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Systems in which the point spread function (PSF) is a rotating beam have increasing use in three-dimensional (3D)
microscopy and depth estimation. We analyze in several ways the 3D optical transfer function (OTF) of Gauss La-
guerre modes and rotating beams. This is based on analysis of 3D OTFs of general aperture functions. Consequently,
we suggest a criterion for depth resolution based on an effective cutoff of the axial frequency response. This criterion
can be used to optimize PSFs explicitly and directly, to maximize axial resolution. © 2012 Optical Society of
America
OCIS codes: 070.2580, 110.1220, 110.4850.

Optical volumetric microscopy is widely used in biology
and medicine to study cells and tissues. Microscopy
seeks increased spatial resolution. For volumetric ob-
jects, there is need for high depth (z) resolution, in
particular. There are many three-dimensional (3D)
microscopy methods [1]. Each method has advantages
and disadvantages. Common methods are based on op-
tical sectioning: a 3D data cube is acquired, and then
3D deconvolution recovers the object. This Letter is mo-
tivated by wide field optical sectioning. Here a set of
images is acquired, each at different focus setting. Rela-
tive to competing methods, advantages of this modality
are simplicity, speed, and functioning with or without
fluorescence or acoustic probes. However, its depth re-
solution has so far been inferior to competing methods.
This Letter extends the analysis of linear optical 3D trans-
fer, in the context of depth resolution. Such analysis
can yield systems having improved depth resolution
while maintaining the advantages of existing imaging
modalities.
Linear incoherent volumetric imaging is characterized

by a 3D intensity point spread function (PSF). Similarly,
the intensity across the 3D exit domain of an imaging
system is characterized. Linear systems theory (3D fre-
quencies) expresses the optical transfer. Axial resolution
depends on the system’s axial cutoff frequency. By max-
imizing this resolution, points at different axial coordi-
nates can be better discriminated.
Let x≡ �x; y� be the lateral position. The 3D PSF is

I�x; z�. Let f ≡ � fx; fy� and fz be the spatial frequency
variables corresponding to x and z, respectively. The lat-
eral spatial frequency domain can be defined by an aper-
ture plane, behind a lens. The aperture domain has area
units. We prefer to use spatial frequency units satisfying
f � x

λF, where F is the focal length of the lens and λ is the
wavelength. The aperture function is p̂�f� as illustrated
in Fig. 1. The Fourier transform of the intensity 3D
PSF is the 3D optical transfer function (OTF) of the
system. Following [2], in the paraxial approximation,
the 3D OTF is

Î�f; fz� �
ZZ

v
p̂�v� f ∕ 2�p̂��v− f ∕ 2�δ �λ�v · f�� fz�dv: (1)

Here v≡ �vx; vy� are integration variables, δ is the Dirac
delta function, and � denotes complex conjugation. To

simplify calculations, we exploit a property of δ functions
[3]. For a function h�vx� whose root is vx0,

δ �h�vx�� � δ�vx − vx0� ∕ jh0�vx0�j; (2)

where h0�vx� is the derivative of h�vx�. Therefore,

δ �λ�v · f� � fz� � �1 ∕ jλ fxj�δ �vx − � fz � λvy fy� ∕ λ fx�: (3)

By integrating over dvx, Eq. (1) becomes a one-
dimensional integral expression:
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dvy: (4)

The 3D OTF Î�f; fz� can also be derived directly from
the intensity 3D PSF of the system:

Î�f; fz� �
ZZZ

I�x; z� exp�−i2π�x · f � zfz��dxdz: (5)

High fz frequencies correspond to small axial details.
The higher the frequencies that the system passes, the
better the axial resolution. Characterizing the fz response
thus indicates limits of depth reconstruction. To extract
the frequency response along fz, we integrate the signal
energy in Eq. (4) or Eq. (5) over f:

E� fz� �
ZZ

f
jÎ�f; fz�j2df: (6)

