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Abstract

Due to atmospheric turbulence, light randomly refracts
in three dimensions (3D), eventually entering a camera at a
perturbed angle. Each viewed object point thus has a dis-
torted projection in a two-dimensional (2D) image. Simu-
lating 3D random refraction for all viewed points via com-
plex simulated 3D random turbulence is computationally
expensive. We derive an efficient way to render 2D image
distortions, consistent with turbulence. Our approach by-
passes 3D numerical calculations altogether. We directly
create 2D random physics-based distortion vector fields,
where correlations are derived in closed form from turbu-
lence theory. The correlations are nontrivial: they depend
on the perturbation directions relative to the orientation
of all object-pairs, simultaneously. Hence, we develop a
theory characterizing and rendering such a distortion field.
The theory is turned to a few simple 2D operations, which
render images based on camera and atmospheric proper-
ties.

1. Introduction

Imaging through refractive media [5, 6, 25, 40, 42, 45]
is of interest both for rendering [11, 47, 58] and scene anal-
ysis [2, 27, 37, 54, 56]. It is studied in computer vision
and graphics, as the importance of participating media is
acknowledged [3, 8, 16, 18, 22, 24, 35, 36, 41, 46, 49, 55].
Complex, random refraction is created by turbulent me-
dia [13, 17, 29], often encountered in long range observa-
tions through the atmosphere [23, 28, 48, 57] and ground-
based astronomy [39, 44]. There, random perturbations of
the refractive index [38] follow a complicated fractal multi-
scale structure of eddies in the three dimensional (3D) do-
main. This structure, in turn, creates highly complex re-
fraction of propagating light, in the 5D plenoptic domain
(space and direction). This leads to random perturbations

Figure 1: [Top] Computationally complex rendering of image
distortion, requiring a 3D simulated random turbulent field, then
ray tracing in 3D for all object points in the field of view. [Bottom]
Our approach. Efficient rendering of turbulence-induced distortion
as 2D image processing. It relies on closed-form physics-based
covariance of the distortion.

of all light rays passing through this medium. Finally, the
complexly refracted light is projected by a camera, forming
a distorted image of the scene.

Now, suppose one seeks to render images that are dis-
torted as if they are taken through atmospheric turbulence.
A motivation for rendering can be computer graphics. An-
other motivation is to form a database on which to test
and develop recovery algorithms, to correct for turbulence-
induced distortion [60, 61]. A database can also train a
learning system to recognize objects via turbulence. From
the description above, apparently, rendering should include
a series of computationally complex steps (Fig. 1[Top]):

Simulate a huge 3D turbulent random field (scale of kilo-
meters) at a 3D resolution that is relevant to optics; Ray-
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trace refraction through this 3D medium, from an object
point to the camera; Repeat this propagation process for all
resolvable points in the field of view. In large scales, such a
rendering approach poses a computational burden. It is also
unnecessary.

We believe that for some applications, there is no need
for 3D simulations, in order to render turbulence-induced
image distortion. There is no need to simulate a fractal ran-
dom refractive index 3D field, or ray-trace through such a
field. Basically, image distortion is an operation in just two
dimensions (2D). The input is a 2D image, free of random
distortion, i.e. the view in the absence of turbulence. The
output is a 2D distorted image (Fig. 1[Bottom]). Render-
ing boils down, thus, to creating a 2D distortion operation,
which is consistent with distortion that turbulence can in-
duce.

Random 3D turbulence eventually leads to a randomly
distorted 2D projection. The random distorted projection
must be drawn from a distribution that is characterised
by a covariance function. The covariance function deter-
mines how the distortion of any pixel is correlated to any
other pixel, and what the variance is. The covariance func-
tion of turbulence-induced distortion is defined by physics.
In other words, the physics of turbulence in 3D (a ran-
dom process), and 5D refraction in it, dictate the image-
distortion covariance function, in 2D. The probability dis-
tribution of distortion had already been derived using the
theory of turbulence, for pairs of object points (not full-field
images) [7, 51]. This pair-wise function had also been veri-
fied empirically, using field experiments [7], where correla-
tions between image points were measured. We thus use the
pair-wise covariance function of turbulence-induced image
distortion, to create 2D distortion fields.

