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Abstract: Measuring an array of variables is central to many systems,
including imagers (array of pixels), spectrometers (array of spectral bands)
and lighting systems. Each of the measurements, however, is prone to noise
and potential sensor saturation. It is recognized by a growing number of
methods that such problems can be reduced by multiplexing the measured
variables. In each measurement, multiple variables (radiation channels) are
mixed (multiplexed) by a code. Then, after data acquisition, the variables are
decoupled computationally in post processing. Potential benefits of the use
of multiplexing include increased signal-to-noise ratio and accommodation
of scene dynamic range. However, existing multiplexing schemes, including
Hadamard-based codes, are inhibited by fundamental limits set by sensor
saturation and Poisson distributed photon noise, which is scene dependent.
There is thus a need to find optimal codes that best increase the signal to
noise ratio, while accounting for these effects. Hence, this paper deals with
the pursuit of such optimal measurements that avoid saturation and account
for the signal dependency of noise. The paper derives lower bounds on the
mean square error of demultiplexed variables. This is useful for assessing
the optimality of numerically-searched multiplexing codes, thus expediting
the numerical search. Furthermore, the paper states the necessary conditions
for attaining the lower bounds by a general code. We show that graph theory
can be harnessed for finding such ideal codes, by the use of strongly regular
graphs.
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1. Introduction

Often, there is a need to measure an array of variables. This occurs in two dimensional imag-
ing [1] (array of pixels), spectrometry (array of wavelength bands) [2–7], tomography and
coded aperture imaging (array of viewing directions) [8–12], and study of reflectance functions
in computer vision (array of lighting directions) [13–19] etc. The array can be high dimen-
sional, if it includes several types of the mentioned domains, such as in hyperspectral imaging.
The variables in the array are often measured sequentially. For example, in each measurement,
the lighting direction, spectral band, or an aperture mask can change.

Each of the measurements is prone to noise. This measurement noise propagates to an error
in the estimation of the desired array of variables. This problem is exacerbated by constraints
on the system and the object. For example, according to Ref. [3], constrains on system weight,
price and power consumption of infrared spectrometers may require the use of uncooled de-
tectors, which are generally noisy. In another example, the radiating object may be wide and
diffuse [4], making its coupling into a narrow slit of a spectrometer inefficient, thus yielding a
low signal, relative to the noise. For a given acquisition time, however, noise can be efficiently
reduced using multiplexing [2–7,9,18–23]. Here, in each sequential measurement, multiple el-
ements of the sought array (e.g., multiple spectral bands) are linearly weighted (multiplexed)
and sensed simultaneously at a detector. In sequential measurements, the multiplex weighting
changes. The set of weights is termed a multiplexing code. Once the measurements are done,
computational demultiplexing derives the sought variable array.

This paper deals with pursuit of an optimal code, such that the noise in the sought variables
is minimal. Common multiplexing codes are based on Hadamard matrices [9]. Their use was
proposed in a wide range of fields, including very recent studies [3, 4, 18, 19, 24]. They are
optimal if noise is independent of the signal and if no saturation effect is possible. Hence, they
do not account for two fundamental effects: saturation and photon noise (the latter is signal-
dependent). This can make multiplexing by Hadamard codes counterproductive [19, 24], and
may be the reason for low benefits achieved in practice by Hadamard-based systems [3, 4,
18, 19, 24]. Moreover, for most sizes of the variable array, there are no Hadamard codes. In
contrast, in this paper we deal with general codes, considering explicitly saturation and signal-
dependent photon noise. We seek to maximize the estimation accuracy of the signal sources, by
accounting for the sensor specifications and avoiding saturation.

Recent studies [20, 22, 23, 25, 26] considered some of these fundamental aspects. Ref. [20]
derived an expression for the signal to noise ratio (SNR) in the presence of photon noise. It uti-
lized this expression to examine the SNR yielded by pre-set cyclic codes. Ref. [23] considered
photon-noise for devising binary, cyclic codes, for a small set of sizes of the sought variable
array. To account for any array size, saturation and photo noise, Ref. [22] proposed efficient nu-
merical optimization of the multiplexing code. However, numerical optimization as in Ref. [22]
may stagnate at sub-optimal solutions, with no indication of how good they are relative to the
elusive optimal solution.

We seek to properly understand the task of optimal multiplexing in general, and even point
out solutions to the task. Thus, this paper performs a comprehensive theoretical analysis. First,
it focuses on the search for optimal codes, under fixed radiant power, as on a saturation thresh-
old. It derives fundamental lower bounds on the output noise (estimation error). These bounds
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indicates how well any general multiplexing code can potentially reduce the noise. Further-
more, we show that in order to attain a lower bound (ideal multiplexing), certain conditions
should be satisfied by the multiplexing code. Hadamard codes are special cases of our analysis,
hence this work significantly generalizes the known art. This has a major importance, as we
explain a way to numerically optimize multiplexing codes under the influence of photo noise,
beside saturation and detector noise.

In addition, an interesting relation is revealed to graph theory, a large mathematical field,
typically distinct from that used in intensity noise analysis. We show that graph theory can be
harnessed for finding ideal codes, by using strongly regular graphs.

2. Theoretical background

2.1. Multiplexing

As mentioned in Sec. 1, multiplexing is a general method used in different fields. In each field,
the sought (demultiplexed) array of variables represents a different physical quantity. The same
applies to the multiplexed measurements. Nevertheless, the mathematical treatment is equiva-
lent in all the fields. To associate the variables and measurements with familiar quantities, we
use the domain of lighting, which is employed in computer vision [13–15,18] and in research
done in computer graphics [16, 17, 19]. However, thanks to the equivalence of the algebra,
analogies can be easily made to the other fields, such as spectrometry and hyperspectral imag-
ing.

