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Abstract
Pointwise image formation models appear in a variety

of computational vision and photography problems. Prior
studies aim to recover visibility or reflectance under the ef-
fects of specular or indirect reflections, additive scattering,
radiance attenuation in haze and flash, etc. This work con-
siders bounds to recovery from pointwise degradation. The
analysis uses a physical model for the acquired signal and
noise, and also accounts for potential post-acquisition noise
filtering. Linear-systems analysis yields an effective cutoff-
frequency, which is induced by noise, despite having no op-
tical blur in the imaging model. We apply this analysis to
hazy images. The result is a tool that assesses the abil-
ity to recover (within a desirable success rate) an object
or feature having a certain size, distance from the camera,
and radiance difference from its nearby background, per at-
tenuation coefficient of the medium. The bounds rely on
the camera specifications. The theory considers the point-
wise degradation that exists in the scene during acquisition,
which fundamentally limits recovery, even if the parameters
of an algorithm are perfectly set.

1. Introduction
Many computational vision and photography problems

deal with degradation effects that are essentially pointwise.
These include specularities over a diffuse reflection [8, 21];
attenuation in flash photography [23]; attenuation and veil-
ing scatter (airlight) in haze [9, 14, 26, 30], dirty win-
dows [10] and other scattering media; semireflections when
looking through a window [8], and more. Being pointwise
processes, optical blur effects are insignificant in these con-
texts. An expanding array of methods has been devised to
handle such problems. However, what is the recovery limit?
Are there object features that cannot be effectively recov-
ered, despite the best efforts made by the recovery method?
Can we quantitatively assess the recoverability of an object
of a certain size and contrast? If some objects are not re-
covered, is there a point in trying to develop a new method
to salvage them, or is their loss fundamental?

This paper approaches these questions. It describes a
quantitative bound for recovering objects and features, un-
der pointwise degradation. We seek a bound that depends
on basic object and background characteristics, camera pa-
rameters, and the physical degradation model. Then, we use

xx

yy

0.32

6.5
u

0.50.1
uu

0.50.1

Input 
SNR

Figure 1. A raw noisy image. The signal is I = a+s cos[2πuxx].
The spatial frequency is ux ∝ x. Here a is bias and s is the am-
plitude. White added noise increases with y. The result is then
contrast-stretched. At low frequencies (small x) the pattern is vis-
ible even in very low input SNR. Beyond the marked line, on the
upper-right corner it becomes nearly impossible to reliably distin-
guish the signal details under the noise.

this theory to analyze resolution and range limits of dehaz-
ing. We seek bounds that do not depend on the algorithm,
e.g., whether airlight or distances are derived by polariza-
tion or an auxiliary map. In other words, optimal operations
can achieve a bound, but a suboptimal algorithm or inaccu-
rate model parameters would achieve worse performance.

Noise limits the recovery. Digital denoising enhances the
results [12, 23, 25], but even then, there is a limit. Some
works derived recovery-induced amplifications of white
noise, concluding that recovery is limited when a signal
matches the noise intensity [25, 31]. However, limits based
directly on white noise ignore the effective noise suppres-
sion possible if the feature of interest is large enough. Con-
sider Fig. 1. Here the input noise standard deviation (STD)
is independent of the spatial frequency u: the latter linearly
changes with x while the former linearly increases with y.
The large features on the left are visible even in very low in-
put signal to noise ratio (SNR). This may be due to implicit
smoothing by the viewer’s neural system [5], which sup-
presses noise to reveal the signal. However, on the upper-
right corner of Fig. 1, it is nearly impossible to reliably dis-
tinguish the signal details under the noise. There appears to
be a cutoff, around the marked line in Fig. 1, beyond which
image signal details are effectively lost. Small features of
the signal are visible when the input SNR is high, thus the
image is not contrast-limited [13], but noise-limited.

