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Nonuniform exposures often affect imaging systems, e.g., owing to vignetting. Moreover, the sensor’s radio-
metric response may be nonlinear. These characteristics hinder photometric measurements. They are particu-
larly annoying in image mosaicking, in which images are stitched to enhance the field of view. Mosaics suffer
from seams stemming from radiometric inconsistencies between raw images. Prior methods feathered the
seams but did not address their root cause. We handle these problems in a unified framework. We suggest a
method for simultaneously estimating the radiometric response and the camera nonuniformity, based on a
frame sequence acquired during camera motion. The estimated functions are then compensated for. This per-
mits image mosaicking, in which no seams are apparent. There is no need to resort to dedicated seam-
feathering methods. Fundamental ambiguities associated with this estimation problem are stated. © 2005

Optical Society of America

OCIS codes: 100.3190, 100.3020, 110.0110, 350.2660, 150.0150, 040.1490.

1. INTRODUCTION

Imaging systems are prone to problems stemming from
nonuniform irradiance of the detector plane and from a
nonlinear response of the sensor. The first problem is op-
tical: Owing to vignetting and foreshor‘cening,1 the sensor
periphery is not illuminated as intensely as its center.
The second problem is electronic: The light signal is
translated into a weak electric signal, which is then am-
plified prior to being sent to the camera output or storage.
This amplifier may not be linear. Moreover, a nonlinear
response may partly be due to special optical components
in the imaging system.z’3 These phenomena should be
compensated, if quantitative photometric measurements
are sought on the basis of the image data.

A particular application in which these effects are ap-
parent is image mosaicking.4 Mosaicking is a common
method to obtain a wide field-of-view (FOV) image of a
scene. Images are captured as a camera moves and are
then stitched together to obtain an extended image. Mo-
saicking has been used extensively in various scientific
fields.” 17 Typically, a radiometric mismatch exists be-
tween the different frames, owing to the above-mentioned
problems. This results in seams in the stitched image mo-
saic. Various methods were developed to feather the
seams' 1820 op camouflage them' in scene edges. How-
ever, those pure image-processing methods address the
perceptual effects of seams rather than accounting for the
root cause of the mismatch.

Apparently, these problems can be solved in the optical
level: Had the imaging system been perfect, radiometric
inconsistencies would not have occurred. However, even
an inconsistency of 1% is noticeable in 8-bit sensors (and
certainly in higher-sensitivity sensors). Moreover, hu-
mans can easily detect such minute radiometric errors, as
demonstrated in Fig. 1. Hence this utopian line of thought
may pose impractical tolerances on the optical engineer-
ing process. For this reason, image nonuniformities and
sensor nonlinearities are a fact of life. Moreover, some-
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times spatial nonuniformities can be of benefit, since they
can improve the dynamic range of the imaging
system.ZI_23 In particular, this was demonstrated by gen-
eralized mosaicking22’23: Scene points that are saturated
in some frames become unsaturated in others, thanks to
the spatial nonuniformity of the system (Fig. 2). In the
past, however, generalized mosaicking was limited to
cameras having a linear radiometric response or at least a
known response.

Nonuniformities and sensor nonlinearly can be com-
pensated for if they are carefully precalibrated. A stan-
dard calibration process, however, may not always be
practical. For example, in zoom lenses the nonuniformi-
ties should be measured for all possible zoom, focus, and
aperture settings. In addition, the performance of the
camera (in particular its electronics) may somewhat de-
grade over long periods of time, especially in harsh envi-
ronments. Moreover, calibration equipment may not be
available or affordable to all.

For these reasons, in this paper we propose a hybrid so-
lution to the problem. It combines computer-vision tools
with a model that accounts for the physical processes oc-
curring in the imaging system. The nonuniformity and
nonlinearity are blindly self-calibrated on the basis of or-
dinary scenes, as part of the mission the imaging system
is designed to do. The situation analyzed is such that an
unknown optical nonuniformity exists in the imaging sys-
tem, as well as an unknown nonlinear radiometric re-
sponse. We then suggest a method for simultaneously es-
timating both of them.