Fig. 1. (Color online) Imaging system with an aperture func-
tion p̂ in the Fourier plane. z is the axial coordinate.
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Consider rotating beams [4–6] as PSFs. Then, lateral
cross sections taken at different axial locations differ
from each other only by a rigid rotation and scale (Fig. 2).
Formally, ∀fz1; z2g, ∃fs;Δφg such that

I�‖x‖;φ; z1� � I�‖x‖ ∕ s;φ�Δφ; z2�; (7)

where in polar coordinates x � �‖x‖;φ�. Here φ is the
azimuthal angle. Rotating PSFs [4] have been used in mi-
croscopy to estimate depth [5,7,8]. Paraxial rotating PSFs
can be easily expressed using the Gauss–Laguerre (GL)
basis. A GL function is an eigenmode of paraxial wave
propagation. In polar coordinates, f � �‖f‖;φ�. Let σ
be the standard deviation (STD) of a Gaussian in the spa-
tial frequency domain. Define ~f ≡ f ∕ σ, and ~f z ≡ fz ∕ σ as
the spatial frequencies scaled by the Gaussian width.
The Gaussian g�‖~f‖� � exp�−‖~f‖2 ∕ 2� is common to all
GL modes. Let Ljmj

�n−jmj� ∕ 2 be the generalized Laguerre poly-
nomials. The integers n, m satisfy n � fjmj; jmj � 2;
jmj � 4;…g. Similar to [4], define

Rn;m�‖~f‖� � ‖~f‖jmj
L
jmj
�n−jmj� ∕ 2�‖~f‖2�: (8)

Then, a GL basis function has the form

hfjn;miσ � un;m�f� � g�‖~f‖�Rn;m�‖~f‖�Φm�φ�; (9)

where Φm�φ� � exp�imφ�. Any aperture function p̂ is a
linear combination of GL basis functions:

p̂�f� �
X
n;m

αn;mhfjn;miσ; (10)

where αn;m is the coefficient of mode jn;mi. We use σ as
a parameter for the beams.
Certain superpositions of GL modes [4] yield rotating

PSFs. This occurs when αn;m � 0, other than for modes j
satisfying nj�1−nj

mj�1−mj
� const. Figure 3 shows slices of Î�f; fz�

corresponding to a rotating PSF (denoted Beam 1). This
is a superposition [5] where α1;1 � α5;3 � α9;5 � α13;7 �
α17;9 � 1 and αn;m � 0 otherwise.

To fairly compare different 3D PSFs, we normalize
them in two ways. First, no matter what the superposi-
tion is, the total energy in any lateral cross section is

ZZ
jp̂�f�j2df � 1: (11)

Thus, different aperture functions do not induce different
optical energies in the 3D PSF. All 3D PSFs should have
the same effective width in the aperture plane. We ensure
that by using a second normalization. For the aperture
intensity distribution jp̂�f�j2, the effective width of mode
j0; 0i is σ ∕

���
2

p
. In higher-order modes, the width of jp̂�f�j2

differs if σ is constant. Therefore, σ must change for
superpositions that contain significant energy in high-
order modes. The covariance matrix of p̂�f� is

Σ �
ZZ

�f − f̄�T �f − f̄�jp̂�f�j2df: (12)

Here T denotes transposition and f̄ � ∬ fjp̂�f�j2df. For
symmetric PSFs, f̄ � 0. Let the eigenvalues of Σ be
ν1 < ν2. The effective width of jp̂�f�j2 is

�����
ν2

p
. It is set

to be the same for all beams, by adapting σ.
We now study the highest axial frequency that a system

passes (an effective cutoff). Consider frequency fz effec-
tively passed if E�fz� is larger than a threshold τ. In this
Letter, we chose τ � 0.05. The effective frequency cutoff
can be a criterion for beam optimization. Let us seek
coefficients that yield the widest fz response. Let A �
fαn;mg be the set of the coefficients of a superposition
of GL modes. Therefore,

Â � argmaxAfcutoffE�fz�g (13)

is a set defining an optimized 3D PSF. To demonstrate
this, we perform optimization. Starting from initial super-
position of several modes, the coefficients αn;m of these
modes vary [9] to optimize Eq. (13) locally in coefficient
space. We allow αn;m to be complex. This yields better 3D
PSFs than using real-valued coefficients, thanks to in-
creased degrees of freedom.