Noise limits were studied [13] in systems suffering from



optical blur.1 It attenuates the signal’s high frequencies be-
low a threshold set by the noise STD. In pointwise degrada-
tions, lack of optical blur implies no such attenuation, hence
apparently no effective limits to the resolution. Such anal-
ysis cannot account for loss of detail as shown in Fig. 1
and is unsuitable to the degradations dealt with here. In
Ref. [32] a cutoff stemmed solely from the typical falloff
of signal energy at high frequencies. This cannot explain
the effect in Fig. 1, where the input SNR is independent of
the frequency u. Refs. [13, 32] do not account for the SNR
increase possible by smoothing (implicit by the viewer or
explicit by image processing). This leads to underestima-
tion of recoverability. In contrast, this paper derives bounds
in problems that involve no optical blur, yet considering the
enhancement by potential post-acquisition filtering.

Beyond insights on basic limits, our results can help as-
sess the potential of recovery of typical objects in haze by
current cameras. They may also help decide on the required
specifications for systems to be proposed.

2. Theoretical Background
2.1. Pointwise Degradation and Range Dependency

Let lobject(x) be the image irradiance of an object ac-
quired at pixel x = (x, y) in ideal, undisturbed conditions.
The setup, however, may impose pointwise degradation ef-
fects. Thus, the measured image is in the form

I(x) = lobject(x)t(x) + a(x) + n(x) , (1)

where t(x) and a(x) account for deterministic multiplica-
tive and additive effects, respectively. In addition, Eq. (1)
includes unbiased uncorrelated random noise n(x). Note
that a is non-negative. We seek recovery of lobject(x). This
model fits a wide range of computer vision and computa-
tional photography problems:
• In analysis of reflections, lobject is the diffuse component
and a is the specular component (while t = 1) [21].
• A similar distinction exists in the mixture of direct and
indirect illumination components [22, 28].
• In semireflections, lobject is the scene behind a window of
transmittance t, and a is the semireflected layer [8].
• In imaging through a dirty window, t is the spatially vary-
ing transmittance of the dirty window, while a is the spa-
tially varying scatter by the dirt [10].
• A bright light source near the field of view can contribute
an additive component a(x) of flare [15].
• Fixed pattern noise is a deterministic effect [3, 11] of
pointwise gain and bias variations, which is modeled by
t(x) and a(x) in Eq. (1).

The degradation effects may be distance-dependent. In
haze, t is the transmittance of the atmosphere [9, 14, 26, 30].
Its dependency on the object distance z(x) is given by

1In these contexts, the criteria used are termed minimum-resolvable
contrast (MRC) or temperature (MRT) [13].

t(x) = e−βz(x) . (2)
Here, β ∈ (0,∞) is the atmospheric attenuation coefficient.
The additive component a here is the airlight [26], given by

a(x) = a∞[1− t(x)] , (3)

where a∞ is the value of airlight at a non-occluded horizon.
Airlight increases with z and dominates the acquired im-
age irradiance2 at long range (see Fig. 2). There are other
distance-dependent pointwise models, including synthetic
aperture lighting [17], which may include scatter, and flash
photography [1] (falloff of object irradiance).

In all the above cases (reflections, flare etc.), a(x) has
two degrading consequences. First, this deterministic com-
ponent degrades the contrast, and may confuse object ap-
pearance. However, such deterministic disturbances are
rather easy to invert by digital subtraction of an estimate
of a, as done by all the above mentioned studies. A second
degradation consequence is much more difficult to counter:
a increases the random noise, as detailed next.

The Noise

Photon noise is a fundamental quantum-mechanical effect.
It cannot be overcome, regardless of the camera quality. Ac-
counting for this noise component [11, 33], overall the noise
variance3 in the raw image data [29] is

σ2 ≈ AI(x) + B, (4)

where A,B > 0 and I is the image intensity given
in Eq. (1), excluding n(x). The term B encom-
passes the variance of the signal-independent components
of the gray-level noise. As detailed in [11, 27, 29],
B = ρ2

read + ρ2
digit + DT . Here, ρread is the amplifier

readout noise STD, ρdigit is the noise STD of a uniform
quantizer, D is the detector dark current and T is the expo-
sure time. Our consequent analysis can be easily applied to
other noise models.

Here we understand the second implication of a. Be-
ing non-negative, a(x) increases I , sometimes significantly.
Thus, it increases the variance of the random noise (Eq. 4).
This affects all the above mentioned computational photog-
raphy problems, including imaging in haze.