In addition, we discuss fundamental ambiguities asso-
ciated with our estimation problem. In spite of these am-
biguities, the method is able to compensate for the image
nonuniformity, such that all the resulting images are mu-
tually consistent. Hence the output value of a scene point
is the same (excluding random noise), whether it is im-
aged at the center of a frame or at the periphery of a
frame. The compensation for the nonuniformity and non-
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Fig. 1. Tllustrating human sensitivity to radiometric mismatch.
Several consecutive image parts were biased by 4% with respect
to each other, as if stitched by a process of mosaicking. Even such
a small mismatch creates clear visual artifacts.

corresponding scene region

Fig. 2. Several frames from a simulated image sequence ac-
quired by a camera with optical nonuniformity. Owing to the
nonuniformity, each scene point is acquired with a different op-
tical setting. The selected region is saturated in frame 5 and not
saturated in frames 1 and 3.

linearity yields images that are equivalent to the scene
radiance. We then use the outputs corresponding to dif-
ferent frames to construct wide FOV image mosaics. The
compensation quality is sufficiently high to practically
eliminate the visibility of seams in mosaics without re-
sorting to dedicated seam-removal techniques.

We note that studies have been carried out with the
aim of estimating the radiometric response function by
using known temporal variations of exposure.?#?® On the
basis of those studies, methods for estimating the radio-
metric response, by using unknown temporal variations
of exposure%*2 or gain29’30 were developed. There are
analogies between these studies and our work, because
optical nonuniformity in a moving camera has an effect
similar to temporal variation of exposure. However, Refs.
26,30,31 are based on parametric models of the radiomet-
ric response. In contrast, it is demonstrated in this work
that it is possible to estimate the radiometric response
and the optical nonuniformity without prior parametric
models. The ambiguities involved in our estimation prob-
lem are analogous to those determined by Grossberg and
Nayer®? (with regard to methods that use temporal varia-
tions of exposure25’26’28’30’31). Nevertheless, we show that
these ambiguities can be solved with very little a priori
knowledge of either the camera non uniformity or the ra-
diometric response function.

This work may be related to methods designed for ther-
mal infrared imaging. Nonuniformity correction (NUC)
algorithms have been devised to handle fixed pattern
noise caused by pixel-dependent sensitivities to thermal
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radiation. Analogous to our method, recent nonuniformity
correction algorithms have been scene based and ex-
ploited image motion33_36; however, these studies are dif-
ferent from ours. Existing NUC algorithms for thermal
sensors assume a linear radiometric response with spa-
tially varying bias. On the other hand, our work handles
general nonlinear radiometric response functions and, in
addition, exploits the spatial correlations of nonuniformi-
ties caused by optical transfer.

2. STATEMENT OF THE PROBLEM

Consider a system in which the irradiance at the detector
plane is spatially varying, when the scene radiance is uni-
form. This can happen because of vignetting, foreshorten-
ing, or lens distortions (Fig. 3). This spatially varying op-
tical response is denoted M(x), where x=(x,y) is a
location vector in the local coordinate system of the frame,
where x e[1,N]2. Here N denotes the number of pixels
along each transversal axis of the detector array. We de-
fine I(x)=M(x)I(x) as the irradiance falling on the camera
detector, accounting for the spatial variation. Here I is the
irradiance falling on the camera detector when M=1. The
irradiance falling on the detector is converted into an
electric signal via the camera amplifier, which has a ra-
diometric response r(I). The radiometric function is gen-
erally nonlinear,?27313237:38 ysually owing to properties
of electronic amplifiers. Alternatively, in image intensifi-
ers, nonlinearity can stem from the response of the
phosphors® of the intensifying tube.

