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Abstract—Scattering-based computed tomography (CT) recovers a heterogeneous volumetric scattering medium using images taken
from multiple directions. It is a nonlinear problem. Prior art mainly approached it by explicit physics-based optimization of image-fitting,
being slow and difficult to scale. Scale is particularly important when the objects constitute large cloud fields, where volumetric
recovery is important for climate studies. Besides speed, imaging and recovery need to be flexible, to efficiently handle variable viewing
geometries and resolutions. These can be caused by perturbation in camera poses or fusion of data from different types of
observational sensors. There is a need for fast variable imaging projection scattering tomography of clouds (VIP-CT). We develop a
learning-based solution, using a deep-neural network (DNN) which trains on a large physics-based labeled volumetric dataset. The
DNN parameters are oblivious to the domain scale, hence the DNN can work with arbitrarily large domains. VIP-CT offers much better
quality than the state of the art. The inference speed and flexibility of VIP-CT make it effectively real-time in the context of spaceborne
observations. The paper is the first to demonstrate CT of a real cloud using empirical data directly in a DNN. VIP-CT may offer a model
for a learning-based solution to nonlinear CT problems in other scientific domains. Our code is available online.

Index Terms—Inverse rendering, Physics-based Vision, Scientific imaging, Participating media

✦

1 INTRODUCTION

COMPUTATIONAL photography tasks such as image
analysis and optical system engineering are tradition-

ally formulated as physics-based optimization. There is a
model for imaging, and this model is inverted by optimizing
a cost as a function of sought variables. These variables
can be those of the scene, the optical system, or both - in
end-to-end optimization. This traditional approach is often
slow. Thus computational photography significantly bene-
fits from the development of deep neural networks (DNNs).
There, DNNs prove useful in outcome quality and process-
ing speed. Moreover, thanks to their speed and adaptability,
DNNs that analyze image data can be optimized jointly,
end-to-end, with the optical system that acquires the data.

DNNs show significant utility when the imaging model
is linear. This includes tasks as denoising, deblurring [1], lin-
ear computed tomography (CT) [2], [3], [4] and localization
of microscopic emitters [5], [6]. We believe that DNNs may
have even a stronger advantage in solving inverse problems
where the imaging model is complex, as such models are
harder and slower to use by traditional means. Indeed,
DNNs are introduced to nonlinear imaging models, includ-
ing phase retrieval [7], [8] and ptychography [9], [10]. There,
the nonlinear model is simple and easily differentiable.

Even more complex models are those that in-
clude multiple-scattering in a translucent volumetric1

medium [16]. There, the image formation model is recursive
and computationally complex, making practical differentia-
tion a non-trivial approximation [17], [18]. A DNN is helpful
there: Che et al. [19] used a trained DNN to recover the
bulk properties of a homogeneous medium. However, in
this paper, we take on the bigger challenge of recovering

1. Some 3D shape estimation [11] methods represent geometry of
opaque objects as volumetric, for rendering and reconstruction [12], [13],
[14], [15]. Our paper focuses on non-opaque objects.

a three dimensional (3D) heterogeneous volumetric object,
whose extinction coefficient per voxel is unknown. Thus, the
imaging model has high complexity due to both recursive
nonlinearity and large scale.

Volumetric reconstruction of scattering media is impor-
tant for a range of scientific domains, including biological
microscopy [20], [21], [22], tissue imaging [23], [24], [25],
[26] and atmospheric science [27], [28]. The latter involves
critical climate questions that are linked to the unknown
volumetric structure of warm clouds. Biases there stem
from a traditional approximation that the atmosphere (in-
cluding clouds) is made of infinite layers, having only
vertical variations [29]. 3D volumetric recovery of clouds
is achievable by scattering-based CT (a highly nonlinear,
recursive problem). Scattering-based CT uses two dimen-
sional (2D) images (view projections) of the scene from
multiple directions, using incoherent radiation. However,
most techniques proposed so far use a traditional physics-
based optimization [30], [31], [32], [33], [34], which is slow
and unscalable.

Recently, various works utilized machine learning to
assess atmospheric radiative properties, using single-view
image data [35], [36], [37]. Wertheimer et al. [38] suggested a
DNN for recovering a heterogeneous scattering volume hav-
ing a few degrees of freedom, using coherent lighting. The
closest work to ours is that of Sde-Chen et al. [39], whose
DNN-based system (3DeepCT) performs CT of clouds, hav-
ing tens of thousands of unknown voxels’ values, using
scattering of incoherent light. It is very fast. However, it
is only trained for a fixed geometry. It has no flexibility for
variability of projections or resolution.

We present variable imaging projection cloud scattering
tomography (VIP-CT), to handle the mentioned issues. It
solves a highly complex, nonlinear problem in computa-
tional photography: scattering-based CT, at large scales; It
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does so fast, thanks to a DNN; It has flexibility for imaging
using variable projections and resolutions. Moreover, VIP-
CT yields much lower errors than prior art (traditional
physics-based optimization, 3DeepCT). VIP-CT has a model
that trains on thousands of labeled scenes derived by rig-
orous physics-based simulations. The model learns to infer
the extinction coefficient per voxel. The inputs are the voxel
location, imaging geometry and learned image features in
pixels that correspond to the voxel.

2 BACKGROUND

Multi-view images serve as data to CT recovery of a vol-
umetric distribution of object properties. Most established
CT problems are linear (or can be linearized) in the object
properties [40], [41], [42]. Then, algebraic methods are use-
ful [43]. When scattering is a significant portion of the signal,
image formation is based on 3D radiative transfer, which
is nonlinear in the object variables. Thus, scattering CT
has been formulated as a nonlinear optimization problem,
solved using gradient-based methods. Recently, learning-
based methods have been proposed, both for approximating
image formation and for solving the inverse (tomography)
problem. This section reviews this background.

2.1 3D Radiative Transfer
Denote 3D location by X and 3D propagation direction
of radiation by unit vector ω. A scattering event changes
the propagation direction from ω′ to ω. The normalized
distribution of scattered radiation is set by a dimensionless
scattering phase function p(X,ω · ω′). Scattering consti-
tutes a portion of the radiance incident at X. This portion
depends on two variables that characterize matter at X.
One is the extinction coefficient β(X) ≥ 0. The extinction
coefficient expresses how optically thick the matter is.2 The
other variable is the single scattering albedo 0 ≤ ϖ(X) ≤ 1.
For example, in vacuum β(X) = 0. In a totally absorbing
black voxel, ϖ = 0. On the other hand, in notable situations
ϖ ∼ 1, i.e., absorption is negligible. These include inter-
action of visible light with air molecules and cloud water
droplets, and interaction of near-infrared light with tissue.

Radiance I(X0,ω) is incident at the medium in direction
ω at boundary point X0. This radiance then undergoes mul-
tiple scattering in many paths of interaction which include
absorption and/or scattering events, ultimately yielding the
scene’s radiance field I(X,ω) at each location and direc-
tion. This process is described by the coupled recursive 3D
radiate transfer equations [44],

I(X,ω) = I(X0,ω)T (X0,X)

+ exp

[
−
∫ X

X0

J(X′,ω)β(X′)T (X′,X)dX′

]
, (1)

J(X,ω) =
ϖ(X)

4π

∫
4π

p(X,ω · ω′)I(X,ω′)dω′ , (2)

2. Often, an object voxel contains a mixture of particle types, each
with its own properties (extinction coefficient, phase function, single
scattering albedo). In a cloud, a voxel can contain water droplets, air
molecules and aerosols. The generalization of the model of this section
to such a case is explained in Levis et al. [31].

where

T (X1,X2) = exp

[
−
∫ X2

X1

β(X)dX

]
(3)

is the transmittance between any two points X1, X2. The
field J(X,ω) is termed the source function in the literature.