Numerical optimization involves a large number of
iterations. To speed them, Eq. (5) is calculated using fast
Fourier transform (FFT) over a discrete grid. Using FFT
involves some numerical artifacts and singularity issues.
Nevertheless, when FFT is properly done, we receive re-
sults consistent with Eq. (4) for most spatial frequencies.
Once optimization converged, the 3D OTF was finally
calculated using the more accurate Eq. (4).

Fig. 2. (Color online) (top) Rotating beam. The beam propa-
gates along the axial direction while (bottom) its lateral cross
sections change only by scale and rigid rotation.
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Fig. 3. (Color online) 3D OTF [log jÎ�f; f z�j] of (left) Beam 1
and (right) optimized Beam 1. The energy for high f z is signifi-
cantly higher after the optimization.
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Figures 4(a) and 4(c) show intensity distributions of
two rotating PSFs: one initialized by Beam 1, the other
initialized by α0;0 � α4;2 � α8;4 � α12;6 � α16;8 � 1, and
αn;m � 0 otherwise (Beam 2). Figures 4(b) and 4(d) show
the intensity distributions after optimizing the respective
nonzero coefficients of each beam, under the said
normalizations.
To compute different beams, we use as reference a

Gaussian aperture for which the intensity STD is
σ0 � �����

ν2
p jGaussian � 1 ∕ �6

���
2

p
λ�. This sets a constant scale

for fz across all apertures. Define f normz � fz ∕ σ0.
Figure 5 shows simulated comparisons of standard

apertures (clear and Gaussian) and apertures of some ro-
tating beams. The plots were calculated using Eq. (4). A
clear aperture has a sharp fz cutoff. This cutoff is induced
by the aperture’s sharp cutoff in ‖~f‖, via the missing

cone of frequencies [10]. The other apertures are not trun-
cated yet have the same effective aperture width.
A system having a rotating PSF can be implemented by

amask that encodes p̂ in the back focal (Fourier) plane of
an objective lens (Fig. 1) [4,5]. This mask, also called
aperture function, can be decomposed as a superposition
of GL basis functions. Beam 1 can also be approximated
in a practical device using a phase-modulated clear aper-
ture [7]. Reference [10] found this approximate 3D PSF to
be prone to the same missing cone limitations as a stan-
dard aperture’s 3D PSF. The rotating PSFs in Fig. 5 are
not approximate (in the paraxial regime) and are based
on nontruncated apertures. In low fz, the response of
Beam 1 is lower, but it overtakes the clear aperture at
higher fz. According to the effective cutoff criterion,
Beam 1 has better axial resolution than a clear aperture
but worse than a Gaussian that has the same effective
lateral width. 3D OTF is indicative to volumetric imaging,
where the object is dense and thick in 3D, requiring 3D
deconvolution for recovery. In such complex objects,
Beam 1 does not appear to be advantageous over a
Gaussian having the same energy and scale normaliza-
tions, under linear systems analysis.
Nevertheless, Fig. 5 shows that rotating PSFs can have

a significantly higher fz cutoff than Beam 1 and Gaussian
beams. This indicates significant potential for enhance-
ment of axial resolution. These enhanced PSFs are auto-
matically designed by optimization, which explicitly
seeks to maximize the fz cutoff. This framework can
be extended to other 3D PSFs (other apertures), not only

rotating beams. Specifically, practical phase-only trun-
cated masks can be directly optimized [11] to increase
the fz cutoff. Other resolution measures can be used
for optimizing 3D PSFs. In addition, a more practical ana-
lysis can be executed considering finite apertures and
aberrations.
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Fig. 4. Intensity lateral cross sections (contrast stretched for
display) of Beam 1 (a) before and (b) after optimization and
Beam 2 (c) before and (d) after optimization.

Fig. 5. (Color online) log �E�f normz �� for clear and Gaussian
apertures, Beam 1, and Beam 1 and Beam 2 post optimization.
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