
�
�medium
x

�2
OD

OD
�
�medium
y

�2

" #
; ð2Þ

where the off diagonal (OD) elements are expectation over time t of

½smedium
x ðtÞsmedium

y ðtÞ�. Here, �medium
x and �medium

y denote the respec-

tive standard deviations (STDs) in the respective image axes.
If the medium is calm, a moving object induces a shift of sobject

pixels in its image coordinates. When both the object and the

medium are dynamic, the projection of the object shifts by the vector

sobserve ¼ smedium þ sobject: ð3Þ

A static object is expressed by the special case sobject ¼ 0. Due to

the random and fast kinetics of smedium, the shifts fsmedium; sobjectg
are generally independent of each other. Due to the linear

independence of the stochastic vectors smedium and sobject, the

covariance matrix of sobserve is

�observe ¼ �medium þ�object ; ð4Þ

where �object is the covariance matrix of sobject. Hence, object

motion increases the diagonal elements of �observe. The diagonal

elements of �observe are simple features for classifying moving and

stationary objects. Also, OD elements are affected by object motion,

but as explained in Section 4.2, OD elements are often not as useful

as the diagonal elements.
We do not consider defocus. Objects which are too close to the

camera may be out of focus. Nevertheless, our analysis holds for

the chief ray. For this ray, x and xflat, the motion statistics hold.

4 STOCHASTIC MODEL

4.1 Distortion Statistics

The laboratory coordinate system is ð�; �; zÞ. Specifically, ẑ ¼
ð0; 0; 1Þ points to the zenith and ð�; �Þ are lateral (horizontal)

coordinates (see Fig. 3). Let the height of the WAI be zs in this

system. The WAI gradient at a given location is rzs ¼ ½@�zs; @�zs�T,

where T denotes transposition. Following Cox and Munk [13], the

probability density distribution (PDF) of rzs is

PDFðrzsÞ � exp � 1

2
ðrzsÞT��1

gradrzs

� �
; ð5Þ

where �grad is the covariance matrix of the WAI gradient. In

nondirectional wind, �grad ¼ �2
gradI, where I is the identity matrix

and

�2
grad ¼ 0:003þ 0:0051W: ð6Þ

Here, W is the wind speed in ½meters=sec�.
The WAI normal is related to rzs by

N̂ ¼ �rzs

1

� ��
ðrzsÞ2 þ 1

��1=2
: ð7Þ
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Fig. 1. A frame of an airborne scene, taken by a submerged camcorder. The
underwater scene is typically darker and smoother. It undergoes total internal
reflection (TIR) by the water-air interface and appears in the lower part of the
image. TIR is bounded by Snell’s window where the airborne scene is seen. The
strong random distortion changes in space and time. The task is to be able to
sense objects that move and ignore static objects whose apparent motion is only
due to the dynamics of the medium.

2. An airborne point may project to multiple image points, through
multiple paths. Our analysis considers only one image point per object
point. We obtained successful classification results in real experiments
despite this assumption.



Appendix A, which can be found in the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/TPAMI.
2012.192, derives smedium for a given WAI normal N̂ and height
zs. Following distribution (5), the surface normal N̂ and the
medium distortion smedium ¼ ðsmedium

x ; smedium
y Þ are random in time.

The WAI is smooth in space and time. Thus, there is
spatiotemporal correlation of these random variables. It may be
possible to exploit the correlations for more sophisticated models
and classifier design. We process each point independently of
others, using only temporal statistics. The distribution of the
distortion can be drawn from the perturbation distribution of the
medium (5), (6), and (7) and the distortion model. Details of
the distortion model are in Appendix A, which is available in the
online supplemental material.

Consider a typical setup. Let a camera have a focal length of
6.5 mm. The camera is submerged: zflat ¼ 20 cm. Underwater, it
stares upward at 40 degrees from the zenith, corresponding to
31 degrees above the airborne horizon. Object point plab

a is at za ¼
1:5 meters above the WAI. WAI slopes are drawn from (5). Surface
normals are computed using (7). In addition, the WAI height zs is
uniformly distributed around zflat � 2 cm. We found, as expected,
that the wave amplitude range has only a marginal effect on image
distortion statistics, which are rather dominated by WAI gradients.
Let xflat be at the center of the FOV. The x-axis of the camera is
perpendicular to the z-axis of the laboratory coordinate system.
The simulated distribution of the distorted x is shown in Fig. 3.