As seen in Eqs. (1,2,3), the radiance field I integrates
factors of β and T , the latter being exponential in β. Hence,
I is nonlinear in β(X). In linear CT, typically used in
medical imaging, Eq. (1) can be linearized by assuming a
non-scattering medium, that is, J = 0. Another linearization
approach is done in diffusion optical tomography (DOT). DOT
models the light propagation, usually in biological tissue, by
an assumption that radiance scatters nearly isotropically in
an optically thick medium, after sufficient scattering events.
Then, under this approximation, Eq. (1) leads to a linear re-
lation between I and β. The diffusion approximation signif-
icantly increases the speed of radiative transfer simulations
of optically thick media [45]. Recently, [46] suggested using
the diffusion approximation inside the core of optically thick
clouds. However, more detailed 3D radiative transfer in the
outer shell of the cloud is still needed. In this paper, we
simulate the scene’s radiance field using a physics-based 3D
radiative transfer solver (SHDOM) [47], without resorting to
the diffusion limit.

This paper deals with cases where the radiance incident
on the object I(X0,ω) is known. Moreover, we focus on
cases where p(X,ω · ω′) and ϖ are approximately known.
Thus the object variables constitute the extinction field
β(X). Let us sample β(X) in a voxel grid, yielding a vector
β that approximately represents the scene’s variables across
the domain. The scene radiance relates to this approximate
representation using 3D radiative transfer (Eqs. 1,2,3), which
we denote here in brief as an operator R:

I(X,ω) ≈ R(β) . (4)

2.2 Imaging by projection and sampling

Imaging projects the 3D spatial domain to a 2D image do-
main, then samples the radiance field by discrete pixels. The
relation is both geometric and radiometric. See Fig. 1. Ge-
ometrically, camera c ∈ [1 . . . N cam] has an array of pixels,
indexed p. The 2D location of pixel p is xp. The camera has a
3D center of projection at Xc,p. In a perspective camera, the
center of projection is independent of p, i.e., Xc,p = Xc. In
remote sensing, a pushbroom camera is common: it advances
along a track. There, Xc,p is common to all pixels and voxels
across a track, but varies along track [48].

At camera c, an image pixel xp and the center of pro-
jection Xc,p uniquely define a line of sight (LOS), having
direction ωc,p. This LOS projects a 3D coordinate X in the
object domain to the image plane. The projection operation
at camera c is expressed by an operator

x = πc(X) . (5)

Note that (Xc,p − X) is parallel to the unit vector ωc,p

and defines the LOS. Moreover, the pixel p in image c is
uniquely defined by X and the center of projection. Hence,
stating ωc,p is redundant. We thus sometimes express the
LOS geometry using Xc|X, instead of (Xc,p,ωc,p).
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Fig. 1. Light scatters in a medium having a spatially varying extinction
field β(X), where X is a 3D location. Scattering generally occurs mul-
tiple times. Radiative transfer creates a source function J (Eq. 2) and a
radiance field I (Eq. 1). In camera c, a line of sight passing though X
projects to pixel p, through a center of projection Xc,p, along direction
ωc,p. In a perspective camera, there is a unique center of projection,
Xc,p = Xc. Imaging involves projection and sampling of the radiance
field, measuring I(Xc,p,ωc,p).

Radiometrically, the LOS samples the radiance field
(given in Eq. 1) at Xc,p and in direction ωc,p. This yields

yc(xp) = I(Xc,p,ωc,p) . (6)

Accounting for all such sampling operations in all view-
points and all pixels, imaging transforms the field I(X,ω)
into a data array y by a measurement operator [31]

y = M[I(X,ω)] . (7)

Compounding Eqs. (4,7), a forward model operator F(β)
relates the object to the measurements, accounting for 3D
radiative transfer, projections and sampling:

y ≈ M[R(β)] ≡ F (β) . (8)

Note that the radiative transfer operator R, radiance
field I and source function J are independent of the imaging
process and the recovery method. Furthermore, R (radiative
transfer) is a law of nature. However, the measurement
operator M, thus F , depends on the viewing geometry.

2.3 Optimization-based scattering tomography
Prior art on scattering CT [32], [49], [50], mainly relies on
iterated gradient-based optimization, using explicitly the
physics-based model. A cost function is defined

E [y,F (β)] =
1

2
∥y −F (β) ∥22 . (9)

Then, tomography is formulated by

β̂ = argmin
β

E [y,F (β)] . (10)

To solve Eq. (10), prior art used various methods to approx-
imate the Jacobian ∂F/∂β in each optimization iteration.

This approach has several drawbacks3. The solution
depends on an initialization, because F (β) is nonlinear,
making E multi-modal. Furthermore, computations of F (β)

3. These drawbacks are further discussed in Sec. 2.1 of Sde-Chen et
al. [39], especially the nonlinearity of the problem. Ref. [39] shows
specifically in its supplementary material that a linear CT solution is
incompatible with our problem.

and its Jacobian turn out to be complex and slow. Due
to these reasons, the approach has so far been difficult to
scale [51], [52].

2.4 3DeepCT
To bypass drawbacks of optimization-based solutions to
scattering CT, an approach based on DNNs is explored.
This is the motivation of this paper. A highly related work
has recently been published. Thus, it is our main reference
for comparison, benefiting from its public domain code and
data [53]. That work is on the 3DeepCT system [39]. It is
specifically designed for passive tomography of clouds.

A learning-based system as 3DeepCT can yield a fast
stand-alone learning-based solution. Alternatively, Sde-
Chen et al. [39] suggested a hybrid system, where a learning-
based system provides an initialization for a physics-based
optimizer [31], as in Sec. 2.3. This is contrary to a default ini-
tialization for a physics-based optimizer [31] by a constant
βinitial. Ref. [39] also suggested a quick hybrid system, which
is similar to the hybrid system, but uses only 10 physics-
based optimization iterations. We test these approaches in
our work as well.

3DeepCT is simple. All multi-view images become input
channels, forming a 3D array. The output is an estimated
3D array β̂. The input images have the same dimensions as
the horizontal dimensions of the estimated 3D array, and so
are the lateral dimensions of all intermediate layers in the
DNN. Training is obtained by the following steps:
(a) There is a database of physics-based simulated clouds.
(b) For each training cloud, the extinction βtrue is known.
(c) For each training scene, the forward model F is run,
including 3D radiative transfer, projection only according to
a perspective model and sampling. This yields a set of multi-
view labeled data images.
(d) Using these images as input to the system and βtrue

as the labelled output, the DNN is trained to minimize the
mean square error of the sought variables, ∥βtrue − β̂∥22.