Transferring the physics-based pair-wise covariance
function to a full distortion field is nontrivial in turbulence.
Distortion is a vector-valued spatial field. The covariance
of this field is a matrix-valued function. It is a function of
relative coordinates that vary for each pair of pixels, includ-
ing the relative orientation of each pair, and the distortion
orientation in each pixel. We derive theoretically the solu-
tion: a full-field covariance of a 2D distortion field, based
on the physics-based pair-wise orientation-sensitive covari-
ance. We then give a recipe how to render random 2D dis-
tortion fields that satisfy the physical model. The recipe is
composed of several simple 2D image operations.

2. Related Work

2.1. Phase Screen Propagation

A common method for simulating imaging through tur-
bulence is based on light propagation through multiple ran-
dom 2D phase screens [33], approximating a 3D turbu-
lent medium. Phase-shifting layers are generated using ei-

ther fast Fourier transform (FFT), the Zernike polynomial
method or the fractal interpolation method [59]. This ap-
proach requires simulating a 3D refractive field and light
propagation in 3D.

2.2. 3D Ray Tracing for Graphics

There are rendering techniques that trace rays through a
3D randomly refractive media. Physically based simulation
of atmospheric phenomena is done in [19, 20]. Rendering
complicated lighting effects through various refractive ob-
jects is presented in [26]. These 3D methods often require
specialized hardware such as GPU and extensive computa-
tion time.

2.3. 2D Image Distortion Simulation

2D image distortion is simpler to implement, and does
not require extensive computational power. Usually, para-
metric models are used. These models are based on analysis
of real empirical distortions observed through various atmo-
spheric conditions [15, 43]. Other methods, as in [14, 61],
use simple Gaussian random functions to generate image
distortion fields. The results resemble turbulence distortion.
However, these methods do not use a physical model and
are not set to have physically consistent spatial correlations.

3. Background
3.1. Turbulence and Variance

3D turbulent flow is characterized by independent fluid
eddies in a range of scales. An eddy at the largest (outer)
spatial scale L0 break into smaller eddies, which in turn
break further. The process continues until the smallest ed-
dies reach the inner scale of the turbulence, l0. The inertial
range is defined by [lo, Lo]. There, kinetic energy is trans-
ferred to eddies of decreasing scale. Below l0, energy in the
fluid motion dissipates fully into heat. The outer scale of
the turbulence is often modelled [52] as L0 = 0.4h, where
h is the height above ground.

A turbulent flow is accompanied by pressure and tem-
perature fluctuations, that affects the refractive index of the
medium [4, 32]. In statistically homogeneous and locally
isotropic turbulence [30, 31] refractive fluctuations are char-
acterized by a refractive index structure constant C2

n. It ex-
presses turbulence strength [1, 53] and measured in units
of m−2/3. A high value of C2

n indicates strong turbulence,
while C2

n = 0 represents a medium free of turbulence. In
air, C2

n is typically the range 10−17− 10−13 m−2/3. A high
value of 8× 10−13 is typical [1] of summer daytime. Since
turbulence strength depends on the environment, in general
C2
n can vary over the imaging path. In particular it is af-

fected by high pressure at low altitudes and strong winds at
high altitudes, both of which affect placement and perfor-
mance of sky-observing telescopes. In this paper, we focus



Figure 2: Without turbulence, the line of sight to an object point
o is o. The point is projected then to p. Here L is the path length,
f is focal length and D is the lens aperture diameter. Random re-
fractions in the turbulent medium creates an angle of arrival (AA)
perturbation, leading to a distorted projection to p + e(p).

on rather horizontal views, which are typical in applications
such as long distance observations.

A camera having focal length f observes an object point
o at distance L. Without turbulence, the line of sight is ex-
pressed by unit vector o. As illustrated in Fig. 2, due to
refractive index fluctuations, turbulence leads to random re-
fraction of light emanating from the object point. Thus, this
light arrives at the camera at a random angle of arrival (AA),
which is a perturbation around the direction of o. The AA
perturbation distorts the projection of o at the image plane.