In the field of lighting, an object is viewed and measured from a fixed location. In each
measurement, the object is irradiated from a different direction, by a radiation source. Un-
der this irradiance, the object is imaged. Consider a setup of N radiation sources. Let
i = (i1, i2, . . . , iN)t be the set of image irradiance values, at a certain pixel. Each element in i
corresponds to irradiance by any individual source in this setup. Here t denotes transposition.

In general, several sources can be turned on in each measurement (multiplexing). Define an
N ×N multiplexing matrix W, referred to as a multiplexing code. Each element of its m’th
row represents the normalized radiance of a source in the m’th measurement. The radiance
of a source is normalized relative to its maximum value. Hence, an element value of 0 states
that the source is completely off, while 1 indicates a fully activated source. The sequential
measurements acquired at a detector are denoted by the vector a = (a 1,a2, . . . ,aN)t , given by

a = Wi+ υ . (1)

Here υ is the measurement noise. Any bias to this noise is assumed to be compensated for. Let
the noise υ be uncorrelated in different measurements, and let its variance be σ 2

a .
Once measurements have been acquired under multiplexed sources, those measurements are

de-multiplexed computationally. This derives estimates for the irradiance values of the object
under the individual radiation sources î. The best unbiased linear estimator in the sense of mean
square error (MSE) for the irradiance corresponding to the individual-sources is

î = W−1a . (2)

The MSE of this estimator [9, 18] is

MSEî =
σ2

a

N
trace

[(
WtW

)−1
]

. (3)

This is the expected noise variance of the recovered sources. In this paper we pursue the prob-
lem of finding a multiplexing code W that maximizes the SNR of î, or, equivalently, mini-
mizes MSEî. Specifically, we seek a lower bound on Eq. (3) and derive conditions on W to
attain this bound, hence minimizing MSE î.
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2.2. Eigenvalues and singular values

In this section we briefly review elementary definitions and results from linear algebra that will
later be used for our analysis.

Definition Let Λ =
{

λ f
}N

f=1 be the set of the eigenvalues (EVs) of a matrix W. The multiplicity

of λ f ∈ Λ is the number of repetitions of the value λ f in Λ.

Lemma 1. If R and Q are matrices such that RQ is a square matrix, then [27]

trace(RQ) = trace(QR) . (4)

Lemma 2. Let W be a non-singular N ×N matrix. Its EVs are λ1 � . . . � λN. Then (See for
example Ref. [28])
i)

trace(W) =
N

∑
f=1

λ f . (5)

ii) The EVs of W−1 are λ−1
N � . . . � λ−1

1 .

Definition Let μ1 � μ2 � . . . � μN be the EVs of WtW. Then, the singular values (SVs) of W,
{ξ f }N

f=1 are defined as
ξ f =

√μ f . (6)

Note that if W is symmetric, then WtW = W2 and

ξm = |λm| ∀m . (7)

Ref. [29] quotes the following theorem.

Theorem 1. (Weyl-Horn)

N

∏
m= f

ξm �
N

∏
m= f

|λm| ∀ f ∈ {2, . . . ,N} (8)

and
N

∏
m=1

ξm =
N

∏
m=1

|λm| . (9)

2.3. Strongly regular graphs

We now refer to some elementary definitions from graph theory. We will use them when seeking
optimal solutions to the multiplexing problem. We quote some basic definitions from Ref. [30].

Consider a graph G = (V,E), where V is a set of N vertices. Here E is the set of edges
connecting a pair of vertices.

Definition Two vertices p,q are said to be adjacent or neighbors if they are connected by an
edge.

Definition The N ×N adjacency matrix Ω of the graph G is composed of elements

ωp,q =

{
1 if p and q are neighbors

0 otherwise
(10)
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Fig. 1. An example of a strongly regular graph (Peterson) [31]. This graph has the parame-
ters (N = 10;k = 3;α = 0;β = 1).

Definition The complement of a graph G is a graph Ḡ where its adjacency matrix of Ω̄, is
composed of elements

ω̄p,q =

{
1 if ωp,q = 0 and p �= q

0 otherwise .
(11)

Definition If all the vertices of G have the same number of neighbors k, then G is k-regular. In
this case

N

∑
q=1

ωp,q = k ∀p . (12)

Definition A strongly regular graph (SRG) [31] with parameters (N;k;α;β ) is a k-regular
graph that has the following properties:

• Any two adjacent vertices have exactly α common neighbors (neighbors of both ver-
tices).

• Any two non-adjacent vertices have exactly β common neighbors.

For example, consider the graph in Fig. 1. The adjacent vertices 5 and 10 have no common
neighbors and this relation also applies to all the other adjacent pairs in the graph. Hence, here
α = 0. Moreover, vertices 5 and 3 have a single common neighbor, 9, and so are all other
analogous pairs. Hence, here β = 1.

Theorem 2. The parameters (N;k;α;β ) of a strongly regular graph satisfy [31] the constraint

k(k−α −1) = (N − k−1)β . (13)

In the following, we make use of a theorem due to Seidel [32]:

Theorem 3. Let G be an SRG with parameters (N;k;α;β ). Its adjacency matrix Ω has gener-
ally three distinct EVs,

λ Ω
1 =

(α −β )+
√

Δ
2

(14)

λ Ω
2 =

(α −β )−√
Δ

2
(15)

λ Ω
3 = k , (16)
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where,
Δ ≡ (α −β )2 +4(k−β ) . (17)

The multiplicity of λ Ω
3 is 1.