The noise is spatially white. It may be suppressed by
smoothing. Aggressive smoothing suppresses white noise
more strongly, but leads to increased blur of objects. This
tradeoff of digital blur and output noise yields to a useful
conversion, which we exploit: performance limits due to
input noise can be converted to spatial resolution limits.

2Contrast is mainly degraded by airlight, rather than blur [31].
3The linear relation in Eq. (4) does not hold [18, 19] for cameras having

amplifier nonlinearities. However, our fundamental analysis is targeted at
recovery that uses high quality cameras. In these cameras, Eq. (4) is typi-
cally followed. In low intensities [2], cameras sometime exhibit deviations
from Eq. (4). This deviation is negligible in well exposed images. A cali-
bration we have done for a Nikon D100 is consistent with Eq. (4).



2.2. System Resolution

Let us observe an object of transversal length M at dis-
tance z. The camera has focal length f and pixel-pitch p.
Then, the image of the object stretches for m pixels, where

m = Mf/(zp) . (5)

A digital image has a maximum discrete-space fre-
quency of 0.5 [1/pixels]. In the discrete-time Fourier-
transform (DTFT) domain, this frequency is reached by
a single-pixel object in the image-domain. This is the
ultimate resolution of the system (one image pixel, and
maximum frequency of 0.5). On the other hand, if im-
age features are effectively limited to a discrete cutoff fre-
quency |ucutoff | ≤ 0.5 [1/pixels], then their equivalent ef-
fective lower limit size is

m ≈ 1/(2ucutoff) (6)

pixels. Eq. (6) degenerates to m = 1 pixel in the upper
bound of ucutoff . Eq. (6) enables analysis of system reso-
lution in the Fourier domain. According to Eqs. (5,6), once
ucutoff is determined, an object at distance z is within the
effective resolution of the system if its length is at least

M(z) = zp/(2fucutoff) [meters] . (7)

If the CCD resolution is designed to match the lens’ opti-
cal resolution, and there is no additional blurring effect, the
expression in Eq. (7) degenerates to Eq. (5). This yields the
geometric bound for a minimum visible object size

Mgeometry = mzp/f . (8)

3. Noise-Limited Resolution
Without noise, even small intensity changes over a back-

ground could be stretched to reveal objects and details.
Figs. 2a,c demonstrate piecewise contrast-stretch on a syn-
thetic utopian noise-free hazy image. Even in parts that ap-
pear blank in Fig. 2a, visibility is retrieved in Fig. 2c. These
parts correspond to more distant scene regions, where the
accumulated airlight is higher. Yet, actions such as contrast
stretching affect both the signal and the noise. Noise fol-
lowing the model in Eq. (4) is introduced in Fig. 2b. Now,
objects are lost in the parts corresponding to distant regions,
despite regional contrast stretch in Fig. 2d. Noise reduction
operations affect the signal amplitude. The effect of this op-
eration varies as a function of the signal’s spatial frequency.

We note that empirical work had been done about human
performance in four specific vision tasks (e.g. object detec-
tion and recognition) under noise, culminating in Johnson
tables and NIIRS image ratings [3, 13, 16]. These tasks
were associated [13, 16] with the number of resolvable fea-
tures in an object. This number directly corresponds to the
highest spatial frequency in an image of the object. Thus,

aa bb cc dd

[ ]z km[ ]z km

Figure 2. (a) A noise-free hazy image, simulated by linearly
changing z ∈ [1, 30]km, β = 0.2km−1. Airlight acts as local
bias. (b) A slightly noisy version. (c) Regional contrast stretching
of (a) reveals the objects and details. (d) Regional contrast stretch-
ing of (b) does not recover small details at large z, over noise.

frequency-domain analysis may partially explain and gener-
alize some aspects of these empirical criteria. More impor-
tantly, however, is that our linear-systems analysis is gen-
eral, and thus applies to computer vision (not human) sys-
tems, in contrast to the Johnson tables and NIIRS ratings.

3.1. How Much Would Filtering Help?
There are numerous denoising methods. As a basic

benchmark, we focus the analysis on linear filtering. The
main reason is that linear-systems are the basis for fre-
quency domain analysis, and thus the notion of cutoff fre-
quencies. Moreover, this enables analytic closed-form for-
mulas for bounds, which are intuitive. Extension to nonlin-
ear operations is discussed in Sec. 6.