The AA variance for a spherical light wavefront1 is [10]:

σ2
AA = γ(q)C2

nLD
−1/3, (1)

where D is the diameter of the camera lens and q is the
Fresnel number:

q =
D√
λL

. (2)

Here λ is the light wavelength. The coefficient γ(q) for a
spherical wave [10] is

γ(q) =
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where β = 0.5216 and

Γ(µ) =

∫ ∞
0

τµ−1e−τdτ (4)

is the Gamma function. In Eq. (3), 2F1() is the hypergeo-
metric function

2F1(a, d; c; ζ) =

∞∑
m=0

(a)m(d)m
(c)m

ζm

m!
. (5)

1We deal with light emanating from an object point. Light from dif-
ferent object points is assumed to be incoherent. Hence, light from any
observed object point is modelled as having a spherical wavefront.

Figure 3: Without turbulence, the lines of sight to two object
points o, o′ are respectively o,o′. The points then project to p and
p + v, respectively.

For q � 1, Eq. (3) simplifies [12] to

γ(q) ≈ 1.09 . (6)

3.2. Pair-wise Distortion Correlation

Now, consider two object points, o, o′. Without turbu-
lence, their corresponding lines of sight are defined by unit
vectors o,o′, from the camera’s center of projection, as can
be seen in Fig. 3. These lines form a plane Π = o×o′. The
angle between them is

θ = arccos(o · o′) . (7)

Turbulence-induced random refractive disturbance causes
each of these lines of sight to deviate, correspondingly, by
angles of arrival AA(o),AA(o′). There is correlation be-
tween AA(o),AA(o′). The AA correlation function is

b(θ) =
Cov[AA(o),AA(o′)]

σ2
AA

, (8)

where Cov is the covariance operation. An expression for
b(θ) is derived in Refs. [7] and [51]. The correlation gen-
erally decreases with θ. Moreover, the correlation depends
on the directions of the AAs, relative to Π. Suppose an AA
perturbation is within the plane Π, which includes o,o′.
Then, this perturbation is termed parallel and denoted ‖.
If an AA perturbation is perpendicular to this plane, it is
denoted ⊥. In general, an AA perturbation at o has both
parallel and perpendicular components.

Note that for a fixed o, the ‖,⊥ axes and components are
defined depending on another point o′. Since object point o
coexists with a large number W of other points in various
relative directions, there are O(W ) definitions of ‖,⊥ for
any particular o. We deal, thus, with a non-trivial field.



Let us return, for the moment, to analyzing two partic-
ular object points o, o′. Use the following dimensionless
variables. From the object’s point of view, the angular size
of the aperture is

θD =
D

L
. (9)

The inter-object view angle is normalized to

η =
θ

θD
. (10)

The outer scale of the turbulence is normalized to

ρ =
L0

D
. (11)

For the dimensionless parameter 0 ≤ ξ ≤ 1, define the
functions

Q(ξ) = (1− ξ)5/3 , Mη = 2ηξ(1− ξ) . (12)

Following Ref. [7], the correlation function of each of
the two components is

b‖,⊥(η) =∫ 1

0

{∫∞
0
H(κ)[J0(Mηκ)∓ J2(Mηκ)]dκ

}
C2
n(Lξ)Q(ξ)dξ

∫ 1

0

{∫∞
0
H(κ)dκ

}
C2
n(Lξ)Q(ξ)dξ

(13)
Here, κ is a dimensionless integration variable included

in real non negative numbers, C2
n is the refractive index

structure constant (see Sec. 3.1), J0 and J2 are Bessel func-
tions of the first kind, while

H(κ) =
[(2ρκ)2 + 1]−11/6J2

2 (κ)

κ
. (14)

The negative sign in Eq. (13) corresponds to b‖(η), while
the positive sign corresponds b⊥(η). Notice that the denom-
inator of (13) is simply the numerator evaluated at η = 0,
so that b‖,⊥(0) = 1.

In a horizontal path, for which C2
n is constant, Eq. (13)

simplifies to

b‖,⊥(η) =

∫ 1

0

{∫∞
0
H(κ)[J0(Mηκ)∓ J2(Mηκ)]dκ

}
Q(ξ)dξ

∫ 1

0

{∫∞
0
H(κ)dκ

}
Q(ξ)dξ

(15)
The correlation function (15) no longer depends on C2

n nor
on the range L, but depends on ρ and η. The correlation
function (15) can be easily computed, as plotted in Fig. 4.