From Eq. (10), Ω is symmetric. Thus, Eq. (7) applies to the SVs of Ω.

ξ Ω
f = |λ Ω

f | ∀ f . (18)

Since the EVs of Ω indicate its SVs, Theorem 3 can be applied to the SVs of Ω. In particular,
the multiplicity of EVs in Theorem 3 generally applies to the SVs of Ω.

3. Optimal power-regulated multiplexing

3.1. Problem formulation

We now seek multiplexing codes that minimize MSE î under the constraint of a fixed irradiance
of an object in each measurement. Such a constraint is desired to avoid saturation of the detector.
In saturation, the number of electrons generated in the detector exceeds the capacity of the
circuitry that translates it into gray levels. The property of a fixed power is useful for other
reasons, such as curbing photon noise, as we shall detail later.

To better express the fixed irradiance constraint, we define the variable C. It is the effective
number of radiation sources used in each measurement. This unit-less variable is equivalent to
the total radiant power used in a measurement. For example, in Hadamard-based codes,

C = CHad ≡ N +1
2

. (19)

Fixing the scalar C is equivalent to restricting the power emitted jointly by all sources. Suppose
that a multiplexing code W is suggested, such that the irradiance by all the sources exceeds the
pre-set threshold. Then this code cannot be used: it yields to much radiation. For example, in a
system where saturation occurs if C is greater than Csat = N/5, Hadamard multiplexing cannot
be used, since CHad exceeds Csat in this case.

If W violates the fixed-power constraint, what can be done? A trivial way is to equally reduce
the power of each of the sources. However, refs. [18, 22] proved that such a step should be
avoided. A better solution is to modify W, such that its corresponding C would comply with
the constraint. Such a modification, however, is not easy to accomplish. The reason is that
current codes in the literature [9, 23] do not support multiplexing of an arbitrary number C out
of N sources. Specifically, Hadamard codes are too limited: according to Eq. (19), these codes
totally couple C to N. This raises the need to extend the set of multiplexing codes, to comply
with a general constraint on the effective number of simultaneously activated sources C.

Power is fixed by setting

N

∑
s=1

wm,s = C ∀m ∈ {1,2, . . . ,N} . (20)

Recall that each source can be activated with some portion of its maximum power, i.e.

0 � wm,s � 1 ∀m,s ∈ {1,2, . . . ,N} . (21)

We use Eq. (3) to formulate a minimization task of MSE î. To simplify the analysis, we slightly
modify the problem for the moment, and define the cost function

˜MSE � MSEî
σ2

a
=

1
N

trace
[(

WtW
)−1

]
. (22)
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Minimizing ˜MSE is equivalent to minimizing MSE î, if σ 2
a is constant. The influence of σ 2

a will
be discussed in Sec. 7.

The constraints for our problem are taken from Eqs. (20,21). Thus, the optimization problem
is

min
W

˜MSE � min
W

1
N

trace
[(

WtW
)−1

]
(23)

s.t.
N

∑
s=1

wm,s −C = 0 ∀m ∈ {1, . . . ,N} (24)

−wm,s � 0 ∀m,s ∈ {1, . . . ,N} (25)

wm,s −1 � 0 ∀m,s ∈ {1, . . . ,N} . (26)

We shall now derive sufficient conditions for a matrix W to solve Eqs. (23,24,25,26).

3.2. Conditions for a global optimum

A numerical procedure has been tailored to the optimization problem (23) in Ref. [22]. It is
preferable however, to reach a closed-form solution, if it exists. This is done by deriving suffi-
cient conditions for the optimality of a given W. Such conditions allow us to identify an optimal
solution to the problem, if a potential solution is encountered. Indeed, later on in Sec. 6 we show
that these conditions are satisfied by matrices W originally developed in graph theory. We can
also apply these conditions to verify if a matrix reached by numerical optimization is indeed
the global optimum.

Our approach for deriving the optimality conditions is as follows: first, we find a tight lower
bound on ˜MSE. Then, we formulate a necessary and sufficient condition to attain this bound.
Finally, we minimize the bound itself, with respect to the elements of W.

3.2.1. The cost as a function of singular values

First, we express Eq. (23) in terms of the SVs of W. Recall from definition 2.2 that
μ1 � . . . � μN are the EVs of WtW. Then using, Lemma 2,

˜MSE � 1
N

trace
[(

WtW
)−1

]
=

1
N

N

∑
f=1

1
μ f

, (27)

Thus, in light of Eq. (6).
μ f ≡ ξ 2

f ∀ f ∈ {1, . . . ,N} . (28)

We show an implication of constraints (24,25,26) on the SVs of W. This will allow us to
better streamline (24,25,26) into Eq. (27), forming a lower bound on ˜MSE. To understand the
connection between these constraints and the SVs of W, we cite the following theorem [33]:

Theorem 4. Let W be constrained by Eqs. (24,25,26). Then, C is an EV of W. Furthermore,
let λ f be an EV of W. Then, |λ f | � C. The proof is given in App. A.

Theorem 4 deals with the EVs of W. This has an implication to its corresponding SVs, which
are used in (27). This implication stems from Theorem 1. Let us set f = N in Eq. (8). Then,

ξN � |λN | . (29)

Now, following Theorem 4,
λN = C . (30)
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Fig. 2. ˜MSE as a function of {μ f }N
f=1. Each green dot marks the vector �μ that minimizes

˜MSE, when S is fixed. The highlighted line marks the ideal value of S. The green dot along
this line marks the global minimum of ˜MSE. This global minimum is derived in closed
form and is thus unaffected by local minima.