The gray-level value v in pixel x is

v(x) = | I(x) | = M) I(x)]. 1)

The range of gray-level values in the detector is
v €[0,0maxl, Where v, =255 for 8-bit digital cameras.

Suppose that the radiometric response function r(I)
and the optical nonuniformity M(x) of this system are un-
known. Our goal is to estimate these unknown functions.
Consequently, we aim to estimate the image irradiance /
with high dynamic range and in a wide FOV. The ques-
tions we pose are the following:

1. Can this estimation problem be solved on the basis
of an image sequence taken for mosaicking?

2. What are the fundamental limitations of this esti-
mation?

optical Amplifiers

system @

spatial
non-uniformity

nonlinear
radiometric response
Fig. 3. Imaging system model. The optical system induces spa-
tial inhomogeneities on the image, which are characterized by
M(x). The camera electronics has an unknown radiometric re-
sponse r(I).
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3. Can this estimation be good enough to create seam-
less image mosaics without resorting to feathering tech-
niques?

3. SOLUTION

A. Fundamental Equation

Typically, the radiometric response function of the camera
r is monotonic.*’ Therefore r is invertible, and hence we
can write

rox)]=1(x) = Mx)I(x). (2)
Thus
log{r"[v(x)]} =log[M(x)] + log[I(x)]. (3)

We define the functions glv(x)]=log{r[v(x)]} and
l(x)=log[M(x)]. Equation (3) is then

g[ved ] =10) + 10g(D), (@)

where xf,o denotes the pixel in frame f;; onto which a scene
point p is imaged.

Owing to camera motion, the same scene point is mea-
sured in frame f; at image pixel xél. We assume that the
scene is static during the acquisition of the sequence.
Thus the radiance at scene points does not change in
time. This allows us to compare measurements across
frames. Particularly, the scene point analyzed in Eq. (4)

yields

g[vxh] =1 + og). (5)
Assume that the image registration processs’16’20’22’30’41_45
is successful, i.e., that corresponding image pixels are reg-

istered. We define
QLo ve).x; x| = g[v)] - [ v
— ) +1(x). (6)

According to Eqgs. (4) and (5), we should obtain
Q[uv(x?),vxh,x,x/] = 0. (7)

This is the basic equation on which we further develop
our analysis. We note that at this stage there is no need
for accurate registration. The reason is that for the recov-
ery of g and [ we may decide to include only points that
reside on smooth image regions, discarding pixels in prox-
imity to edges. On the basis of Eqgs. (6) and (7), we aim to
calculate g and [/ simultaneously, subsequently deriving
r,M, and I.

B. Least-Squares Formalism

In this subsection we formulate the least-squares optimi-
zation equations for estimation of g(v) and [(x). The
ranges of v and x are discrete and finite. Hence the ranges
of g(v) and I[(x) are finite and discrete as well. Let P be the
number of registered scene points, which are arbitrarily
chosen, and let F be the number of frames. We denote by
x{, the location of a specific scene point p in frame f, in the
coordinate system of /. We define an error function ¥, on
the basis of Eqs. (6) and (7):
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F
> Qv v(xt),x), x|

Umax

Y E g")?%+ )\12 2 [V2(x) ]2 (8)

x=1y=1

The first sum in Eq. (8) penalizes for violation of Eq. (7).
The second and third sums are regularizing terms, which
require smoothness of the functions. The regularization
seeks to minimize the second derivations of g(v) and I(x).
We use the following approximations of second deriva-
tives:

g'w)=gv-1)-28)+g+1), 9)

Vax)=1(x-1,y) +1(x,y - 1) - 4l(x,y)

+lx+1,y)+1l(x,y+1). (10)

The parameters A\, and \; are weights of the regulariza-
tion terms, relative to the data-fitting term. Equation (8)
treats correspondences across the entire image sequence.
That is, our estimation problem is not based solely on cor-
respondences between consecutive frames, in contrast to
Refs. 26,30. Therefore we expect this method to be more
robust.