Figure 4: The correlation function (15) between a pair of pixels,
for the two distortion components (‖,⊥), plotted for ρ = 4 and
ρ = 10.

Figure 5: The image plane. In absence of distortion, two object
points project to p and p + v. Turbulence induces projection dis-
placements, e(p) and e(p + v), respectively. Any displacement
vector e(p) can be divided to components parallel and perpendic-
ular to v. These components are denoted e‖(p), e⊥(p).

4. Designing the Field Autocorrelation

4.1. Autocorrelation of a Stationary Vector Field

In this section, we work directly in the 2D image domain.
We define the distortion vector field, and a matrix-valued
covariance function in this field. Consider Fig. 5. Image
pixel location p is the undistorted projection of o. With-
out turbulence, the line of sight o′ from object o′ projects to
2D pixel location p + v. Turbulence displaces the respec-
tive projections by the random vectors e(p) and e(p + v).
Hence, e is a random vector field in the image plane. All
vectors, p,v, e are given in the (x, y) coordinates of the im-
age domain. Specifically, the cartesian components of v are
vx, vy . All spatial components, as well as the focal length f
have pixel-units. For narrow view angles,

θ ≈ |v|
f

=
r

f
, (16)



where r = |v|. Thus, referring to Eqs. (10,15),

b‖,⊥(η) = b‖,⊥

(
r

fθD

)
. (17)

To simulate a turbulence distorted image, we seek a ran-
dom field e with correct spatial correlations. The displace-
ment e is a spatially stationary vector field with mean zero.
Since we are interested in the autocorrelation function of
this field, we may assume without loss of generality that
the variance of e is 1: the variance can be adjusted later as
needed, using Eq. (1). The autocorrelation is equal to the
auto-covariance function and is given by the 2× 2 matrix

C(v) = E
[
e(p)eT(p + v)

]
. (18)

Here E denotes expectation and T denotes transposition.
Note that C(v) is a matrix-valued function of vx, vy . By
the stationarity assumption, the autocorrelation function de-
pends only on the difference v between two points and it is
symmetric in the sense that C(−v) = CT(v).

We wish to find a correlation function (18) such that the
induced longitudinal and lateral autocorrelation functions
match Eq. (15). Define the unit vector

v̂ = v/r. (19)

From Fig. 5, the longitudinal component of the displace-
ment vector field e(p) is the projection of e(p) onto v̂:

e‖(p) = 〈v̂, e(p)〉 = v̂Te(p), (20)

where 〈., .〉 is the inner product operator. Let

R =

(
0 −1
1 0

)
(21)

denote a rotation matrix, which rotates v by 90◦ in the im-
age plane. Thus

v̂TRv̂ = 0. (22)

The perpendicular displacement e⊥(p) is the projection of
e(p) onto the perpendicular vector Rv̂:

e⊥(p) = 〈Rv̂, e(p)〉 = v̂TRTe(p). (23)

From Eq. (18), the autocorrelation scalar functions of the
parallel and perpendicular displacements are, respectively

C‖(v) = E
[
e‖(p)eT‖(p + v)

]
=

E
[
v̂Te(p) eT(p + v)v̂

]
= v̂TC(v)v̂ (24)

C⊥(v) = E
[
e⊥(p)eT⊥(p + v)

]
= v̂TRTC(v)Rv̂. (25)

4.2. A Solution to the Autocorrelation Function

Given parallel and perpendicular autocorrelation scalar
functions C‖(v) and C⊥(v), we seek a matrix-valued au-
tocorrelation function C(v) that is consistent with Eq. (24)
and Eq. (25), respectively. The solution to such a problem
is not unique. Let us use the solution class:

C(v) = A(v)I−B(v)v̂v̂T, (26)

where A(v), B(v) are scalar functions and I is the 2 × 2
identity matrix. In the class defined by Eq. (26), parallel
and perpendicular displacements are uncorrelated. Indeed,
using (26),

E
[
e‖(p)eT⊥(p + v)

]
= E

[
v̂Te(p)eT(p + v)Rv̂

]
=

v̂TC(v)Rv̂ = v̂TA(v)Rv̂ − v̂TB(v)v̂v̂TRv̂ = 0,
(27)

where we have used Eq. (22) and the scalar-valued nature
of the functions A(v) and B(v).