Our experiments (see Section 7) were conducted in swimming

pools. There, distortion statistics are determined by water depth,

the size of the pool, and the fact that the waves were created as a
result of swimmers rather than wind. Nevertheless, in this general

study of distortion statistics, the sea surface statistical model of
Cox and Munk (5) and (6) is taken as a representative. While this is
an approximation of the experimental setup, it relies on a well-
established theory and, as will be seen in Section 7, yields good
experimental results in our task.

4.2 Observation Statistics

Recall that object motion increases the diagonal elements of �observe

(4). Thus, they are considered as simple features for classifying
moving objects and stationary ones. In practice, �observe is
estimated based on the image data. Let p ¼ 1 . . .Npoints index
object points. The observed (distorted) position of each object point
is denoted by xp ¼ ½xp; yp�T. It is tracked during Nframes frames. The
mean position of each point is

�xp � ½�xp; �yp�T ¼
1

Nframes

XNframes

t¼1

xpðtÞ: ð8Þ

The estimated covariance matrix of each point is

�̂observe
p ¼ 1

Nframes � 1

XNframes

t¼1

½xpðtÞ � �xp�½xpðtÞ � �xp�T: ð9Þ

The feature vector of point p is comprised of the diagonal terms in
�̂observe
p , i.e., the estimated horizontal and vertical trajectory

variances:

cp ¼
�
�̂2

x;p; �̂
2
y;p

�T
: ð10Þ

For simplicity, (10) does not use the OD terms of �̂observe
p . As

shown in Fig. 3, on the camera optical axis the OD terms of
�medium are null. Off axis, the OD terms are nonzero and small.
Accounting for the known camera projection, the location
distribution can be corrected for such off-axis effects. Hence, an
OD term can theoretically be useful: Substantial OD values
indicate a nonstatic object. However, this property can seldom be
used: Almost always, objects of interest move horizontally
(walking, driving, sailing, etc.) and sometimes they move
vertically (animals drink from the water source, people load or
unload gear, launch a spear in the water, etc.). Either of these
motions has very small OD covariance. Appendix C, which is
available in the online supplemental material, illustrates different
motion types along with the corresponding covariance matrices.
Nevertheless, our subsequent analysis can be applied to feature
vectors comprising OD elements as well.

The elements of cp are not the true variances of the trajectory,

since they are not based on infinite Nframes. They are estimates,

based on a small Nframes. As such, each cp is a random sample from

a distribution around the feature vector that would have been

obtained had Nframes been infinite. The distribution width indicates

the uncertainty of cp. Cochran’s Theorem [9] states that if the

observations are independent and normally distributed, their

variance follows a scaled �2 distribution. Approximating the

PDF of smedium as Gaussian, the distribution of the elements of cp is
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Fig. 2. Sample video frames. The entire scene is dynamically distorted. All objects undergo strong nonlinear and nonuniform stretching, shifting, and curving. There are
objects having inherent motion, which is superimposed on the distortion.

Fig. 3. Refraction at a wavy water surface. [INSERT] Numerically calculated
distribution of x for a submerged camera close to the WAI, looking obliquely
upward. The waves are distributed according to [13], corresponding to a
nondirectional 4 knot wind. The WAI height zs is uniformly distributed around
zflat � 2 cm. Here, the image size is 580� 720, OD is null, �medium

x � 130 and
�medium
y � 170 pixels



� �2
Nframes�1, following Cochran’s Theorem. Thus, the expectation

and STD of the first element in (10), cpð1Þ ¼ �̂2
x;p, are, respectively,

E½cpð1Þ� ¼ �2
x;p ð11Þ

and

STD½cpð1Þ� ¼
ffiffiffi
2
p

�2
x;pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nframes � 1
p �

ffiffiffi
2
p

cpð1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nframes � 1
p ; ð12Þ

with analogous expressions for cpð2Þ ¼ �̂2
y;p.

The tracker may fluctuate. This induces noise in the observed
position

xp ¼ xtrue
p þ ntrack; ð13Þ

where xtrue
p is the true position and ntrack is the tracker noise vector.