Let u = (u, v) be a spatial frequency in units of [1/pix-
els], where u, v ∈ [−0.5, 0.5]. Consider an image signal

s(x) = S(u) cos 2πux . (9)

It is corrupted by white additive noise, whose input STD
is σ (Eq. 4). Note that the image in Eq. (9) is composed
of a single discrete spatial frequency u = (u, 0) and its
conjugate (−u, 0). The SNR of the raw image is defined as

Rinput(u) = |S(u)|/σ . (10)

We study the signal at a specific spatial frequency. This
indicates the potential for recovering object-features that
correspond to a specific size (Eq. 6). Eventually, we seek
an effective cutoff frequency (resolution) of the overall sys-
tem, accounting for the pointwise degradations, noise and
the potential smoothing induced by linear post-acquisition
processing. In contrast to the signal, the noise is not treated
at different frequencies. The reason is that in the input,
noise is white, irrespective of the feature-size, as illustrated
in Fig. 1, and seen in most natural images (as in Fig. 2).

To suppress white noise, consider a flat averaging filter
hW , having a support of W × W pixels.4 As we prove in

4In principle, better results can be obtained by more sophisticated dig-
ital low-pass filters, which may be designed by an array of engineering
methods. However, the flat filter we use leads to closed-form expressions,
which are useful both for obtaining insights and for a baseline assessment.
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Figure 3. The SNR improvement C, as a function of u and W .
The curve of Wmax(u) is plotted on top. As u increases, windows
are limited to smaller sizes. This limits the ability to suppress noise
while maintaining the signal.

the Appendix, applying hW on s(x) amplifies the SNR by

C(u) ≡ Rproc(u)
Rinput(u)

=
sin(πWu)
sin(πu)

, (11)

where Rproc(u) is the SNR of the processed image. Fig. 3
illustrates C(u) for a range of W . The window size Wmax

that maximizes the improvement of SNR at u satisfies
∂C(u)
∂W

= 0 ⇒ Wmax = 1/(2u) . (12)

Fig. 3 plots Wmax. The maximal SNR amplification
Cmax(u) that can be achieved by spatial averaging is thus

Cmax(u) ≡ CWmax(u) = 1/ sin(πu) . (13)

Fig. 4 demonstrates the use of a window of length Wmax

on the image of Fig. 1. Here, Wmax adapts spatially to u(x).
Across all frequencies, the signal pattern is better seen in
Fig. 4 than in Fig. 1. However, as u increases, the pattern
can be observed reliably only at higher values of Rinput (at
smaller y), and is effectively lost at low Rinput. This is
consistent with Eq. (13): a smaller SNR improvement can
be achieved at high u, thus requiring a higher input SNR.

3.2. The Cutoff Frequency

3.2.1 Success in a Confidence Interval

Sec. 3.1 showed that post-acquisition filtering may enhance
the SNR to Rproc. Now, the question is which value of
Rproc is sufficient? The higher Rproc(u) is, the more con-
fidence there is in the recovery of u. The randomness of
noise imposes randomness in the success of recovering u
in a single incident. Over a large ensemble, the success
rate increases with Rproc(u). Following basic probabilistic
analysis [6] of confidence intervals, for a minimum success
rate ρ, Rproc(u) should be at least Routput

min , where

Routput
min =

√
2 erf−1(ρ + 1) (14)

and erf is the error function [6]. Eq. (14) applies to a
Gaussian distribution5 of the output noise nproc. Hence,

5This distribution is reasonable due to averaging by hW , and also since
the number of photons (creating photon noise) per pixel is typically large.
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Figure 4. Filtering the image in Fig. 1 with window size Wmax(u)
improves visibility. Cutoff lines are derived using Eqs. (17,18).
Below the line of ρ = 70%, the pattern is clearly seen. Above
the upper line, ρ < 40%, and noise dominates. The dashed curve
corresponds to the curve plotted in Fig. 1, having ρ = 50%.

Routput
min is the minimal acceptable level of the output SNR,

for achieving the desired success rate.