Thanks to its simplicity, 3DeepCT executes inference
very fast: it is about 5 orders of magnitude faster than
optimization-based methods. However, it suffers from sev-
eral drawbacks, which our approach overcomes:
(i) Due to the equal array size of the input and output,
3DeepCT strictly couples the image size and resolution to
the horizontal size and resolution of the scene. This lack of
flexibility is a major limitation for CT. Our proposed ap-
proach (VIP-CT) alleviates the strict dimension constraints.
(ii) 3DeepCT is an expert system for a particular viewing
geometry, having fixed perspective viewpoints. However,
often in reality, viewpoints vary. For example, in remote
sensing, images are taken from aircraft or satellites at lo-
cations that vary during flight. To handle this variability,
3DeepCT would need to re-train from scratch for any possi-
ble variation of viewpoints, which is impractical. Moreover,
3DeepCT does not accept data which is not perspective. Our
proposed approach, on the other hand, has very significant
flexibility to the viewpoint geometry, as we show, and is not
tied to perspective projection.
(iii) Let the image width be W . The number of layers in
3DeepCT increases linearly with W . This, in conjunction to
the array-dimension coupling, means that for any change of
resolution, a completely new system has to be trained.
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Fig. 2. NeRF [54] associates the coordinates (X,ω) to an R-G-B-
Density vector, using a fully-connected DNN. Both training and inference
(novel view synthesis) sample the radiance field by cameras, and asso-
ciate a pixel value by an integral along ω across X.

2.5 Neural Radiance Fields

Neural radiance fields (NeRF) [54] is a representation of the
radiance field at sampled viewpoints, using a DNN. This
representation provides impressive view synthesis, after
training on a specific object or a narrow class of objects [54],
[55], [56]. This training can be long (hours per scene). Our
image formation model has some partial analogies to NeRF,
hence we considered using it. Eventually, we use some ideas
developed for NeRF, though we differ in others.

Consider Fig. 2. A 3D point and a direction (X,ω) are
mapped by NeRF to an R-G-B-Density vector. Considering
Figs. 1 and 2, there are analogies. The Density component
has loose analogy to our β. The R-G-B components of the
vector have a loose analogy to our source function J . NeRF
converts the R-G-B-Density values per voxel and viewing
direction, to model samples of radiance field at specific
camera locations and viewpoints, as defined in Eq. (6). This
conversion does not use full 3D radiative transfer. Instead, it
uses a line integral on a LOS, in analogy to single-scattering
or emission models of image formation.

Though conversion of R-G-B-Density to radiance samples
(multiview images) is by a model which is unrelated to
correct physics of radiative transfer, it is often not a concern
in NeRF. The reason is that the main goal of NeRF is
view synthesis, rather than a physical recovery of a true
volumetric multiply-scattering object. Hence, the mapping
(X,ω) to R-G-B-Density is learned by penalizing image
inconsistency, rather than errors of the 3D object. There is,
however, evidence [57] that ignoring multiple scattering in
a volumetric object can bias view synthesis.

In contrast, we fundamentally seek recovery of an actual
physical field, β. Moreover, the field β physically governs
the radiance field and sampled images using full 3D ra-
diative transfer (Eqs. 1,2,3) including multiple scattering.
We thus do not use NeRF as a model. Moreover, we need
a scalable system to analyze fast highly diverse and large
scenes, without long training per object or a narrow class.
Clouds are very diverse: they are formed by chaotic air
flows. Thus, each cloud is very different than other clouds,
i.e., it is a very broad class. In VIP-CT, inference of each
cloud takes sub-second time. Nevertheless, NeRF research
spawns ideas which we find useful for our approach.

3 VIP-CT
We propose the VIP-CT network, to learn and infer scat-
tering CT. We have made the code public domain.4 Much
of the architecture is generic and suitable to learning-based
scattering CTs. We focus on clouds, so we set some hyper-
parameters to this class and use clouds for training and
testing. Between training samples and inference, the sizes
of the input and output domains, as well as the camera
poses may vary. The entire system is trained in an end-to-
end supervised fashion using the loss

Loss(βtrue, β̂) =
∥βtrue − β̂∥22
∥βtrue∥22

. (11)

Inspired by NeRF, the architecture of VIP-CT maps radi-
ance samples at arbitrary sensor poses {(Xc,p,ωc,p)}N

cam

c=1 to
content in a single voxel (β). The main parts of VIP-CT are
illustrated in Fig. 3.

The core of VIP-CT is a decoder, which assigns each 3D
voxel location X an estimated value of the sought unknown
β̂(X). The decoder has two inputs. One is a vector of image
features v(X) associated with this voxel. It is the output of
an image-feature extractor, described in Sec. 3.1. The other is a
set of vectors that express 3D geometry relating to the voxel
location and the set of viewpoints. They are respectively
denoted gdomain(X) and {gcam(Xc|X)}Ncam

c=1 , and are the
output of a geometric encoder, described in Sec. 3.2.

Thus, the decoder executes a function

β̂(X) = fΘ
[
v(X),gdomain(X), {gcam(Xc|X)}N

cam

c=1

]
, (12)

where fΘ is a function set by a vector of parameters Θ.
These parameters are learned.

3.1 Image-Feature Extractor
In pixelNeRF [58], image features augment spatial and an-
gular coordinates as inputs for view-synthesis. Training an
image feature extractor across multiple scenes allows [58]
learning a scene prior. Inspired by [58], the inputs to the
decoder of VIP-CT include image features that correspond to
X, enabling a fast scattering-CT in a feed-forward manner.

Here we describe image feature extraction in VIP-CT.
Irrespective of the resolution or size of the image or object
domains, feature extraction is done image-wise. It follows
these actions:
(1) Pre-process each image globally in the image domain,
irrespective of the 3D volumetric element X.
(2) Query X: Using Eq. (5), project voxel X to all cameras
c (Fig. 4). This yields a set of continuous-valued image
locations {x(c)}∀c, which correspond to X.
(3) Extract image features per x(c), yielding a vector uc(X).
(4) Concatenate corresponding features to a single vector:

v(X) = [u1(X),u2(X), . . . ,uNcam(X)] . (13)

3.1.1 Pre-processing on a discrete grid
Pre-processing is done independently on each input image.
This alleviates coupling between the dimensions of the to-
mographic results and the number of input images, contrary
to [39]. Across the whole discrete image domain, features

4. Our code is available at https://github.com/ronenroi/VIPCT
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Fig. 3. The VIP-CT scheme for scattering-tomography having variable projections. A voxel location X is encoded to a vector gdomain(X). In camera
c, this voxel is observed from a center of projection at a location denoted Xc|X. This location is encoded to a vector gcam(Xc|X). There are Ncam

cameras observing the 3D domain from multiple viewpoints. In all images, features are extracted using the same convolutional neural network
(CNN). This leads to a vector v(X) of features from all images, at image pixels that are geometric projections of X. These vectors are passed to a
decoder that infers the extinction coefficient β̂(X). A space-carving mask nulls voxels outside the object of interest.

Fig. 4. Light scatters multiple times, then observed from multiple view-
points. A 3D location X is queried by numerical projection of X to the
viewpoints, pointing to specific pixels in 2D image domains.

are derived efficiently using a convolutional neural network
(CNN). Moreover, the CNN is the same for all images. It is
parallelized for all images, by stacking the image set at the
batch dimension of the CNN. The CNN is learned.