To determine the required functions A, B, we substitute
Eq. (26) into Eqs. (24) and (25), yielding

C‖(v) = A(v)v̂Tv̂ −B(v)(v̂Tv̂)2 = A(v)−B(v) (28)

C⊥(v) = A(v)v̂TRTRv̂ −B(v)v̂TRTv̂v̂TRv̂ = A(v).
(29)

Here we used RTR = I and Eq. (22). Eqs. (26,28,29) yield

C(v) = C⊥(v)I−
[
C⊥(v)− C‖(v)

]
v̂v̂T . (30)

4.3. Consistency with Turbulence Correlation

Given Eqs. (10,15,17), the parallel and perpendicular
scalar autocorrelation functions must be set to satisfy

C‖(v) = b‖

(
r

fθD

)
, C⊥(v) = b⊥

(
r

fθD

)
. (31)

Thus, the desired autocorrelation function can be written as

C(v) = A(r)I−B(r)v̂v̂T (32)

using the positive functions

A(r) = b⊥

(
r

fθD

)
B(r) = b⊥

(
r

fθD

)
− b‖

(
r

fθD

)
.

(33)

In a 2D spatial image domain of size U ×U , the autocorre-
lation domain v has size 2U × 2U .

We show an example using the following parameters:
λ = 550nm, pixel size 4µm, U = 1024 pixels, Nikon
AF-S Nikkor lens, with f = 300mm and f# = 5.6,
at height h = 4m. Object distance is L = 2km and
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Figure 6: The 2× 2 matrix-valued C(v), based on parameters of
the example detailed in Sec. 4.3. In each sub-plot, the spatial di-
mensions of the v domain are 2048× 2048 pixels, corresponding
to an image of size 1024 × 1024. The top-right scale-bar corre-
sponds to Cxy, Cyx, having negative as well as positive values.
The bottom-right scale-bar corresponds to Cxx, Cyy , having non-
negative values.

C2
n = 3.6 · 10−13m−2/3. The AA variance and correla-

tion are then calculated using Eqs. (9-15). Figs. 6 and 7 plot
each element of the 2 × 2 matrix C(v), as a function of v.
Using the same fixed imaging parameters, this example is
further followed in this paper when creating Figs. 8,9,10,13,
as explained next.

5. Creating a Distortion Field
In this section, we derive a recipe for creating a random

distortion field e(p), whose auto-correlation is consistent
with C(v), given in Eqs. (32,33). Some of the expressions
here are matrix-valued generalizations of simple, textbook
relations of scalar-valued fields.

Let z(p) be a white noise vector field such that each ele-
ment in it is a 2× 1 vector and E[z(p)zT(p + v)] = Iδ(v).
A random vector field having an autocorrelation function
C(v) can be obtained by a convolution of z(p) with a de-
terministic matrix-valued kernel K(p):

e(p) =

∫
K(p− p′)z(p′)dp′. (34)

Here K(p) is a matrix-valued field: there is a 2 × 2 matrix
K(p) for each vector p. The goal is to find a kernel K(p)
such that the field e(p) has the desired autocorrelation func-
tion C(v), given in Eqs (32,33).
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Figure 7: A ×10 zoom-in on C(v) of Fig. 6.

The 2×2 matrix-valued autocorrelation function C(v) is
related to the 2×2 matrix-valued convolution kernel K(p),
through

C(v) =

∫
K(p)KT(p + v) dp. (35)

Deriving K(p) based on Eq. (35) is a deconvolution
problem. This deconvolution can be solved in the Fourier
domain. Let ω be a 2D spatial frequency vector. From (34),
the spatial Fourier transform of the vector field e(p) is the
vector field

ẽ(ω) =

∫
e(p)e−jω

Tpdp = K̃(ω)z̃(ω). (36)

On the other hand, the spatial Fourier transform of C(v) is
the matrix-valued spectral density function

C̃(ω) =

∫
C(v)e−jω

Tvdv = E
[
ẽ∗(ω)ẽT(ω)

]
, (37)

where ∗ denotes the complex conjugation. There is a 2× 2
matrix C̃(ω) for each ω. Substituting Eq. (36) into Eq. (37):

C̃(ω) = E
[
K̃∗(ω)z̃∗(ω)z̃T(ω)K̃T(ω)

]
= K̃∗(ω)E

[
z̃∗(ω)z̃T(ω)

]
K̃T(ω) = K̃∗(ω)K̃T(ω).