Hence, using Eqs. (28,29,30)
μN � ξ 2

N � C2 . (31)

Eq. (31) constrains the largest SV of W. Therefore, we separate it from the rest of the SVs in
Eq. (27). The advantage of this move will be clarified shortly. Thus we rewrite Eq. (27) as

˜MSE =
1

NμN
+

1
N

N−1

∑
f=1

1
μ f

. (32)

3.2.2. Optimality of the singular values

In this paper we seek the tight lower bound on MSE î. To achieve this, we have first ex-

pressed ˜MSE by Eq. (32), in terms of the SVs of W. Define the vector �μ = (μ1,μ2, . . . ,μN).
We now seek to minimize Eq. (32) as a function of �μ . Apparently, ˜MSE in Eq. (32) is reduced
if we simply increase any single element of �μ, μ f , while the rest are constant. Can we do this
arbitrarily? The answer is no. The reason is that Eqs. (24,25,26) bound the domain of W, hence
bounding the domain of its SVs. Therefore, any μ f cannot be arbitrarily increased; the elements
of �μ are mutually coupled. To express the coupling, we first use a normalization, by defining

S �
N

∑
f=1

μ f (33)

and setting it to be a constant. Later we alleviate the need for this arbitrary normalization (see
Fig. 2).

Now, we show that under the constraint S ≡ Const,

min
μN

{
1

NμN
+

1
N

N−1

∑
f=1

1
μ f

}
=

1
NC2 +

1
N

N−1

∑
f=1

1
μ f

. (34)

To understand this observation consider Fig. 3. The minimization in Eq. (34) is only over the
value of μN . Let μN be decreased by some small quantity ΔμN . Then, to conserve S in Eq. (33),
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Fig. 3. The curve 1/μ represents elements summed in Eq. (34). The black dashed lines
mark a state of the SVs of W. If the largest squared-SV, μN , is reduces by ΔμN and in
return the smallest squared-SV, μ1, is increased by ΔμN , the sum in Eq. (34) is reduced.

the value of at least one other μ f should increase. An increase of μ f by ΔμN reduces ˜MSE. The
reason is that the change induced by this increase is

Δ˜MSE =
∂ ˜MSE
∂ μ f

ΔμN = − 1

Nμ2
f

ΔμN < 0 . (35)

We seek the strongest reduction of ˜MSE. Clearly, in Eq. (35), the reduction Δ ˜MSE is strongest
if μ f is the smallest element of the set {μ f }N−1

f=1 . The smallest element in this set is μ1. Overall,

decreasing μN by ΔμN while increasing μ1 by ΔμN yields a net reduction of ˜MSE by

Δ˜MSE = −ΔμN

N

(
1

μ2
1

− 1

μ2
N

)
< 0 . (36)

Thus, trading μN for μ1 delivers a net benefit in ˜MSE.
Since a benefit stems from a reduction of μN , then μN should be as low as possible. From

Eq. (31), the lowest possible value of μN is C2. To conclude,

Corollary 1. In an optimal multiplexing code W, the largest SV satisfies

ξN = C (37)

i.e.,
μN = C2 . (38)

This proves Eq. (34).
After determining μN , we turn to the other elements of �μ . A trivial manipulation yields

1
N

N−1

∑
f=1

1
μ f

≡ N−1
N

(
1

N −1

N−1

∑
f=1

1
μ f

)
. (39)
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The parentheses on the right hand side of (39) express the reciprocal harmonic mean
of

{
μ f

}N−1
f=1 . The inequality of means [34] states that:

1
N −1

N−1

∑
f=1

1
μ f

� N−1

∑N−1
f=1 μ f

. (40)

Using Eqs. (33,38) in Eq. (40) yields,

1
N −1

N−1

∑
f=1

1
μ f

� N−1
S−C2 . (41)

Combining Eqs. (34,39,41) into (32) yields

˜MSE � B , (42)

while B is the lower bound of ˜MSE, given by

B =
1

NC2 +
(N −1)2

N(S−C2)
. (43)

The lower bound B is constant as long as S is fixed. We wish that ˜MSE will actually attain
this fixed lower bound. Equality in Eq. (42) is obtained if equality holds in (40). This occurs
when

{
μ f

}N−1
f=1 are all equal. Therefore, using Eq. (6), the elements of the set

{
ξ f

}N−1
f=1 are also

equal. We recap with the following corollary.

Corollary 2. An ideal multiplexing matrix W is such, that all its SVs (but the largest one){
ξ f

}N−1
f=1 are equal to each other. Its largest SV equals C.

Note that we refer to matrices that attain the lower bound B as ideal. It is not guaranteed
however, that such matrices exist for all values of N andC. Matrices that minimize ˜MSE without
reaching B are simply referred to as optimal.