As mentioned by [39], a 2D-domain CNN is a natural
architecture for cloud-fields, because the statistics of cloud
fields tend to be stationary. Moreover, a CNN is very effi-
cient, making it suitable to process wide fields. Part of the
features maintain the image spatial dimensions without any
dimensionality reduction. This conserves the resolution and
degrees of freedom of complex objects. Specifically, clouds
are created by chaotic flows, and have random eddies at a
huge range of scales - which matter to science. For the same
reason, all convolutional layer kernels are of spatial size 3×3
or 1×1. Moreover, to obtain physical context, for any image
input pixel, the corresponding feature vector has elements
having a receptive field up to 244 pixels wide.

To handle objects of multiscale nature (as in clouds
and cloud fields), we adapt an off-the-shelf feature pyra-

Fig. 5. A feature pyramid network (FPN) extracts image features. In the
bottom-up pathway (blue arrays), the resolution of each pyramid level
decreases by a factor of two in each spatial axis. The base level has full
spatial resolution. This pathway relies on ResNet 50 [60]. The top-down
pathway contains four levels (yellow arrays), each having C channels.
Bottom-up and top-down layers of the same spatial size are merged by
lateral connections.

mid network (FPN) [59] to generate features (See Fig. 5).
The pyramid involves a bottom-up pathway, a top-down
pathway and lateral connections. The bottom-up path relies
on the ResNet 50 [60]. There are four pyramid levels. The
basic level (L = 1) has full spatial resolution. Then, each
pyramid stage spatially downsizes the domain by a factor
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of two in each spatial axis.5 Each pyramid layer has multiple
channels, created by different convolution kernels.

The top-down pathway and lateral connections are as
in [59]. Here, each spatially coarse feature map (higher in the
pyramid) is expanded by a factor of two in each spatial axis.
As a pyramid layer expands, it merges with the correspond-
ing layer of the bottom-up pathway, creating C channels at
that layer. For an input image yc taken by camera c, the
resulting merged layer at level L is a feature array denoted
P

(c)
1/L. Correspondingly, all four levels of feature arrays con-

stitute the feature set Pc = {P c
1/1, P

c
1/2, P

c
1/4, P

c
1/8}.

3.1.2 Extracting features at continuous location x(c)

The features derived in Sec. 3.1.1 are on discrete grids, which
relate to a discrete image-pixel grid. However, recall action
(2) above: a Query yields a set of continuous image coordi-
nates {x(c)}∀c, corresponding to 3D voxel location X. There
is thus a need the extract features that correspond to inter-
mediate locations between image pixels. This is done using
interpolation of the feature maps {P c

1/1, P
c
1/2, P

c
1/4, P

c
1/8}.

This process alleviates the strict coupling of input image res-
olution to the output voxel grid. The result of this interpo-
lation is the feature vector uc(X), which is used in Eq. (13).
The details of the interpolation process are not critical, and
are thus provided in the supplementary material.

3.2 Geometry Encoder
Most objects have some spatial trends. For example, cloud
voxels tend to be denser (have higher β), the higher the
voxel is above a cloud base [51], yet atmospheric density
generally decreases with altitude above sea level.

Moreover, radiance in the scene also tends to have spatial
and directional trends. Directional trends are affected by the
phase function and illumination direction. Images appear
differently in back-light (forward scatter) than in back-
scatter (illumination from behind the camera). For example,
in clouds, the side facing towards the sun tends to be
brighter than the side facing away from the sun, and clouds
appear very differently if viewed from above or below.

For learning and inference to express such trends, it
is required that the input of the system includes the 3D
location X and the viewing directions. Viewing directions
are set by {Xc|X}Ncam

c=1 , as described in Sec. 2.2. By having
these vectors as inputs to a learning system, the system
learns to react to changes in the viewing geometry.

As in NeRF, spatial coordinates are not inserted raw.
Rather, they are embedded in high-dimensional represen-
tations [54]. We found that this process improves perfor-
mance (see supplementary material). The respective repre-
sentations are in high-dimension vectors gdomain(X) and
gcam(Xc|X).

3.3 Complexity
3.3.1 Inference
Inference is done by running Fig. 3. Inference is done inde-
pendently on each voxel. Then, each voxel projects to each

5. In the original ResNet 50, the basic layer downsizes by a factor
of 4 each spatial axis. We modified this layer to maintain the spatial
dimensions as the input image.

image independently. These processes can be parallelized,
to the extent of the GPU hardware memory. If the volume
domain or images are too large, then they can be divided
to batches: each batch is processed in parallel, and different
batches run sequentially.

A scene has Nvoxels voxels. It is observed from N cam

directions. Each direction yields an image of size H × W .
The feature vector v(X) has length Nv = 4N camC . The
length of gdomain(X) is ldomain. The length of gcam(Xc|X)
is lcam. So, if a whole scene is analyzed using all
pixels and voxels in parallel, the memory required is
O[Nvoxels(1 + ldomain) + 4N camCHW +N camlcam].

3.3.2 Training

Let us list the data size. There are N scenes training volumet-
ric objects. Each has Nvoxels with ground-truth β. Each scene
yields observation data of size N camHW . So,

Training data size = N scenes(Nvoxels +N camHW ). (14)

The number of parameters that VIP-CT learns is inde-
pendent of the domain sizes HW and Nvoxels. Because com-
plexity does not increase with the domain sizes, it means
that training scenes of sufficient number and domain size
(Eq. 14) can potentially constrain the system sufficiently for
good generalization.
• Feature extraction on a grid. Complexity is dominated6 by
the bottom-up path (Fig. 5): it uses ResNet 50, for which

# feature extraction parameters ≈ 24 Million. (15)

• Decoding. The decoder input is a vector whose number of
elements is [4N camC+N camlcam+ldomain]. This vector then
enters a fully connected DNN. The first layer decreases the
vector dimension to 2048, and subsequent layers7 gradually
decrease dimensionality to 1 (a scalar β). The number of
parameters is dominated by the first layer. So,

# decoder parameters ≈ 2048[4NcamC +Ncamlcam + ldomain].
(16)

• Geometry encoding. Vector X has three elements (spatial
coordinates). This vector enters a DNN having four fully-
connected ReLU layers,8 each having ldomain neurons, to
yield gdomain(X). A similar DNN converts a viewpoint
Xc|X to gcam(Xc|X). So, geometric encoding requires

# encoder parameters ≈ 3(ldomain+lcam)+3(l2domain+l2cam).
(17)

• Feature sampling at a continuous location. This interpola-
tion has 81 parameters per camera. The overall number of
parameters is 81N cam, which is negligible.

We use ldomain = lcam = 64. Sec. 4 describes data-sets
and imaging settings, which clarify the balance between
training data size and the number of parameters.

6. A lateral connection between layers at a corresponding level
requires 256 parameters. Per level, merging involves a convolution
using 9 elements, per each of C channels. These operations have
4 × 256 + 3 × 9C parameters. This number is negligible relative to
the 24e6 parameters of ResNet 50.

7. There are nine fully-connected ReLU layers, with a skip connection
from the second to the sixth layer.

8. There is a skip connection that concatenates the input to the second
layer’s activation, following [12].
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4 SIMULATIONS

4.1 Datasets
Obtaining real-world databases of 3D cloud extinction is
infeasible. Thus, we follow [39], to train using physical sim-
ulations. The simulations solve the coupled equations of a
turbulent atmosphere using measured real-world boundary
conditions. This yields our ground-truth cloud examples.
We demonstrate our method on two cloud datasets that
were presented in [39]. In both datasets [61], [62], the
domains are aligned with the North, East, Up coordinate
system and divided to voxels 50 m wide and 40 m thick:
BOMEX has an atmospheric domain 1.6 × 1.6km wide,
1.2km thick. Having 32 voxels along each axis, there are
Nvoxels = 32, 768 variable extinction coefficients. Training
used N scenes = 6000 scenes. Testing used 566 scenes.
CASS has an atmospheric domain 3.2 × 3.2km wide,
1.2km thick. There are 64 voxels along each horizontal
axis and 32 voxels along the vertical axis. Hence, there are
Nvoxels = 131, 072 variable extinction coefficients. Training
used N scenes = 10, 908 scenes. Testing used 1000 scenes.