(38)

Eq. (38) uses the fact that the spectral density of any white
noise field is E [z̃∗(ω)z̃T(ω)] = I, ∀ω. Eq. (38) is thus the
spatial Fourier transform of (35).



Figure 8: The 2 × 2 matrix-valued K̃(ω), that corresponds to
the function C(v) shown in Figs. 6,7. It was calculated using
FFT, as described in Sec. 6. The plots here are a ×10 zoom-in on
the low-frequency domain. The top-right scale-bar corresponds to
K̃xy, K̃yx. The bottom-right scale-bar corresponds to K̃xx, K̃yy .

The autocorrelation function C(v) is real, symmetric
as a matrix, symmetric with respect to sign changes of its
argument v and its diagonal entries are positive definite
functions. As a result, its Fourier transform C̃(ω) is also
real, symmetric as a matrix, symmetric with respect to sign
changes of its argument ω, and its diagonal entries are posi-
tive functions. While there are many 2×2 matrices K̃ satis-
fying (38), it is natural to choose the symmetric square root
of C̃(ω), which enjoys the same properties. Given C̃(ω),
its matrix square root can be computed per ω using the for-
mula [34]:

K̃(ω) =
1

t(ω)

[
C̃(ω) + s(ω)I

]
. (39)

Here s(ω) =
√

det C̃(ω) and t(ω) =
√

trC̃(ω) + 2s(ω).
For example, Fig. 8 plots each element of the 2 × 2 ma-
trix K̃(ω), as a function of ω, in correspondence with the
function C(v) shown in Figs. 6,7.

To generate a random field e(p) with cross-spectral
density C̃(ω), it is not actually necessary to find K(p),
the inverse Fourier transform of K̃(ω). It suffices to do
the filtering in the Fourier domain, similarly to [50]. The
theoretical recipe is thus:
1 Calculate C(v) using Eqs (32,33).
2 Fourier transform C(v) to C̃(ω).
3 Calculate filter K̃(ω) using Eq.(39).
4 Sample a random Gaussian white noise field z(p).
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Figure 9: Part of a random distortion vector field e(p), derived
from the autocorrelation function shown in Figs. 6,7. This is a sim-
ulated turbulence-induced distortion. For clarity, this plot zooms-
in on a 80× 80 pixel sub-domain of the image

5 Fourier transform z(p) to z̃(ω).
6 Use K̃(ω) in a simple multiplication per ω, as written in
Eq. (36), to obtain ẽ(ω).
7 Inverse Fourier transform ẽ(ω), to obtain the distortion
field e(p), of variance 1.
8 Amplify e(p) so its variance is consistent with Eq. (1).

For example, Fig. 9 plots a field e(p) created by this
recipe, in correspondence with the autocorrelation and ker-
nel functions shown in Figs. 6,7,8. The plot in Fig. 9 zooms
on a 80× 80 pixel sub-domain of the image, for clarity.

6. Practical Considerations
In practice, a computer does not perform a continuous

Fourier transform, but a discrete, fast Fourier transform
(FFT). This has several implications. In a square grid, the
spatial locations and frequencies are sampled. Using FFT
as in steps 2,5 above induces a multiplicative scale rela-
tive to a continuous-domain Fourier transform that is sam-
pled. This factor is compensated for: in step 7 the field is
amplified to have unit variance.

Moreover, FFT is cyclic: elements in one side of its input
affect the other side. This wrap-around can cause problems
in functions that do not spatially decay fast enough. As
seen in Fig 4, b⊥ may decay very slowly. Despite having
very low values at the periphery, wrap-around issues pro-
duce negative oscillations in the Fourier domain that render



Table 1: Parameters of our examples

Example C2
n

[
m−2/3

]
L [km] f [mm] f# h [m]

Fig. 10 3.6 · 10−13 2.0 300 5.6 4
Fig. 11 3.6 · 10−13 1.3 380 5.6 4
Fig. 12 3.6 · 10−13 2.0 200 3.2 20

the supposedly positive spectral density invalid. This can
be mitigated by extending the spatial domain, at a higher
computational cost. In practice, we feathered C(v) using a
Blackman window that spans the domain of v.