3.2.3. The ideal variable S

We have shown in Sec. 3.2.2 that for a specific S, the MSE is minimized by matrices that comply
with the terms in Corollary 2. We now relieve the constraint of an arbitrarily fixed S. Hence, S
may vary (see Fig. 2). Furthermore, we derive the best value for S. This yields a condition on
the elements of W. Following Lemma 1,

trace
(
WtW

)
= trace

(
WWt) . (44)

The diagonal elements of WWt are

(
WWt)

m,m =
N

∑
s=1

(wm,s)2 . (45)

Due to Eq. (21),
(wm,s)2 � wm,s . (46)

From Eqs. (20,45,46),
(
WWt)

m,m �
N

∑
s=1

wm,s = C . (47)
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Following Lemma 2,

S =
N

∑
k=1

μk = trace
(
WtW

)
. (48)

From Eqs. (44,47,48),

S = trace
(
WWt) =

N

∑
m=1

(WWt)m,m � NC . (49)

As indicated earlier in this section, S may vary. From Eq. (49) the domain of S is

0 ≤ S ≤ NC . (50)

Now it is possible to find the global optimum in this domain. From Eq. (43), B is minimized
by using the largest S possible. Hence,

Sideal = NC . (51)

Note that equality holds in (49) if and only if equality also holds in Eq. (46). Trivially, this
happens if all elements of W are either 1’s or 0’s. In this case Eq. (49) yields Eq. (51), alleviating
the need for an arbitrarily fixed S.

From Eqs. (43,49,51)
B � Bmin (52)

where

Bmin(C) =
[

1
NC2 +

(N −1)2

N(NC−C2)

]
. (53)

Equality holds if wm,s ∈ {0,1} ∀m,s. In other words, B reaches its lowest potential
value Bmin(C), if S is given by Eq. (51).

Corollary 3. The lower bound Bmin of ˜MSE is achieved using binary multiplexing matrices W.

Combining Corollary 3 and Eq. (20) results in

Theorem 5. ˜MSE yields Bmin only if C ∈ Z

+.

We now combine the results of Corollaries 2 and 3. From Eqs. (3,42,43,52,53),

MSEî � σ2
a Bmin(C) . (54)

Theorem 6. Equality in Eq. (54) is obtained by a matrix W, if and only if this matrix complies
with both Corollaries 2 and 3.

The result in Eqs. (53,54) is very useful. Being a tight bound, B min determines the behavior of
MSEî as a function of both N and C. Furthermore, if W satisfies the optimality conditions, then
σ2

a Bmin is exactly the expected value of MSE î. In Fig. 4 we illustrate the behavior of Bmin for a
specific value of N and a range of values of C.
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Fig. 4. The bound Bmin(C), for N = 63. Here C varies from 1 to 63. The minimum of
Bmin(C) is at Copt. There may exist Csat, above which saturation occurs, inhibiting multi-
plexing.

4. The case of a free variable C

Sec. 3 dealt with power-regulated multiplexing, i.e., a fixed C. It introduced the lower bound
on MSEî for all pairs of {N,C}, via Eqs. (53,54). However, what happens if C is a free variable
in the domain C ∈ [1,N]? For a given N, which value of C ∈ [1,N] minimizes MSE î? This is
discussed in this section.

The variable MSE î is influenced by C through three mechanisms.

1. The parameter C affects the EVs of the optimal W. This effect is reflected in the presence
of C in the term for the bound Bmin (see Eq. 53).

2. The parameter C may not be free to vary through all the domain [1,N] due to satura-
tion. There may exist Csat such that ∀ C > Csat, elements of the vector a (Eq. 1) become
saturated. Such elements of a prevent the correct reconstruction of î by Eq. (2).

3. The parameter C may affect σa in Eq. (3). So far in this paper, there was no consideration
of variations in σa with respect to C. We shall see in Sec. 7 that this is often not the case,
e.g. due to photon noise.

This section accounts only for mechanism 1, when discussing the optimal value of C. The
other mechanisms are discussed in later sections. This allows the current section to compare our
results to prior codes that do not consider mechanisms 2 and 3 as well, specifically, Hadamard
codes [9, 18].

4.1. Minimization of Bmin

Recalling Sec. 3.1, if C is free to vary, then optimal matrices W are based on the Hadamard
matrices and are known as the S-matrices [9]. These matrices indeed comply with the conditions
of Theorem 6. However, S-matrices exist only for a subset of the possible values of N.

Define the domain
Ψ �

{
[1,N] ⊂ R

+}
. (55)

In this domain, the value of the variable C that minimizes Eq. (53) is defined as

Cfree
opt � argmin

C∈Ψ
Bmin(C) . (56)
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Generally, Cfree
opt is not an integer. If it is not an integer, then it does not satisfy Theorem 5.

Hence, this value does not correspond to a multiplexing matrix that meets the bound B min(Cfree
opt ).

Nevertheless, Cfree
opt is important: it may imply an integer C (close to C free

opt ) that is associated with
an ideal multiplexing matrix.

To find Copt, let us null the derivative of Bmin(C) (Eq. 53) with respect to C,

∂Bmin

∂C
≡− 2

NC3 −
(N −1)2(N −2C)

N(NC−C2)2 = 0 . (57)

Nulling Eq. (57) yields

Cfree
opt =

N2 −2N−3± (N−1)
√

(N2 −2N +9)
4N−8

. (58)

Apparently, Eq. (58) has two solutions. However, only one of them is in Ψ. Hence, C free
opt is

unique. To satisfy Theorem 5, only integer C can be used. Let us define

Cint
opt � ROUND(Cfree

opt ) (59)

as the integer value that is closest to Copt. Define the integer domain

Ψint �
{
[1,N] ⊂ Z

+}
. (60)

We wish to know if Cint
opt satisfies

Cint
opt = arg min

C∈Ψint
Bmin(C) . (61)

This is discussed next.