4.2 Imaging settings
We follow [39] and render images of ground-truth scenes
using an online open-source physics-based radiative trans-
fer solver (SHDOM) [47]. The images are rendered based on
parameters of the solar illumination direction, intrinsic and
extrinsic camera parameters and noise specifications of the
sensor. To compare with 3DeepCT [39], we use noise speci-
fications derived from the CMV4000 sensor. The maximum
image-pixel value is set to correspond to 90% of the sensor
full well, which is 13,500 photo-electrons. Thus, sampled
radiance is converted to a Poissonian distributed photo-
electron count. There are 13 photo-electrons per graylevel.
The readout noise has 13 electrons standard deviation (STD).

VIP-CT has significant qualitative advantages regarding
flexibility to variable geometry. However, we also want to
compare VIP-CT quantitatively to 3DeepCT [39]. Hence, we
made simulations using the same geometric settings that
are in [39] (specifically for comparisons), as well as in other
geometries.

Geometries to compare with 3DeepCT:
32 Viewpoints. This is a northbound string-of-pearls [63]
formation of 32 satellites, that orbit at altitude of 600km.
Nearest neighboring satellites are 100km apart. The forma-
tion spans an angular viewing range ∼ ±75◦ off-nadir. The
images are perspective, have ground resolution of 50 m,
with H = W = 32 pixels for BOMEX and H = W = 64
pixels for CASS. In this geometry, we use C = 256. Us-
ing these dimensions in Eq. (15,16,17), overall VIP-CT has
≈ 100 million parameters to train. On the other hand, from
Eq. (14), BOMEX and CASS respectively provide data of
sizes ≈ 400 million and ≈ 2900 million. So, the data size is
very high, relative to the number of VIP-CT parameters.

In this resolution and geometry, a Subset of Seven
Clouds drawn from the BOMEX test set is pointed out and
used in [39]. This subset thus serves as a basis for some
comparisons with [39].
10 Viewpoints. This geometry is motivated by the CloudCT
space mission [64], [65], [66]. Here, only 10 viewpoints

Viewed Field

Fig. 6. Geometry of 10 perturbed viewpoints. A northbound string-of-
pearls formation of observation satellites orbits at altitude of 600km. The
unperturbed locations are depicted by dots, having corresponding colors
to viewing angles of poses that are randomly perturbed.

TABLE 1
We randomly perturb each of the 10 perspective viewpoints, in each

spatial coordinate. Here X is along the formation (string of pearls) axis,
Y is across the formation axis, and Z is the altitude. The perturbation is

sampled uniformly in a ∆X ×∆Y ×∆Zkm3 volume.

∆X km ∆Y km ∆Z km
Small (S) ±5 ±5 ±5
Medium (M) ±25 ±25 ±25
Large (L) ±50 ±50 ±50
Extra-large (XL) ±50 ±100 ±50

are used, spanning an angular viewing range ∼ ±40◦

off-nadir, in the same orbit and inter-satellite distance of the
32-viewpoint geometry. In this geometry, we use C = 512.
Using these dimensions in Eq. (15,16,17), overall VIP-CT
has ≈ 68 million parameters to train. On the other hand,
from Eq. (14), BOMEX and CASS respectively yield data of
sizes ≈ 300 million and ≈ 1900 million elements.

Novel imaging settings:
We demonstrate use of 10 randomly perturbed viewpoints.
In the 10 Perturbed Viewpoints geometry, each of the 10
viewing satellites has a pose which is translated randomly in
a uniform distribution in each of the 3D spatial coordinates.
The randomly perturbed camera poses are known. VIP-
CT makes inferences for such perturbed views, which are
not present during training. An illustration is presented in
Fig. 6. In different tests, the maximum amplitude of the
random translation distribution has a different magnitude,
as detailed in Table 1.

3DeepCT [39] operates on a fixed horizontal grid and
limited to images having 50 m ground resolution. We go
beyond and render images having 20 m ground resolution.
This yields images with 116× 116 and 236× 236 pixels for
the BOMEX and CASS datasets, respectively.

4.3 Implementation details
Each input image is normalized by the mean and STD of
the training data. Training and inference query voxels that
reside in a space-carving [67] mask of each scene. We choose
a liberal space-carving threshold, to increase the likelihood
of including potential cloud voxels. Training to optimize
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Fig. 7. [Up] 3D reconstructions of the extinction coefficient, and the relative error ϵ. [Bottom] Scatter plots of the estimated β̂ across all voxels. The
correlation coefficients of the scatter plot resulting from our approach (VIP-CT), 3DeepCT and physics-based are 0.73, 0.55 and 0.02, respectively.

Eq. (11) is done by ≈ 100, 000 iterations of stochastic gra-
dient descent, using an Adam optimizer having a learning
rate of 5e-5 and a weight decay of 1e-5. An iteration uses
1000 randomly sampled query voxels. The system runs on
an NVIDIA GeForce RTX 3090 GPU.

We compare four approaches mentioned in Sec. 2.4.
These are: a physics-based optimizer [31] initialized by a
default constant value for βinitial = 1km−1; a stand-alone
learning-based solution (VIP-CT, 3DeepCT); a hybrid and
a quick hybrid system [39]. For training, as is common,
we use L2-based norm (11). To quantify inference quality
numerically, we follow [31], [39] and use per scene

ϵ =
∥βtrue − β̂∥1
∥βtrue∥1

. (18)

We calculate the mean and STD of ϵ over the test sets. The
supplementary material provides further statistics using
Eq. (11).

4.4 Results

4.4.1 Fixed geometry
We first show results in which the viewing geometry is
fixed. We have 1566 test scenes. One example is shown in
Fig. 7. Additional examples, statistics and ablation studies
are given in the supplementary material. An overview of
statistics of ϵ (Eq. 18) for each database and viewing ge-
ometry is shown in Fig. 8. Consistently, VIP-CT surpassed
3DeepCT [39] significantly by a large margin.

Similarly to [39], ϵ slightly decreases when N cam in-
creases from 10 to 32, but this change has just marginal
significance, considering the STD of ϵ in each geometry. On
the hand, VIP-CT yields significant improvement if images
are taken at 20 m resolution (the voxel grid is maintained).
We did not run this resolution in 3DeepCT [39], as the
available 3DeepCT system is not suited to these dimensions.