3.2.2 Recovery within a Bound
If the raw image has a high SNR, there is no need to smooth
the image: objects at all sizes are reasonably seen despite
the noise. Then, smoothing may be counter-productive, due
to the consequent detail loss. In this case, without filtering

Rinput(u) ≥ Routput
min . (15)

In moderate SNR, gentle filtering with W < Wmax may
suffice to bring the output SNR Rproc to the acceptable level
Routput

min . However, at the limit of recovery, the signal in u is
so low relative to the noise, that Wmax(u) should be used.
There is no point in trying to use a kernel wider than Wmax,
since it would yield a lower C(u) than a Wmax-sized kernel
(see Eq. 12), while blurring excessively. Hence, to achieve
recovery within the required success rate, we hope to have

Cmax(u)Rinput(u) ≥ Routput
min . (16)

From Eqs. (13,14,16), the recovery rate ρ is achieved if

Rinput ≥ sin(πu)Routput
min . (17)

Equation (17) is an important performance bound. It dic-
tates a minimum input SNR, in order to recover a signal
component having spatial frequency u, at the desired suc-
cess rate. If Rinput < sin(πu)Routput

min , the SNR in the orig-
inal image is too low and cannot be increased to the desired
level Routput

min , no matter what filter size we use. This is a
recovery limit, posed by noise.

For given values of Rinput and Routput
min , the lower bound

in Eq. (17) is met at a cutoff frequency

ucutoff = [arcsin(Rinput/Routput
min )]/π . (18)

It is plotted in Fig. 5a. Note in this plot that when Eq. (15)
is satisfied, there is no cutoff.
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Figure 5. (a) The cutoff frequency as a function of Rinput, for different values of Routput
min . A better input SNR yields a better resolution at

the final image. When Rinput < Routput
min , the image starts to lose reliability. (b,c) Bounds for object and background having Ẽ = 25%.

(b) As z increases, ucutoff decreases and (c) the minimal discernible object size increases. Plotted for D100 at ISO800 and ρ ≈ 95%.

Suppose for a moment that Rinput is independent of u.
The sine function is monotonically increasing. Thus, if
ucutoff < 0.5, then considering Eq. (17),

∀u > ucutoff , Rinput < sin(πu)Routput
min . (19)

Statement (19) is strengthened by the fact that in natural im-
ages, Rinput(u) tends to fall off with u (most of the signal’s
energy is in low frequencies). Therefore, ∀u > ucutoff we
do not have the minimum desired image quality.

The cutoff in Eq. (18) is plotted in Fig. 4, for a few val-
ues of ρ. Interestingly, the analytical plots correspond to
subjective impression about visibility. Below the cutoff line
for ρ ≈ 70%, the pattern is clearly seen. Above the upper
cutoff line, where ρ ≈ 40%, noise dominates.

The cutoff frequency sets the resolution limit to images
with additive white noise, since ucutoff can be used to de-
termine the object size of the least-resolved objects, using
Eq. (7). This spatial resolution limit exists, although the
degradation model in the raw data I(x) is pointwise, and
no blur affects the raw image formation.

3.3. Defining the Signal
Typically, there is interest to distinguish objects, e.g.,

cars, over a nearby background, such as a field, or distin-
guish finer details e.g., digits over a license plate. The abil-
ity to distinguish an object/detail depends on its spatial size,
the radiance difference relative to the background and the
amount of noise. Let the image components lobject(u) and
lback(u) correspond to the object and background, in ideal,
undisturbed conditions. Due to Eqs. (1,2), the difference in
their image values is [lobject(u) − lback(u)]t. These com-
ponents depend on u, since an object can be described in
different scales: Rough, large scale structures correspond to
a low u, while fine-scale details correspond to a high u.

We use the goal of object-vs-background distinction in
order to define the signal of interest. In Sec. 3.1 and App. A
the signal S(u) was the amplitude of a cosine, and random
noise was added to that signal. Note that S(u) is half the
difference between the maximum and minimum values of
that cosine. Thus, for consistency, define the signal as

S = 1
2 [lobject(u)− lback(u)]t , (20)

in the problem of differentiating an object over a back-
ground. What about the image component a(x)? Re-
call from Sec. 2.1, that a(x) is a deterministic compo-
nent (though it generally varies spatially) and can thus be
subtracted from I , either by contrast stretch or by esti-
mation [8, 9, 21, 22, 26, 30]. By itself, this removable
non-random component does not decrease the object-vs.-
background difference. However (see Sec. 2.1), a increases
the photon noise, thus effecting the image SNR.