4.2. Consistency with Hadamard matrices

Now we show that Cint
opt degenerates to CHad. It can be shown that

CHad −Cfree
opt =

N −1
N −2

· N +1−√
(N −1)2 +8
4

. (62)

From Eq. (62), it can be shown that

lim
N→∞

(CHad −Cfree
opt ) = 0.5 . (63)

More generally, as shown in Fig. 5,

CHad > Cfree
opt > CHad −0.5 . (64)

Applying Eq. (59) in Eq. (64),
Cint

opt = CHad , (65)

for values of N that correspond to S matrices. This is consistent with Ref. [9], which proves the
optimality of Hadamard based-codes. Hence, Eq. (61) indeed holds in these cases.

Let us interpret our results:

• Hadamard-based codes are special cases, which satisfy our analysis. Their value of ˜MSE
attains Bmin(CHad).

• Eq. (61) is satisfied by Hadamard-based codes.

#87203 - $15.00 USD Received 4 Sep 2007; revised 13 Nov 2007; accepted 14 Nov 2007; published 5 Dec 2007

(C) 2007 OSA 10 December 2007 / Vol. 15,  No. 25 / OPTICS EXPRESS  17085



10
0

10
2

10
4

10
6

0.3 

0.35

0.45

0.5 

N

C
H

ad
−C

o
p

t

Fig. 5. A semi-logarithmic plot of Eq. (62).

• Our analysis generalizes theories that were previously developed for multiplexing. In
particular, the analysis applies to cases (values of {N,C}) for which Hadamard-based
codes do not exist.

We wish to clarify that optimal multiplexing codes do not necessitate an integer C. When
the condition specified in Theorem 5 is not met, then B �= Bmin. Thus, for a non-integer C,
no matrix W is ideal, but a certain W can still be optimal, i.e. minimizing ˜MSE within con-
straints (24,25,26).

5. Saturation

From Sec. 4, recall mechanism 2 by which C influences MSE î. It is saturation. Due to satura-
tion, C cannot exceed Csat. In this section we discuss seeking an optimal value of C, under the
saturation constraint.

The unsaturated domain of C is

Ψsat = {Ψ∩ [1,Csat] } , (66)

where Ψ is defined in Eq. (55). We seek the value

Csat
opt = arg min

C∈Ψsat
Bmin(C) . (67)

Let us discuss two cases. First, suppose that Cfree
opt ≤Csat, where Cfree

opt is defined in Eq. (58).
In this case, Cfree

opt ∈ Ψsat. Since Cfree
opt uniquely minimizes Eq. (53) in this domain, the optimal

solution degenerates to that described in Sec. 4.1.
In the second case, Cfree

opt > Csat, i.e, Cfree
opt /∈ Ψsat. Then, there is no value of C ∈ Ψsat at which

the derivative of Bmin(C) is null. Hence, the global minimum of the function Bmin(C) is obtained
at the constraint Csat. This is illustrated, for example, in Fig. 4. To conclude,

Csat
opt =

{
Cfree

opt if Cfree
opt ≤Csat

Csat otherwise
. (68)

6. Some ideal solutions

Sec. 3 derived a lower bound on ˜MSE, which can be obtained by multiplexing. Sec. 3 also shows
that in order to attain this bound, certain conditions should be satisfied by the multiplexing code.
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However, it is not obvious that such ideal codes exist. The familiar Hadamard-based S matrices
are ideal codes. Their value of ˜MSE attains Bmin(CHad). Are there other matrices, that satisfy
these optimality conditions, for other values of {N,C}? In the following, we show that indeed
there is a class of such matrices.

6.1. Strongly regular graphs as a solution

The adjacency matrix Ω described in Theorem 3 can be used as the desired multiplex matrix W,
sought in Sec. 3, as we now detail:

• Since Ω is an adjacency matrix, it is binary. Hence, it satisfies Corollary 3.

• The highest SV of the desired W is C, with multiplicity which is generally 1 (See Corol-
lary 2). Similarly, the highest SV of Ω is k, with the same multiplicity. Hence, we set
k = C.

• Setting the parameters α = β in Eqs. (14,15) yields |λ Ω
1 | = |λ Ω

2 | =
√

Δ
2 . Using Eq. (18),

all SVs of Ω are equal to
√

Δ
2 , except for the largest SV, which equals k. Namely,

ξ Ω
1 =

√
C−β (69a)

ξ Ω
2 = C . (69b)

Therefore, Ω satisfies the conditions of Corollary 2. To summarize,

Theorem 7. Let Ω be the adjacency matrix of a (N;C;α;α) strongly regular graph. Then, Ω
is an ideal matrix W solving Eqs. (23,24,25,26) .

Recall that an SRG is subject to a constraint given in Eq. (13) on the values of its parameters.
If α = β as in Theorem 7, then Eq. (13) takes the following form

α =
k(k−1)
(N −1)

=
C(C−1)
(N −1)

. (70)

As an example, consider the (45;12;3;3) SRG, described in Refs. [35–37].This is a class of
graphs, determined up to an isomorphism. The adjacency matrix of a representative of this class
is shown as a binary image in Fig. 6. Note that the parameters of this graph satisfy Eq. (70).
Additional examples for SRGs can be found in [36, 37].

6.2. Solutions from complement graphs

In Sec. 6.1 we have devised a set of solutions for the sought optimal W. Such a set may be
derived indirectly from another set of SRGs. Refs. [31, 35] formalize the following theorem:

Theorem 8. A graph G is strongly regular with parameters (N;k;α;β ) if and only if its comple-
ment Ḡ is also strongly regular, with parameters (N ;N − k−1 ;N −2k + β −2 ;N −2k + α).

Theorem 8 means that given an SRG, Ḡ with some parameters (N;C̄; ᾱ ; ᾱ +2), there exists a
complement SRG, G, with parameters (N;C;α;α). Here C = N − C̄−1 and α = N −2C̄+ ᾱ .
Hence, using Theorem 7, G is a solution for Eqs. (23,24,25,26).