7. Using the Distortion Field
A source turbulence-free image is graw(p), where p is

rectified on a regular grid. Due to turbulence, any pixel lo-
cation p is displaced to p + e(p), creating the set of values
on a nonuniform grid

gnonuniform(p + e(p)) = graw(p) . (40)

The eventual distorted image gdistorted(p) is rendered by in-
terpolating gnonuniform(p+e(p)) to the uniform pixel grid.
For example, Fig. 10[Top] represents an undistorted view,
graw(p). Since Fig. 10[Top] is in color, we first calculated
γ(q) for λ = 450, 550, 650nm. Practically, we saw that
γ(q) is insensitive to λ in visible light, thus a single random
distortion field applies to all color channels. Based on the
example parameters that lead to Figs. 6,7,8,9, we rendered
a distorted image, gdistorted(p), shown in Fig. 10[Bottom].

We show additional examples. They use most parameter
values as in the example detailed in Sec. 4.3. The parame-
ters that were changed are detailed in Table 1. Correspond-
ingly, the results are shown in Figs. 11 and 12. Specifi-
cally, in Fig. 11, the focal length and object range changed
to f = 380mm and L = 1.3km, respectively. The dis-
tortion variance in pixel units is nearly the same, but the
correlation-range doubles. Hence, distortions have lower
spatial frequencies, yet similar amplitude. The process was
then run on a new random white noise field z(p) in step 4.

8. Verification
It is possible to verify empirically that distortion statis-

tics are consistent with the theory. Let us render N distor-
tion fields, {ei(p)}Ni=1, each based on a different sampled
white noise field, in step 4 above. An empirical version of
Eqs. (24,25) is

Ĉ‖(v) =
1

N |Λ|

N∑
i=1

∑
p∈Λ

v̂Tei(p)eTi (p + v)v̂

Ĉ⊥(v) =
1

N |Λ|

N∑
i=1

∑
p∈Λ

v̂TRTei(p)eTi (p + v)Rv̂,

(41)

Figure 10: [Top] A raw source 1024× 1024 image, without ran-
dom distortion. [Bottom] The image after undergoing distortion
consistent with turbulence. Part of the distortion field is shown in
Fig. 9. This distortion was derived from the autocorrelation func-
tion shown in Figs. 6,7.

where Λ is a random subset of pixels.

Continuing with the example described in Figs. 6, 7, 8,
we renderedN = 1500 distortion fields, as the one in Fig. 9.
We used horizontal v vectors and |Λ| = 100. From Eqs.



Figure 11: [Top] A raw source 1024 × 1024 image, graw(p),
without random distortion. [Bottom] gdistorted(p), the image after
undergoing distortion consistent with turbulence. The parameters
are described in Sec. 4.3 and Table 1. Here 2D spatial correlations
of the distortion field have about twice the pixel-range, compared
to Fig. 10. Hence, the turbulence-distortion field is smoother here.

(10,16)

η =
θ

θD
=
|v|
fθD

. (42)

Using Eqs. (41,42), Ĉ‖(v), Ĉ⊥(v) are converted to b̂‖(η),

Figure 12: [Top] A raw source 1024 × 1024 image, graw(p).
Photo courtesy of [http://pixabay.com]. [Bottom] gdistorted(p),
the image after undergoing distortion consistent with turbulence.
The parameters are described in Sec. 4.3 and Table 1.

b̂⊥(η). Figure 13 compares the empirical b̂‖, b̂⊥ to the the-
oretical b‖, b⊥. From Fig. 13, generally, there is very good
consistency between the theoretical AA correlation and our
rendered fields. For high |v|, i.e. η, the empirical correla-
tion is a little smaller than the theoretical one. We believe
this is because of the FFT wrap-around, whose repercus-



Figure 13: Plot of the empirical b̂‖(η) and b̂⊥(η), using N =
1500 fields, |Λ| = 100 random pixels and setup parameters as
detailed in Sec. 4.3. The results are compared to the theoretical
correlations b‖(η) and b⊥(η).

sions are discussed in Sec. 6. A wrap-around has a higher
deterioration effect as a vector p + v is closer to the image
boundary, i.e. at large |v|.