4. Limitations in Haze
In this section we apply the analysis of Sec. 3 to a spe-

cific type of degradation: haze in images.

4.1. SNR in Raw Hazy Images
The noise variance σ2 is derived in Eq. (4), simply based

on the total image intensity I . Using the midway intensity
between lobject and lback, the mean of the noise variance
over the object and its immediate background is

σ2(b) = B + A
{

1
2

(
lobject + lback

)
t(b) + a∞[1− t(b)]

}
,

(21)
where b = βz, based on Eqs. (1-4). In this way, the random
noise induced by airlight is incorporated. The signal here is
defined in Eq. (20). The SNR Rinput of a raw hazy image is
obtained by using Eq. (20) and σ from Eq. (21) in Eq. (10).

We now introduce some variables that ease the assess-
ment. The saturation graylevel is V = 2B − 1, where B
is the number of bits per pixel. Define the object saliency
(without disturbances) as Ẽ =

∣∣lobject − lback
∣∣ /V . For ex-

ample, Ẽ = 1 for a bright white object (which exploits the
full dynamic range) on a black background, or vice versa.
Analogously, l̃ = (lobject+lback)/(2V ) is the mid-radiance
between the object and background, normalized by the cam-
era’s dynamic range. The same normalization is applied to
the horizon airlight: ã∞ = a∞/V . Using these definitions
in Eqs. (1-4,10) yields the input SNR as a function of b

Rinput(b) =
e−bẼV

2
√

B + AV {l̃e−b + ã∞[1− e−b]}
. (22)

In Eqs. (4,22), the parameters A,B, V are scene inde-
pendent. They depend on the specific camera model and



operation mode. They can easily be calibrated or extracted
from the camera’s specifications [27]. In the following, we
plot our results for a Nikon D100, whose respective param-
eters were calibrated in a couple of ISO settings.6

The parameters Ẽ, l̃ and ã∞ are scene dependent. For
practical assessments, assume that in properly exposed im-
ages, l̃ ≈ 0.5 (nearby objects are at the middle of the cam-
era’s dynamic range) and ã∞ ≈ 1. In practice, variations
around these values of l̃ and ã are not critical. Neverthe-
less, Ẽ is important, since Rinput is proportional to it. The
value of Ẽ is the main input by a user for assessing object
visibility in haze. For instance, if a nearby car over a street
occupies Ẽ = 20% of the dynamic range, this has prime
effect on its distinction in the presence of attenuation (at a
distance) and noise. We measured typical values for Ẽ in
well exposed outdoor images we took. Results ranged be-
tween 5%−50%. For example, houses in the background of
trees had Ẽ ≈ 10%. This is consistent with daylight images
in the Columbia WILD database [20]. Thus, as an example,
we set Ẽ = 25% in the following plots.

There is a critical optical depth bcritical, up to which no
cutoff frequency exists. This optical depth can be found by
solving a quadratic equation based on Eq. (22),

Rinput(bcritical) = Routput
min . (23)

At b < bcritical, Eq. (17) is satisfied ∀u. At b > bcritical,
some frequencies start to become unrecoverable.

4.2. Resolution Cutoff in Haze

We want to assess the limit that can be achieved, even if
denoising by an optimal window size is employed implicitly
or explicitly. Plugging Rinput(b) from Eq. (22) into Eq. (18)
yields ucutoff(βz) = arcsin

[
Rinput(βz)/Routput

min

]
/π.

This cutoff is plotted in Fig. 5b, using Ẽ = 25%, cal-
ibration data of Nikon D100 at two ISO settings, and
Routput

min = 2 in Eq. (22). The value of ucutoff decreases
with βz. Moreover, the two ISO settings yield a significant
difference in the visible distances.