It can be beneficial that a single system would train
on data that is diverse, to increase the generalizability
of inference. However, 3DeepCT is designed for a single
output size. Hence multiple databases having different do-
main dimensions cannot be used simultaneously on a single
3DeepCT model. On the other hand, a single unified VIP-CT

32 sat.
50m

10 sat.
50m

32 sat.
20m

10 sat.
20m

0

0.2

0.4

0.6

0.8

1

1.2
3DeepCT
VIP-CT
Physics-based
BOMEX
CASS

Fig. 8. Results for a fixed geometry, comparing VIP-CT to 3DeepCT and
a physics-based solution [31]. Bars represent STD. In terms of ϵ, VIP-CT
outperforms 3DeepCT [39] across test data-sets and geometries.

system can train on all examples of both datasets. We apply
this on a 10-Viewpoint geometry and 20 m image resolution.
When testing this single system, ϵ increases by 1% when
tests are drawn from the CASS set, and 12% when tests are
drawn from the BOMEX set, compared to VIP-CT systems
that train exclusively on each.

An overview of performance is provided in Fig. 9. These
results are mainly based on a Subset of Seven Clouds de-
scribed in Sec. 4.2. Physics-based optimization, based on a
default initialization of a cloud having a uniform extinction
coefficient yields the worse performance: it runs for 1000-
2000 seconds, yielding ϵ ∼ 0.8. On the other extreme, using
3DeepCT as a stand-alone solution is very fast, running at
several milliseconds, yielding ϵ ∼ 0.65. Based on initializa-
tion by 3DeepCT, minor improvement of ϵ is obtained in the
hybrid and quick hybrid methods, at significantly longer run-
times, dominated by physics-based optimization iterations.

The situation is markedly better, and with small un-
certainty, using our VIP-CT. On the Subset of Seven Clouds,
using the learning-based VIP-CT as a stand-alone solution
(without physics-based optimization iterations) yields qual-
ity which is far better than any prior art, at about ϵ ∼ 0.45.
Moreover, ϵ ∼ 0.38 when assessed over the full test set
of hundreds of scenes (not just a subset), using just 10
viewpoints, if imaging is done at 20 meter resolution. Run-
time to recover a scene using the learning-based VIP-CT is

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3195920

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



10 -2 10 0 10 2 10 3
0

0.2

0.4

0.6

0.8

1 3DeepCT

Const. initialization

Our recommended

Quick hybrid Hybrid

Physics-based

Learning-based

20[m] resolution

VIP-CT

Fig. 9. A Subset of Seven Clouds from BOMEX tested recovery per-
formance using several methods: physics-based optimizer (Green) ini-
tialized by a constant β, learning-based 3DeepCT (red), learning-based
VIP-CT (blue), and hybrid and quick-hybrid methods, where a physics-
based optimizer is initialized by the respective learning-based results.
Bars express STD of ϵ and the run-time. The case of VIP-CT (our
method) using 20 m image resolution is also shown. Recovery time
for physics-based optimization and hybrid solutions is in the order of
1000 sec. Quick-hybrid is in the order of 100 sec. The mean inference
times of VIP-CT and 3DeepCT are 0.25 sec and 0.007 sec, respectively.

≈ 0.25 seconds. This is three to four orders of magnitude
faster than recovery methods that rely on physics-based
optimization steps. Note that VIP-CT has more involved
processes (inc. projection, sampling, decoder), lengthening
its run-time in comparison to 3DeepCT. The training time
for VIP-CT is similar to that of 3DeepCT: about 15 hours.

4.4.2 Varying geometry
We test how VIP-CT handles viewpoints having random
variations (only 10 viewpoints are used). As described in
Sec. 4.2 and Fig. 6, the viewpoints are perturbed. The results
are presented in Fig. 10, for two models. In one model,
VIP-CT trained only on fixed viewpoints, while testing has
perturbed viewpoints. The system tolerates this discrepancy,
attesting the flexibility and robustness of VIP-CT. However,
ϵ has a significant STD. There is also a degradation of the
ϵ-mean as the perturbation amplitude increases.

In a second model, VIP-CT trained on perturbed view-
points, then also tested on variable geometry. Here, each
scene in the training set had been imaged with random
viewpoints having L magnitude (See Table 1). The results
in Fig. 10 show that on average, ϵ is insensitive to the
perturbation. Moreover, the STD of ϵ is lower, including in
test scenes that have no geometry perturbations at all.

5 AIRMSPI REAL WORLD EMPIRICAL DATA

Levis et al. [31] and consequent works [68] on scattering
tomography demonstrated methods experimentally on real-
world data acquired by AirMSPI. We follow the same ap-
proach, which enables comparison to the prior art. AirMSPI
is a remote sensing instrument designed, built and operated
by the Jet Propulsion Laboratory (JPL). It is flown on board
the ER-2 aircraft of NASA at altitude of 20 km. From this
altitude, the spatial resolution of the observed domain is

None S M L XL
0

0.2

0.4

0.6

Fixed veiwpoints training
Varying veiwpoints training

Fig. 10. VIP-CT tested on perturbed imaging geometries. The four
perturbation magnitudes are described in Sec. 4.1 and Table 1. When
a model is trained on fixed viewpoints, tests that include pose pertur-
bations have some increased (though contained) degradation of results
(red). A model that was trained on random perturbed viewpoints main-
tains an approximately constant error (blue).

10m. The AirMSPI camera has a pushbroom configuration.
It can take multi-angular observations over a ±67◦ angular
span along-track, as it flies. It has a step-and-stare mode,
which sequentially acquires N cam = 9 images of the same
observation domain from that angular range. Each angular
setting is indexed by c = 1 . . . N cam.

Despite being described as pushbroom, in practice image
projection does not follow this model, because the aircraft
velocity vector and angular pointing are perturbed during
flight. Consequently, the projection model is more general.
It is known, however, because AirMSPI is supplemented by
extensive geometric and radiometric calibration. Thus, for
every voxel X imaged at a time by a camera at angular
setting c, we know the location of the camera Xc.

To train a VIP-CT model, we followed [39], to use the
BOMEX-Aux data-set.9 The liquid water content of each
BOMEX cloud is multiplied by 1/10 there. A voxel in
BOMEX-Aux is 50 m wide and 40 m thick. Each scene then
undergoes 3D radiative transfer (SHDOM), followed by
image rendering at 10 m resolution. Fig. 10 indicates that
training VIP-CT on a variety of perturbed viewpoints leads
to a better generalization and a higher recovery accuracy.
Thus, we render the training cloud scenes using five dif-
ferent AirMSPI flight experiments, generating a variety of
realistic perturbed viewpoints. This data then trains VIP-
CT, using C = 64. The remaining parameters in the system
are as in Sec. 4.3.

To test VIP-CT on real-world data, we use the 660 nm
data channel from a flight at 20:27GMT on February 6, 2010
over a cloudy ocean scene at 32N 123W. This flight path
was not included training. Because imaging is sequential,
the scene shifts by global wind during the time it takes ER-
2 to fly over the domain. So, we follow [68] to assess this

9. 3DeepCT is not used here, because 3DeepCT was neither designed
nor trained for images taken by pushbroom or more general projection
models: only on perspective inputs. In Sde-Chen et al. [39], AirMSPI
data had first been analyzed by physics-based optimization to yield β̂.
That estimated 3D distribution was then considered ground-truth, from
which perspective images were rendered for use in 3DeepCT.
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Fig. 11. Real-world experiment. [Top] An AirMSPI missing view and
corresponding rendered views of a cloud that is estimated either by our
VIP-CT approach or a physics-based optimizer [31]. Both use data that
excludes this view. [Middle] Scatter plots of the pixel values in these
views. The correlation coefficient of the scatter plot resulting from our
approach (VIP-CT) is 0.8. For physics-based optimization, it is 0.84.
[Bottom] Visualization of the recovered cloud by the respective methods.

global wind and back-shift the images, to reduce the effect
of this drift.