9. Discussion of Generalizations

The recipe we give is by no means the only possible one.
For example, Fourier domain processing can be bypassed:
the kernel K(p) can be derived in Eq. (35) using other de-
convolution methods, and then be applied in the spatial do-
main (34). It should be beneficial to explore such variations.

This work focused on a particular turbulence-induced
image effect: distortion in a 2D image, that views a
scene via a stationary turbulent field. This approach may
be extended, to express other turbulence-induced image
effects:

• Turbulence creates image blur [9, 21, 23]. As distor-
tion, blur is a 2D operation on a 2D image. Similarly
to distortion, blur parameters form a vector, e.g. widths
of the blur kernel in two components. Moreover, the
turbulence-induced blur-parameter field is random, having
correlation between adjacent points. There are closed-form
physical models for the blur that can result from turbulence.
Hence, we believe that a similar recipe can be devised for
rendering random 2D blur fields that are consistent with
turbulence. The same hypothesis applies to turbulence-
induced scintillation.

• Turbulence is dynamic, and so are its image effects. The
2D distortion field is correlated both in 2D and in time. To
render videos, a physics-based spatiotemporal correlation

function should be incorporated.

• In some cases, the turbulence field is not spatially station-
ary. Specifically, oblique views in steep angles as in as-
tronomy pass through atmospheric layers having significant
spatial variations of C2

n. Extending the approach to such
cases is important. It may be aided by assumptions that are
often used in astronomy, based on a layered structure.
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Table of notations
A A coefficient function of the autocorrelation matrix
a Parameter of 2F1()
AA Angle of arrival
b AA correlation
b⊥ b component perpendicular to plane Π
b‖ b component parallel to plane Π

b̂⊥ Empirical b⊥
b̂‖ Empirical b‖
B A coefficient function of the autocorrelation matrix
β A coefficient that equals 0.5216
C Matrix valued autocorrelation function
C̃ Spatial Fourier transform of C
Cxx Correlation of the horizontal components of field e
Cxy Correlation of the horizontal and vertical compo-

nents of field e
Cyx Correlation of the vertical and horizontal compo-

nents of field e
Cyy Correlation of the vertical components of field e
c Parameter of 2F1()
C2n Turbulence structure constant
Cov The covariance operation
D Diameter of the camera lens.
d Parameter of 2F1()
e A random vector field
e⊥ Field component perpendicular to plane Π
e‖ Field component parallel to plane Π
ẽ Spatial Fourier transform of e
E Expectation
η Normalized inter-object view angle
f Focal length of the camera
2F1() Hypergeometric function
graw Source turbulence-free image
gdistorted Image distorted by turbulence
gnonuniform graw on nonuniform grid, created by turbulence
γ AA variance coefficient
Γ Gamma function
h Height above ground
H An integrated function to derive b⊥ and b‖
i Index of distortion field
I Identity matrix
j

√
−1

J0, J2 Bessel functions of the first kind
K Matrix valued kernel field
K̃ Spatial Fourier transform of K

K̃xx First row and first column component of K̃

K̃xy First row and second column component of K̃

K̃yx Second row and first column component of K̃

K̃yy Second row and second column component of K̃
κ Integration parameter
l0 Turbulence inner scale
L0 Turbulence outer scale
L Distance between the camera and the object



Continuation of table of notations
λ Light wavelength
Λ Random subset of pixels
Mη An integrated function to derive b⊥ and b‖
m Summation index in 2F1()
µ Parameter of Γ
N Number of distortion fields
o, o′ object points
o,o′ Unit vectors of lines of sight to o, o′, respectively
ω 2D spatial frequency vector
p Pixel location vector
Π A plane defined by o,o′

q Fresnel number
Q An integrated function to derive b⊥ and b‖
r The length |v|
R Rotation matrix
ρ Normalized outer scale
s Frequency domain scalar function
σ2
AA AA variance
t Frequency domain scalar function
T Transposition operation
θ Inter-object view angle
θD Angular size of the aperture, from the object’s point of

view
U Spatial image size
v Vector between pixels to which o,o′ are projected with-

out distortion
W Number of object points
(x, y) Cartesian coordinates
ξ Dimensionless parameter
z White noise vector field
ζ Parameter of 2F1()
z̃ Spatial Fourier transform of z