6.3. A simulated example

To illustrate the use of an SRG in multiplexing, we describe a simulation of spectrometry.
The vector i represents noiseless graylevel measurements, where each element of the array
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Fig. 6. An example for an adjacency matrix of an SRG with parameters (45;12;3;3) devel-
oped by Ref. [35]. Here 1s and 0s are represented by white and black squares, respectively.
Here α = β = 3, hence this graph satisfies the conditions of Theorem 7.

expresses the radiance in a narrow spectral band, as transmitted through the atmosphere. As
“ground-truth” i, we took the data in [38]. These graylevel values are plotted in Fig. 7a.

We simulated noisy infrared measurements of these values. They were compounded by
Gaussian white noise, having σa = 8 graylevels independent of the signal, and quantized by
an 8-bit camera, having a range of [0,255] graylevels. The resulting absolute error | î− i| for this
trivial measurement process is plotted by a red line in Fig. 7b.

Then, we simulated spectral multiplexing based on an SRG. In this data, N = 45. Thus,
we used the adjacency matrix shown in Fig. 6 for multiplexing the spectral bands. Thus, in
each measurement, 12 narrow spectral bands were simultaneously sensed. Then, noise and
quantization were applied as in the standard acquisition process. There was no saturation in a:
considering the values i plotted in Fig. 7a, all elements of a were lower than 255 graylevels. The
measurements were then demultiplexed, yielding a less noisy estimate î. The resulting absolute
error |î− i| of the demultiplexed values is plotted by a green line in Fig. 7b. Indeed, the noise
is significantly reduced. Quantitatively, the noise reduction is as expected: empirically, MSE î is
6.96 squared-graylevels, when averaged over many such randomly noised simulations. This is
consistent with the expected theoretical value of MSE î, obtained by Eqs. (53,54).

7. Photon noise

In this section, we discuss mechanism 3 by which C influences MSE î, as mentioned in Sec. 4.
Here we deal with the presence of photon noise in the acquired measurements. Generally, pho-
ton noise inhibits the multiplexing gain. The variance of photon noise increases linearly with
the acquired signal. Hence, an increase of radiance used in each measurement increases the
noise. This effect degrades the multiplexing gain, sometimes even causing it to be counterpro-
ductive [22, 24].

7.1. The affine noise model

As in [22], we use the affine noise model. It exists in high grade detectors, which have a linear
radiometric response. The noise can be divided into two components, signal-dependent and
signal-independent. Regardless of the photon flux, signal-independent noise is created by dark
current [24, 39, 40], amplifier noise and the quantizer in the sensor circuity [40]. Denote the
gray-level variance of the signal-independent noise by κ 2

gray.
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Fig. 7. (a) Graylevel spectral radiance of light transmitted through the atmosphere [38]. It is
used to simulate the ground truth i. (b) Absolute error values |î− i| of simulated estimates
based either on trivial sensing (red plot) or on SRG-based multiplexing (green plot).

Fundamental signal-dependent noise is related to two random effects. The photon flux and
the uncertainty of the photon-electron conversion process which occurs in the detector. Overall,
the random number nphoto

electr of photo-generated electrons is Poisson distributed [39, 41, 42]. In

this distribution, the variance of nphoto
electr is

VAR(nphoto
electr) = E (nphoto

electr) , (71)

where E denotes expectation. This variance linearly increases with the measured electric sig-
nal nphoto

electr . The number of detected electrons nphoto
electr is proportional to the gray-level of the ac-

quired pixel value a
a = nphoto

electr/Qelectr . (72)

Here Qelectr is the number of photo-generated electrons required to change a unit gray-level.
Typically Qelectr � 1. Combining Eqs. (71,72) yields a variance in gray levels

E (nphoto
electr)/Q2

electr = a/Qelectr . (73)

Compounded with signal-independent noise, the total noise variance of the measured gray-
level [24, 39] is

σ2
a = κ2

gray +a/Qelectr . (74)
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Now, consider a scenario in which each radiation source, s yields a similar image radiance, i s.
Following Eqs. (1) and (20), in each measurement the acquired value is

a ≈ isC . (75)

Thus Eq. (74) can be rephrased as

σ2
a = κ2

gray +Cη2 . (76)

Here η2 ≈ is/Qelectr is the photon noise variance, induced by i s. Eq. (76) is an affine function
of the number of active sources C. This was demonstrated experimentally in Ref. [22]. The
parameters κ2

gray and η2 depend on the setup hardware. A way to calibrate them is described in
Ref. [22].

7.2. Optimal multiplexing

In this section we describe how to derive an optimal value of C, termed C final
opt , accounting for all

the effects. These include the various noise mechanisms and saturation. In addition, the section
describes an approach to obtain a multiplexing matrix W that corresponds to C final

opt .
From Eqs. (3,22),

MSEî = σ2
a

˜MSE . (77)

Embedding the noise variance of Eq. (76) into Eq. (77) yields

MSEî = (κ2
gray +Cη2)˜MSE . (78)

Ref. [22] suggested a minimization of the MSE î expression given in Eq. (78). It consists of the
following steps.

1. Scan the range of C values from 1 to C sat
opt, where Csat

opt is defined in Eq. (68). For each
value of C, perform the subsequent steps 2 and 3.