The domain of our empirical scene requires a grid of
72 × 72 × 32 voxels, that is, having 165,888 unknowns.
We used the trained model to infer the empirical scene
described above, and recover the cloud. However, there is
no ground truth information on this data (nor other relevant
empirical data that we sought). So, as in prior work, we
check for consistency using cross-validation10 [31], [39], [68].
For this, we excluded the +47◦ view, trained VIP-CT and
performed inference of β̂ using only eight viewpoints. Then
we used F(β̂) to render the missing view, using Eq. (8). The
results are shown in Fig. 11.

The results appear mutually comparable, however, re-
covery took just two seconds using VIP-CT. In contrast,
a physics-based optimizer took four hours. We stress that
in this experiment, the physics-based solver exploits an
advantage that βtrue is ≈ ×10 smaller than in the sim-
ulated datasets. This optical-thinness aids convergence of
a physics-based solver. In the supplementary material, we
show cross-validation results of a second viewpoint and
additional results of a different real-data cloud.

10. The cross-validation measure has drawbacks. It requires approx-
imating additional scene unknowns, like the cloud phase function, the
cloud single-scattering albedo, and the ground albedo. Hence, higher
cross-validation performance does not necessarily guarantee a better β
recovery.

6 FURTHER OUTLOOK

We gain broad conclusions, in the context of computational
photography (technology) and in relation to its use for
science, specifically remote sensing of the atmosphere. Deep
learning already excels in analysis of 2D manifolds, such
as 2D images and range maps to opaque surfaces. A major
reason is the availability of massive datasets of labeled 2D im-
ages and maps, which enable supervised training of DNNs.
Sufficiently large datasets of ground-truth labeled volumet-
ric realistic 3D translucent (scattering) heterogeneous objects
have largely been missing. This has hampered progress of
deep learning of such objects. We find that the datasets
in [53] can start to provide a breakthrough for learning-
based computational photography, dealing with heteroge-
neous translucent 3D volumetric objects. This is irrespective
of the application. These large datasets are driven by physics
(fluid dynamics, thermodynamics, condensation etc.). They
may thus be used to develop DNN technologies unrelated
to atmospheric sciences, possibly affecting research on com-
puter graphics and biomedical imaging.

Large datasets have created benchmarks that propelled
computer vision, enabling groups to compete in developing
technologies. We hope it may happen here. Even in the
context of cloud tomography, we can expect future DNN-
based systems that will outperform VIP-CT, as well as
3DeepCT, using such large datasets.

For remote sensing of the atmosphere, the results can
be readily pivotal. From Sec. 4.4, VIP-CT takes ≈ 0.25
seconds to tomographically recover clouds in high reso-
lution (∼ 20m) and quality, in an area of 1.6 × 1.6km2.
Simply using the same hardware and sequentially analyzing
such area patches, VIP-CT would need only 3 minutes to
tomographically recover a cloud field 43× 43km2 wide.

Three minutes is essentially real-time in spaceborne observa-
tions. Typically, downlink from space is a bottleneck, often
requiring longer times to receive that much data. Actually,
it can take longer to acquire the data, before downlink: the
MISR spaceborne instrument of NASA takes multi-angular
images of the atmosphere [69], requiring seven minutes to
fly above the observed region and scan it. VIP-CT shows
that with existing technology, 3D tomography of the atmo-
sphere can be achieved as soon as data is obtained, and
tomography computation is not a time bottleneck. Very large
scales and high quality are now reachable.

Moreover, VIP-CT naturally accommodates other as-
pects of remote sensing, including variable viewing geome-
tries. These are created by perturbation of the platform pose,
maneuvers, and fusion of data obtained by multiple types
of orbiting instruments. We thus believe that thanks to a
flexible learning-based approach as VIP-CT, 3D volumetric
analysis is practical for operations.

Extensions of this work should include the following:
adding the illumination direction as input to the decoder; re-
covery of a vector of parameters per voxel (single scattering
albedo, particle sizes, density of particles); recovery of the
albedo of the ground or ocean (boundary of the medium);
and use of multimodal data, such as polarized imaging
channels. Further extensions can be in the time domain, for
analyzing dynamic objects and/or temporal light transport.
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Supplementary Material:
Variable Imaging Projection

Cloud Scattering Tomography
Roi Ronen, Vadim Holodovsky and Yoav Y. Schechner

Abstract—This is a supplementary material for the main manuscript on Variable Imaging Projection Cloud Scattering Tomography
(VIP-CT). First, we show an ablation study demonstrating the contribution of different parameters to the overall system performance.
We further present an ablation study on the geometry encoder architecture. Then, we describe the feature sampling component of
VIP-CT. Finally, we detail statistics that relate to plots in the main manuscript. This document also presents additional real-world results
and visualizations of cloud reconstructions, that did not enter the main manuscript due to space limitations.

Index Terms—Inverse rendering, Physics-based Vision, Scientific imaging, Participating media

✦

1 ABLATION STUDIES

We conducted ablation studies to evaluate the contribution
of some of the components of VIP-CT. All tests in this section
were done on the BOMEX dataset with a 10-Viewpoint
geometry and 20 m resolution. The results are summarised
in Table 1 herein.

Removing the top-down pathway in the image feature
extractor increases ϵ by 6%. When excluding gdomain(X),
that is, by inference without the voxel 3D location, ϵ
increases by 11%. This points to the importance of the voxel
3D location during inference. Similarly, ϵ increases when
gcam(Xc|X) is excluded. Moreover, ϵ increases by 14%
when passing to the decoder only image features, that is,
excluding all geometry encoding. Furthermore, there is an
increase of ϵ by 10% when changing the sampler spatial
support h × w from 40 × 40m, which is about the voxel
size, to 160× 160m.

We study the effect of parameters of the geometry
encoding. Recall that a voxel location X and the camera
location Xc|X are encoded to the vectors gdomain(X) and
gcam(Xc|X), correspondingly. A visualization of the coor-
dinate encoder is presented in Fig. 1 herein.

We assess the impact of the embedding lengths
ldomain, lcam of the domain and camera features. We train
and test VIP-CT on the BOMEX dataset with Large magni-
tude perturbed views. Results are shown in Fig. 2 herein.
Training and inference times are similar for all cases, as
computing times of gdomain and gcam are negligible (see Sec.
3.3 of the main manuscript).

2 FEATURE SAMPLING

In camera c, X is projected to a continuous-valued x. A
kernel that has spatial support h× w, centered at x, is then
defined. This kernel is sampled on a sub-grid having hS ×
wS samples. Let q index one of these hSwS samples. The
spatial location of this sample in the image is denoted x(q).

TABLE 1
Ablation studies. The ”Top-down pathway” column stands for an image

feature extractor that includes (by default) the top-down pathway, as
described in the main manuscript. The columns gdomain and gcam

columns stand for a model that (as default) encodes 3D coordinates in
a learned high dimensional representation. The h× w column is the

support used in feature sampling.