Assuming independence of xtrue
p and ntrack,

�̂
observe ¼ �observe

true þ�track: ð14Þ

Here, �observe
true is the true covariance matrix of sobserve and �track is

the covariance matrix of ntrack. Hence, tracking noise biases the
location variances (our classification features). This bias induces
higher values in (12).

4.3 Dependence on the Viewing Angle

Let �flat
a be the LOS angle in air, relative to the zenith, when the

WAI is flat (see Fig. 3). Section 4.1 described the derivation of
�medium for a given point in the FOV and wave conditions (wind
speed W ). Indeed, �medium

x and �medium
y are functions of �flat

a and W .
This dependency can be assessed by simulations given �flat

a and
wind conditions. As �flat

a increases, the pixel variance increases,
particularly in the vertical pixel coordinate. Near grazing angles,
even small perturbations in the WAI slope result in significant
variance of smedium. In contrast, when looking straight upward
(zenith), WAI waves yield only mild changes of the airborne LOS.
This is expected, given Snell’s law.

4.3.1 Wind Invariance

Define normalized STDs as the ratios

rx ¼
�medium
x

�medium
x

�
�flat
a ¼0o

� ; ry ¼ �medium
y

�medium
y

�
�flat
a ¼0o

� : ð15Þ

Fig. 4 plots rx and ry for a range of W . It reveals that dependence
on W is weak. This observation allows rx and ry to each be well
approximated by a representative function, independent of W . We

thus simply averaged either rx and ry, for a range of W . The
respective results increase monotonically with �flat

a . They are used
in Section 5 for feature calibration.

4.4 Physics-Based Feature Distribution

The distribution of static objects can be predicted, based on our
theory. Suppose the inclination angle, focal length, FOV, and depth
of the camera are all fixed and known. A major unknown is wind
speed, which determines the WAI slope statistics. It also sets the
WAI height distribution (which has just a marginal effect),
according to the Beaufort scale of wind force [4].

Section 4.1 describes the derivation of �medium, for a given
point in the FOV and wind speed. Hence, spreading points xflat

across the FOV and sampling wind according to some distribu-
tion yields a theoretical scatter plot in feature space, correspond-
ing to static objects. As an example, we simulated vectors cp in a
range of the unknowns. The static object points xflat correspond to
views from 10 to 75 degrees above the airborne horizon. The
wind speed is sampled uniformly from 0 to 2.5 knots. The scatter
plot, shown as red crosses in Fig. 5, is mainly concentrated in the
lower left part of the feature space. It extends to larger
coordinates in feature space, sparsely. The extent depends on
the maximum wind speed we allow.

Overall, the estimated joint PDF in feature space is illustrated in
Fig. 5, using its level sets. Each level in Fig. 5 is also a confidence
interval and a threshold: a certain percentage of static objects are
expected to fall within the interval. Recall that due to tracking
noise, observed features may be biased (13) and (14). We do not
know the nature of ntrack and the bias that it may cause. Thus,
tracking noise is incorporated into the PDF by blurring it.

5 CAMERA AND FEATURE CALIBRATION

To analyze experimental movies, we first estimate two parameters
that affect the pixel variance: the underwater effective focal length
and the inclination angle of the camera. A submerged object of
known length dobj is captured by the submerged camera from a
known distance Dwater. The image corresponding to the projected
object is dpix pixels long. The effective focal length [in pixels] is
fc ¼ Dwater dpix

dobj .
The inclination (orientation) of the camera can be obtained by

an accelerometer. Nowadays, smartphones integrate a camera, an
orientation sensor, and a computer. Thus, it is technologically easy
to know the inclination angle of a system without even looking
through the camera. This in fact is already used in computer vision
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Fig. 4. Numerically calculated ratios rx and ry as a function of the airborne
angle �flat

a . Each line corresponds to a different wind velocity W . Thick lines
correspond to �rx and �ry.

Fig. 5. Crosses mark a scatter plot of static objects in feature-space, theoretically
derived for WAI statistics that correspond to wind conditions up to 2.5 knots. The
plot is overlaid on a PDF. The contours mark level sets of the estimated PDF, and
can be used as confidence intervals and thresholds.



work dealing with distortions [10]. Knowing the orientation of
view also occurs in nature. Some fish sense and control their
balance and orientation using otoliths [23] (similar to human sense
of balance) or a swim-bladder [42].