Using ucutoff(βz) in Eq. (7) with Rinput(βz) from
Eq. (22) yields the least resolved object length in haze

Mhaze(β, z) =
πzp

2f arcsin
[
Rinput(βz)/Routput

min

] , (24)

Eqs. (22,24) depend on the (scene independent) system pa-
rameters {p, f,A, B, V }. They also depend on the scene’s
z, β and Ẽ. Fig. 5c plots Mhaze for different parameter val-
ues. Note that Mhaze = Mgeometry if βz < bcritical. At
larger z or β, there is an abrupt increase of Mhaze.

6Here V = 214 − 1. For ISO 200, we got [A, B] = [0.9, 210]. For
ISO 800, we got [A, B] = [10, 2116].

f=300[mm]f=300[mm] aa f=90[mm]f=90[mm] bb

Figure 6. Experiment in haze. The houses in a distant village are
clearly seen using f = 300mm. They are not distinguishable with
f = 90mm. This apparent resolution cutoff is caused by noise and
the lack of pixels needed for effective implicit denoising.

5. Experimental Evidence
Fundamental analysis of bounds is essentially analytical.

Nevertheless, it is useful to observe empirical evidence to
theoretical conclusions. Fig. 6a shows an image we ac-
quired using a Nikon7 D100 and f = 300mm, and then
contrast-stretched to partially overcome the effect of haze.
A regional contrast stretch in a window reveals details of
a village at z = 18km, including distinguishable houses
(M ≈ 10m) and a narrow tower. Thus, these object features
survived any optical blur that may have been caused by the
lens and atmospheric multiple scattering. This is important,
since that village was deep within the multiple-scattering
range, at b = 3. This value was obtained by processing po-
larimetric images using the method of Ref. [26]. Measure-
ments8 used in Eq. (24) yield Mhaze ≈ [3m 4m 8m] corre-
sponding to the RGB channels. This is consistent with the
distinct visibility of the individual houses.

Just afterwards, the same camera and zoom lens
(f# = 8 in both cases) acquired Fig. 6b. Here, f = 90mm
(image crop was applied). Now, the houses cannot be
distinguished. Blaming this on atmospheric blur (multi-
ple scattering) is overruled, since these houses were dis-
tinguishable in Fig. 6a. Blaming this on pixelization is
also overruled, since in these settings (with f = 90mm)
Mgeometry = 1.6m, i.e, much smaller9 than the buildings’
M ≈ 10m. We believe the reason for this loss of detail is
noise: while the raw σ is the same in both Figs. 6a, 6b (same
ISO settings), there are much less pixels in Fig. 6b to im-
plicitly average it out, per object. Indeed, Eq. (24) yields in
these settings Mhaze ≈ [16m 18m 39m] in the RGB chan-
nels.

In addition, Fig. 7 shows a scene extracted from the
WILD database [20]. On a clear day, visibility exists at

7Accounting for 2D subsampling by the CCD’s Bayer mosaic, the ef-
fective pixel pitch in the respective RGB channels is p = [2

√
2 2]·7.8µm.

8We measured I directly from the image and then used it to estimate σ
using Eq. (4). We measured lback, lobject on houses and trees that were
located in proximity to the camera at the same time. We set ρ = 70%.

9In offline experiments in clear days the houses were distinguishable.
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Figure 7. [Top] Clear day scene. [Middle] Small details seen on
a clear day at z ≈ 2km but lost in mist. [Bottom] At z ≈ 3.5km,
visibility in mist quickly worsens: even large buildings are lost.

both z = 2km and 3.5km for building outlines (large M )
and windows (small M ). In mist, there is a loss of spa-
tial detail, despite regional contrast stretch: at z = 2km
windows (small M ) are unrecoverable, as contrast stretch
simply amplifies the overwhelming noise, yet, the building
outline (large M ) is seen well. This detail loss is exacer-
bated at longer distance: at z = 3.5km even the building
outline is hopelessly obscured by noise.

6. Considering Nonlinear Filtering
This paper deals only with linear filtering. What about

nonlinear, anisotropic filtering, e.g., [4, 7]? Also in non-
linear methods, as noise levels rise, details are increasingly
lost. Small and low saliency details are lost before the big-
ger, more salient ones (see [24]). However, the resolution
bounds in this case may be somewhat different. How differ-
ent can they be? Such analysis is beyond the scope of this
paper. Still, this section considers some possible aspects.