2. Find the matrix W(C) that optimizes ˜MSE, defined in Eq. (22). This optimization is
constrained by (24,25,26).

3. Based on W(C), calculate the expected multiplex gain MSE î(C) using Eqs. (22,78).

4. Let
Cfinal

opt = argmin
C

MSEî(C) . (79)

5. The desired multiplexing code is W(Cfinal
opt ).

Note that the result of this process is a truly optimal multiplexing matrix, accounting for both
saturation and photon-noise. Furthermore, in step 1, there is no necessity for exhaustive search
of MSEî(C) for all C ∈ [1,Csat

opt]. The reason is that MSE î(C) is well behaved [22], hence one can
incorporate efficient optimization procedures. The core of the process is step 2. In Ref. [22], this
minimization was based on a numerical search of ˜MSE, i.e., of Eqs. (23,24,25,26). However,
Eq. (22) is not unimodal. Hence, it is difficult to guarantee that a global minimum of ˜MSE is
numerically reached.

Following Secs. 3 and 6 above, we may simplify step 2 in two ways. The first way is to
create ideal multiplexing codes W(C) using adjacency matrices of known SRGs having the
proper parameters (see Sec. 6). In this way, step 2 avoids numerical search altogether. However,
SRGs are not available for every {N,C} set. Thus, numerical optimization may still be needed.
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Nevertheless, there is a second, more general way by which step 2 is simplified: B min(C) can
set the termination of a numerical search, as is explained in the following.

Any numerical optimization process is iterative. Hence, let the above mentioned step 2 en-
capsulate an iterative process. At the l’th iteration, there is a matrix W l that complies with
Eqs. (24,25,26). Based on Eq. (22), a corresponding value ˜MSEl is derived. At iteration l +1,
the multiplexing matrix changes to W l+1, with a corresponding ˜MSEl+1. The numerical op-
timization seeks, in general, to yield ˜MSEl+1 < ˜MSEl , hence minimizing ˜MSE as the iter-
ations progress. A numerical minimization of ˜MSE can be efficient using a gradient-based
method [22]. This is done since the gradient of ˜MSE (with respect to the elements of Wl) is
given in closed-form (See [22]).

In iterative optimization, an important matter is to know when to terminate it, i.e., at which l
does Wl yield ˜MSEl that is indeed close enough to its true optimum? Here the conditions
and bounds we obtained in Sec. 3.2 come into play. Specifically, B min(C) can terminate the
iterations. If at the l’th iteration ˜MSEl ≈ Bmin(C), then the iterations may stop: Wl is as good
as it can get. Hence, it can be set as W(C) in step 2 above.

8. Discussion

We derived several lower bounds on the estimation error, in conjunction with conditions re-
quired to attain them. The bound B given in Eq. (43) determines best feasible performance by
any code for which the sum of SVs is arbitrarily fixed. Correspondingly, Corollary 2 states the
structure of desired codes. A stronger bound is Bmin(C), given by Eq. (53), as it states the best
conceivable performance of any code, whatever its SVs are. However, finding a code that at-
tains Bmin(C) is more difficult, since such a code is constrained to satisfy Eqs. (48,51). Such a
constraint can only be satisfied by binary codes (Corollary 3). This lead to an interesting link to
graph theory, which is usually a field distinct from analysis of intensity noise. We showed that
SRG have adjacency matrices that are ideal, in the sense that they attain Bmin(C).

An important contribution is the algorithm described in Sec. 7.2. It exploits the performance
bounds derived in the paper for a practical task: validating and influencing a numerical search
for optimal multiplexing codes. These codes can have any number of sources N, activated
sources C, and be tailored to the characteristics of noise and saturation.

The analysis of general matrices W is helpful to subcases of such matrices, be they bi-
nary [3,4,9–12,26] and/or cyclic [8, 9, 20, 23]. Furthermore, the analysis may be extended
to noise models [24] that are different than Eq. (76).

We believe that these results are important to the wide range of fields where the multiplexing
principle is used. The results can help yield measurement devices for estimating an arbitrary
number of sought variables, where the measurement apparatus is optimal under fundamental
and practical limitations and effects.

A. Proof of Theorem 4

To make the paper self-contained, we prove Theorem 4. This derivation is a variation of a proof
that appears in [33]. Define

Woffset � W−CI . (80)

Let woffset
m,s be the elements of Woffset. Following Eq. (20),

N

∑
s=1

woffset
m,s = 0 ∀m ∈ {1,2, . . . ,N} . (81)
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Hence, one of the EVs of Woffset is 0. In other words, det(Woffset) = 0. By the definition in (80),
this means that det(W−CI) = 0, i.e., C is an EV of W. This proves the first part of Theorem 4.

Suppose that u f = (u f
1 , . . . ,u f

N)t is an eigenvector corresponding to λ f . Without the loss of
generality, we may normalize u f , such that

max
m∈{1,...,N}

|u f
m| = 1 . (82)

Hence,
u f

m = 1 (83)

for a certain m ∈ {1, . . . ,N}. From Eqs. (21,82)

|wm,su
f
m| � 1 ∀m,s ∈ {1, . . . ,N} . (84)

Eqs. (20,84) directly lead to a constraint on the absolute value of the s’th component of Wu f .

|(Wu f )m| = |
N

∑
s=1

wm,su
f
s | �

N

∑
s=1

|wm,su
f
s | � C . (85)

In addition, u f is an eigenvector of W. Hence,

|(Wu f )m| = |λ f u
f |m = |λ f u

f
m| . (86)

From Eq. (83), Eq. (86) becomes

|(Wu f )m| = |λ f | . (87)

Using Eq. (87) in (85) yields
|λ f | � C . (88)

This proves the second half of Theorem 4.
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