In the absence of an orientation sensor, the inclination angle of
the camera can be determined computationally by the location of
Snell’s window in the FOV (see Appendix B, which is available in
the online supplemental material). As a result of knowing both the
inclination and fc, it is now possible to determine �flat

a for each
camera pixel. This is detailed in Appendix B, which is available in
the online supplemental material.

5.1 Feature Scaling

Section 4.3 shows that �medium
x and �medium

y increase with �flat
a . The

known multiplicative factors �rx and �ry are plotted in Fig. 4.
Furthermore, any image is an optical magnification: It scales
linearly with fc; thus, so do �medium

x and �medium
y . We seek to use a

single classifier for all moving pixels, in all movies. Therefore, all
features cp (both during training and testing) are scaled to
compensate for these systematic factors. Since generally �rx 6¼ �ry,
scaling is different in each axis. The normalized features are

e�2
x;p ¼

�̂2
x;p

½�rxðpÞfc�2
; e�2

y;p ¼
�̂2

y;p

½�ryðpÞfc�2
: ð16Þ

The factors �rxðpÞ and �ryðpÞ are individual to each feature p, as we
explain. Equation (8) estimates the mean vertical pixel location �yp.
This approximates the vertical location of the tracked image
feature, had the water been flat and the object static. Appendix B,
which is available in the online supplemental material, derives the
relation between the vertical pixel location �yp in flat water and
�flat
a ðpÞ. Then, Fig. 4 yields �rxðpÞ and �ryðpÞ.

6 TRACKING

The empirical process relies on tracking of interest points (corners)
corresponding to object points. If the object is severely defocused,
some of its interest points disappear, hindering detection of
movement. This problem is not specific to refractive distortions:
Also in stable media, defocus blur hinders detection. A good
practice is to focus the camera at a long distance, where most
objects of interest are.

Tracking needs to work despite severe disturbances, one of
which is strong dynamic distortions. Another disturbance is
occasional loss of sight of the object due to several phenomena.
First, dynamic refraction sometimes causes strong image blur,
when the refraction changes very rapidly in space and time,
leading to smear within the exposure time. The second phenom-
enon occurs near grazing airborn angles while the camera is
submerged. In this case, WAI waves occasionally lead the LOS past
the critical angle, yielding total internal reflection. Then, instead of
acquiring the airborne object, the camera briefly captures a
reflection of the underwater scene. Loss of sight of an object
resembles occlusion, but here the disturbance disappears as fast as
it appears, or moves nonrigidly.

Sudden disappearance and then reappearance of the object
makes it difficult to employ parametric [2] image rectification. The
natural scene complications call for representation of motion and
trajectory, which is more mid-level than optical flow of image
irradiance. We thus opt for feature tracking since tracking has been
developed in the literature to sustain geometric and radiometric
distortions as well as occlusions. We have no particular preference
for any tracker. We performed a quantitative comparison of several
trackers. Tracking 260 interest points in different movies and WAI
wave conditions yielded a 77 percent success rate for a large
displacement optical flow (LDOF) tracker [6], [7], 63 percent for a
tracking-learning-detection (TLD) [24] approach, and 45 percent

for the Kernel-based tracker [12]. Thus, we selected the LDOF

tracker for our experiments. In this approach, correspondences

from descriptor matching are integrated into a variational optical

flow model.

7 CLASSIFICATION EXPERIMENTS

We conducted experiments in a swimming pool using a video-

recording camera (Canon PowerShot D10 mounted on a tripod at

various focal length settings.
Each movie is several seconds long. We used Nframes � 30-40 in

a temporally sliding window to estimate the trajectory statistics

each time. In other words, about a second of acquisition was

allocated to the task of directly detecting moving objects during

dynamic refraction. Interest points were tracked. Fig. 6 shows

examples extracted from real movies. Each feature in the scatter

plot is plotted as an ellipse: Its center is at cp, while its widths are

set according to (12). Red ellipses represent static object points,

while green ellipses represent dynamic object points. The
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Fig. 6. The fixed theoretical classifier contour in feature space, and scatter plots
of several test-sets. Upper: Horizontally walking subject. Lower: Vertically
moving object.



corresponding red and green points are superimposed on the
sample movie frames.