Model Top-down
gdomain gcam h× w [m] ϵ %pathway

ResNet 50 ✗ ✓ ✓ 40× 40 42± 36
No coordinate

✓ ✗ ✗ 40× 40 50± 12embedding
No X

✓ ✗ ✓ 40× 40 47± 22embedding
No camera

✓ ✓ ✗ 40× 40 45± 10embedding
Wide sampling

✓ ✓ ✓ 160× 160 46± 11support
VIP-CT ✓ ✓ ✓ 40× 40 36± 25

Recall that, for the c camera image, Pc is the set of L fea-
ture pyramid levels. Using bilinear spatial interpolation at
x(q) on each of the C channels of the L levels (Fig. 3 herein),
the discrete feature map pyramid Pc yields an interpolated
feature vector u(q)

c . Then, vectors in these kernel samples are
summed by:

uc(X) = b(c) +
hSwS∑
q=1

a(q, c)u(q)
c . (1)

The parameters b(c), a(q, c) constitute a learnable kernel.
We use hS = wS = 9. Then, the vectors {uc(X)}Ncam

c=1 are
concatenated across viewpoints to

v(X) = [u1(X),u2(X), . . . ,uNcam(X)] . (2)

This is Eq. (13) of the main manuscript.

3 ADDITIONAL REAL DATA RESULTS

We show in Fig. 4 herein an additional cross-validation view
of the cloud in Sec. 5 of the main manuscript. The results are
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Fig. 1. Visualization of the coordinate encoder architecture. A 3D co-
ordinate X is embedded to an l dimensional feature vector g(X). The
arrows indicate a fully-connected layer with ReLU activation. The output
size of all intermediate layers is l.
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Fig. 2. Ablation study of the geometry encoder feature length. For
ldomain = lcam = 0, no geometry information is used during recovery.
Here ldomain = lcam = 3 stands for using the raw 3D coordinate values
in VIP-CT.

comparable, but the run time of VIP-CT is about 104 faster
than that of the physics-based solver. In Fig. 5 herein, we
show a cross-validation result of a different cloud.

4 SIMULATION RESULTS

We detail numerical results for simulations described and
plotted in the main manuscript. Herein, performance is
evaluated by these criteria

ϵ =
∥βtrue − β̂∥1
∥βtrue∥1

, δ =
∥βtrue∥1 − ∥β̂∥1

∥βtrue∥1
, (3)

and

γ =
∥βtrue − β̂∥22
∥βtrue∥22

. (4)

In Fig. 6 herein and Table 2 herein we compare the results
obtained by VIP-CT (our approach) and by 3DeepCT [2] for
different geometries and datasets.

Then, Figs. 7, 8 and 9 herein visualize additional re-
constructions of scenes from the Subset of Seven Clouds,
discussed in the manuscript and in Sde-Chen et al. [2]. These
figures also plot the corresponding scatter plots. Statistics of
the varying geometry simulation are listed in Table 3 herein.
Two failure cases from the BOMEX dataset are presented in
Fig. 10 herein.

Fig. 3. There are four levels of feature arrays. Each has C channels.
The arrays are laterally sampled. First, a kernel that has spatial support
h × w, centered at x is defined. Then, this kernel is sampled on a sub-
grid having hS×wS samples. In this illustration hS = 3, wS = 5. These
samples then undergo weighted summation, using learned weights.
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Fig. 4. [Top] Cross-validation appearance results of the cloud in Sec. 5
of the main manuscript, in a different viewpoint. [Bottom] Scatter plots
of the pixel values in this view. The correlation coefficient of the scatter
plot resulting from our approach (VIP-CT) is 0.85. For physics-based
optimization [1], it is 0.9.
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TABLE 2
Result for fixed geometries. The statistics of ϵ, γ are plotted in Fig. 8 of the main manuscript and Fig. 6 herein, respectively. The row on a VIP-CT

unified reports a single model that is trained and tested on both BOMEX and CASS datasets.

Dataset Method Geometry Image resolution Training Time ϵ% δ% γ% Test time

BOMEX

3DeepCT [2] 32 satellites 50m 11 [hours] 82± 10 32± 16 59± 29 7± 0.9millisec
10 satellites 50m 8 [hours] 86± 10 44± 16 67± 31 7± 0.7millisec

VIP-CT

32 satellites 50m 10 [hours] 48± 15 29± 25 31± 21 0.25± 0.25 sec
10 satellites 50m 15 [hours] 51± 13 13± 27 23± 24 0.27± 0.24 sec
32 satellites 20m 14 [hours] 34± 24 17± 28 13± 30 0.67± 0.48 sec
10 satellites 20m 17 [hours] 36± 25 14± 29 13± 17 0.5± 0.37 sec

VIP-CT unified 10 satellites 20m 24 [hours] 48± 12 29± 14 21± 13 0.5± 0.37 sec

CASS

3DeepCT [2] 10 satellites 50m 48 [hours] 96± 18 3± 50 72± 33 18± 2millisec

VIP-CT 10 satellites 50m 11 [hours] 53± 63 −1± 47 28± 40 0.58± 0.47 sec
10 satellites 20m 24 [hours] 41± 14 25± 17 16± 17 1± 0.6 sec

VIP-CT unified 10 satellites 20m 24 [hours] 42± 14 18± 20 15± 25 1± 0.6 sec
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Fig. 5. [Top] An AirMSPI missing view and corresponding rendered
views of an additional cloud that is not presented in the main manuscript.
The cloud is estimated either by our VIP-CT approach or a physics-
based optimizer [1]. Both use data that excludes this view. [Middle]
Scatter plots of the pixel values in these views. The correlation coeffi-
cient of the scatter plot resulting from our approach (VIP-CT) is 0.93.
For physics-based optimization, it is 0.94. [Bottom] Visualization of the
recovered cloud by the respective methods.
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Fig. 6. Results for a fixed geometry, comparing our results (by VIP-CT)
to 3DeepCT. Bars represent the 5% and 95% percentiles. In terms of γ,
VIP-CT outperforms 3DeepCT [2] across test data-sets and geometries.

TABLE 3
Result for perturbed viewpoints. The perturbation magnitude is detailed
in Table 1 of the main manuscript. The statistics of ϵ herein are plotted

in Fig. 10 of the main manuscript.

Training geometry Test perturbation ϵ δ
Fixed - 36± 25% 14± 29%

Perturbed - 36± 13% 14± 16%
Fixed S 36± 22% 15± 26%

Perturbed S 36± 13% 15± 16%
Fixed M 38± 21% 16± 25%

Perturbed M 36± 13% 15± 16%
Fixed L 41± 20% 16± 24%

Perturbed L 37± 12% 16± 15%
Fixed XL 42± 18% 16± 22%

Perturbed XL 37± 11% 17± 14%
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Fig. 7. 3D reconstructions of the extinction coefficient; corresponding values of ϵ; and scatter plots of β̂. These results correspond to an example
scene, out of the Subset of Seven Clouds mentioned in the main manuscript.
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Fig. 8. 3D reconstructions of the extinction coefficient; corresponding values of ϵ; and scatter plots of β̂. These results correspond to an example
scene, out of the Subset of Seven Clouds mentioned in the main manuscript.
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Fig. 9. 3D reconstructions of the extinction coefficient; corresponding values of ϵ; and scatter plots of β̂. These results correspond to an example
scene, out of the Subset of Seven Clouds mentioned in the main manuscript.

Fig. 10. Two cloud examples, from the BOMEX dataset, poorly recovered by VIP-CT. For clarity, we show the absolute difference per voxel of the
estimated and true clouds. A very high ϵ value is obtained for clouds with a very small number of voxels.
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