Frequency-domain analysis (as we have done) assumes
system linearity: any image is a superposition of cosines
and sines, the eigenfunctions of linear blur operations. In
nonlinear filtering, thus, the generality of frequency-domain
analysis of bounds would be difficult to apply, if at all.
Hence, limits to nonlinear filters should be assessed directly
on specific objects, not via frequencies. Moreover, consid-
ering Fig. 1, if averaging is performed only in the vertical
direction, noise can be substantially reduced without elimi-
nating the dominant horizontal variations and features. This
property is exploited by nonlinear anisotropic filters. They
are affected by rich regional characteristics, e.g., gradient,
curvature, contour length and aspect ratio. Thus, these fea-
ture and regional parameters should be incorporated into the
analysis of bounds of nonlinear filters, in addition to the pa-
rameters we used (feature size and saliency).

Despite the complexity and difficulty to assess limits of
such filters, the results may not differ greatly from Eq. (24).

Close to the limit, the signal modulation is very weak (rela-
tive to the noise). Then, linear operations may offer a first-
order approximation to nonlinear filters that are differen-
tiable. We thus hypothesize that the results we obtained can
provide rules of thumb, even if more general processing is
applied. However, this needs to be verified. Extensive simu-
lations may be required. In addition, Ref. [4] calculates the
noise reduction for some denoising methods. It may thus
serve as a basis for further calculation of resolution limits.

Many nonlinear methods locally adapt smoothing to the
scale and contrast of objects [12]. The results of our anal-
ysis can guide the design of adaptive filtering. Suppose an
output Routput

min is desired, given Rinput. Then a suitable
kernel size W can be derived from Eq. (11) for each u, cor-
responding to the required feature size.

7. Conclusion
This theoretical analysis of bounds dealt with cases

where blur in the image formation step can be neglected,
and the degradation is dominantly pointwise. Even then,
there can be a cutoff frequency ucutoff < 0.5 [1/pixels],
which bounds the resolution of details that can be recov-
ered in a desired success rate. We applied this analysis to
hazy images. Extension to video is straightforward. There,
noise filtering can be done in the spatio-temporal domain,
leading to spatio-temporal resolution bounds.

Our framework can benefit other problems of computer
vision and photography, where pointwise degradations are
dominant. There, it may be possible to anticipate the poten-
tial recoverability of objects and features in a setting, either
for existing recovery methods or for ones to be proposed.
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Foundation. The work was supported by MAFAT, and was
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A. The Effect of Spatial Averaging
In Sec. 3.1, an image I formed by the model of Eq. (1)

is filtered by an averaging filter hW . The processed image

ŝ = I ∗ hW (25)

has noise nproc(x) = 1
W 2

∑
xi∈Ω(x) n(xi). Here

Ω(x) = {xi : ‖xi − x‖∞ < W/2}. The noise nproc(x) is
spatially correlated (not white) and its STD is

σproc = σ/W . (26)

The filter hW affects each spatial frequency by an
amount expressed by Dirichlet’s function:

HW (u) = DTFT{hW (x)} =
sin(πWu) sin(πWv)
W 2 sin(πu) sin(πv)

.

(27)



Using l’Hospital’s rule in the limit v → 0 yields

HW (u, 0) =
1
W

sin(πWu)
sin(πu)

. (28)

Applying hW on Eq. (9) results in a cosine sig-
nal having the same frequency, and whose amplitude is
HW (u, 0)S(u). Consider Eqs. (1,10,25,26). Similarly to
Eq. (10), the SNR in the processed image ŝ is

Rproc(u) =
HW (u, 0)|S(u)|

σ/W
. (29)

Combining Eqs. (10,28,29) results in Eq. (11).
When W = 1/u, the filter hW is destructive. Then,

the frequency u is averaged out, as Rproc = HW (u) = 0,
eliminating by smear details featured by size 1/u. For
W > 1/u, there are negative sidelobes in HW (u, 0), caus-
ing reversal of contrast (artifacts). Hence, the domain con-
sidered legitimate for Eq. (29) is W < 1/u. In Fig. 3, win-
dow lengths outside this domain are in the white region.
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