For classification, a decision contour in this feature space is set
based on the feature distribution of static objects. This distribution
is assessed from the theoretical simulation, as was explained in
Section 4.4. Each of the contours in Fig. 5 can be selected as the
classifier. A wider contour corresponds to fewer false-positives
(static objects falsely classified as moving) in testing and more
false-negatives (moving objects falsely classified as static). This is
summarized by an ROC [52] curve (Fig. 7).

The classifier was based on thresholding on a confidence
interval of the theoretical PDF. The threshold corresponds to
�85 percent true positive rate in Fig. 7. The classifying curve is
shown as a blue line in Fig. 6. Due to the fixed classifier setting,
some examples yield some false positives or negatives. Tuning the
classifier threshold eliminates many of these errors.

Classification failure can occur for dynamic objects that have
very small movements during the acquisition time: Such objects
may be classified as static because their feature-vectors fall inside
the static-object threshold curve. Feature-vectors of such moving
objects resemble the feature-vectors of water fluctuations. So, the
objects cannot be separated solely based on variance features.

7.1 Distortion Correction for Motion Detection

Multiple-image techniques for image rectification such as [17], [18],
[35], [44] rely on a video sequence of a static scene. Thus, they are
not suitable for the situation having moving objects in the scene. It
may be possible to apply single-image distortion correction per
video frame. The approach in [45] is such a single-image approach;
however, it requires an undistorted template image. There are
many practical cases, in nature, in photography from submarines,
and in our experiments, where an undistorted template image of
the scene does not exist. The method of [45] was not designed to
work in such situations, in contrast to our approach.

Let us assume that, in training, an undistorted reference image
of the scene exists while it is static. Then in testing, static pixels can
potentially be registered to the undistorted template using the
method of [45]. Pixels that cannot be registered to the template
should be classified as moving. In our experiments, the required
undistorted template image is unavailable. Hence, we set the first
frame (with no moving objects) to be a template frame. After
obtaining a rectified video using an existing implementation [46],
we subtracted each original video frame from the template image,
to find inconsistences (moving objects). As shown in Fig. 8, there
are many false positives (static objects classified as moving). This
result may not do justice to the approach of [45], as it had not been
designated to work in our situation. Moreover, note that the
approach of [45] is dense (all pixels are classified), whereas our
approach is sparse (only tracked points are classified). Thus, both
techniques are not comparable in terms of absolute number of false
positives. Basically, this approach is promising. Thus, further
research into the approach of [45] may improve it to yield better
image rectification and thus better classification results.

8 DISCUSSION

To the best of our knowledge, this work is the first to raise and
characterize the problem of detecting moving objects in highly
random refractive distortions. The work models the statistics of
motion under dynamic distortions. We evaluate both the statistics
and its error theoretically and numerically. Features corresponding
to the class of static objects were characterized, aided by the
physics-based analysis of distortion statistics. A conclusion is that
simple location covariance is a powerful classification feature.
Tracked points whose feature vector falls outside the thresholded
distribution of static objects can be classified as being on a moving
object. The rate of false negatives and positives depends on the
threshold, as in any classification problem.

We found the tracker we used to be robust enough to cope with
a high degree of image distortion in our practical experiments
where the resulting trajectories led to highly successful classifica-
tion results. However, there are extreme situations in which a
tracker fails and, as a result, a classification error can occur. In very
harsh fluctuations of the medium, an instantaneous video frame
may become very blurred due to very fast medium motion. This
motion blur may sometimes cause the tracker to pick up on a
different target as a result of smearing between nearby objects.
Perhaps this problem can be overcome by excluding extremely
motion-blurred frames from tracking, for example by blur
detection [28]. In addition, the rapidly varying shape of water
waves may cause an airborne point to be projected to multiple
points on the detector plane. This also causes the image to be
blurred and thus degrades the tracker performance.

A classification failure is also likely to occur for very slow
moving objects, aliasing as static in the temporal window. In
nature, this situation resembles predators sneaking up on prey.
Feature-vectors of such slowly moving objects are close to the class
of actual static objects, leading to detection error.

We believe that our approach can also be useful in milder
distortions, as occurs when looking downward into water and in
atmospheric turbulence. In short, the approach is as follows: First
use the trajectory covariance as a feature vector. The property of
independent motion components and increase of variance holds in
these cases as well. Then, characterize the distribution of static
objects, either by physics-based calculations or by training. Then a
simple classifier is at hand.
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