Measurements of low gray-level values have high rela-
tive uncertainty due to noise. Thus we want to increase
the relative weight of measurements [Egs. (6) and (7)] cor-
responding to high gray-level values v. For this purpose
we use a Weighted error function

P F-1
=22 E w?o(xh),v(xt) | v(xh),v(x),x),x |
p=1 f=1 e=f+1

+ g fg"(v)% AZE E [V2(x) ] (11)

x=1y=1

For any two readout values v; and vy, we defined the
weight function as

U109
w(vy,v) = AL (12)
2

(vi"+v

For a detailed explanation for this choice of weighting, see

Appendix A. We seek g(v) and [(x) that minimize ¥;.

The solution somewhat depends on the values of A, and
\; used. This issue is common in optimization processes
that include regularization terms. The effect of regular-
ization depends on the amount of data versus the number
of unknown variables. When we have enough data in the
form of Eq. (7), low values of A, and \; can be used. Using
values for A, and \; that are too low may result in fluc-
tuations in g(v) and [(x).

C. Avoiding a Trivial Solution

Interestingly, any two constant functions g(v)=const; and
l(x)=consty satisfy Eq. (7), yielding ¥;=0 in Eq. (11). A
constant g(v) implies 7~1(v)=1I,, where I, is a constant.
This is a nonphysical solution for the radiometric re-
sponse function, because in this case r(I) is not defined for
the full range of I but, rather, only for a single value. It is
clear that this class of solutions is not a desired one. To
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avoid it, we can make a minor assumption: Assume that,
in one local domain of v, the radiometric response func-
tion of r(v) is linear; thus also r~!(v) is linear in that
range. Let us denote the boundaries of this domain as
Ugtart @nd Ugpq; then, for this local domain,

ar~1
—=rlv+1)-rtv) =k, (13)
Jdu

where % is a slope of 7~1. The choice of the slope is arbi-
trary, as long as £ >0 (for monotonically increasing radio-
metric functions). Denote the irradiance correspondents
to r_l(vstart) by Istart- Then

r_l(v) = (U - Ustart)k + Istart, (14)

for v € [Vgtart, Venal- The error function ¥ is then

Uend

V=" + N 2 {g(v) - IOg[(U - vstart)k + Istart]}z-

VU=Ustart

(15)

The parameter \,, weights this local linearity require-
ment. As with %, the value I, is arbitrarily chosen, off-
setting the solution of g(v). The aspect of offsets is ad-
dressed in Section 4. We select v44p4 and venq as being a
few gray levels apart, around the middle of the gray-scale
range.

D. Matrix Formulation

In this subsection we describe a simple method for obtain-
ing the solution by using a matrix formulation. Let us or-
ganize M(x) in a column-stack vector and denote the vec-
tor by M(¥), where the scalar X corresponds to the vector
x. This vector is of length N=N2. Tracking some of the
scene points in several images provides many linear equa-
tions such as Eq. (7). This set of equations can be written
as

Rs=0, (16)

is the sought solution, composed of

g=[200),... 8Wma)1",  1=[U(D),... L], (18)

The matrix R is sparse. In each row n, the nonzero el-
ements of R are determined as follows:

R[n,v(x"]=-Rn,vx)]=1,

where

-R(n.8) =R(n.8)=1, (19)

where xf)o and xél are pixels corresponding to the same
scene point p as seen in different frames f; and f;.
The matrix R is of dimensions E X O, where E is the
number of equations of the form of Egs. (6) and (7) and
O=vmaX+N is the length of the vector s.

To accommodate the weighting described in Egs. (11)
and (12), we define the diagonal matrix W of size E X E.
Any element on the diagonal is of the form
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Win,n) = wlv), o)1, (20)

where w is defined in Eq. (12). Note that each element
W(n,n) varies according to the values of the intensities
used in the corresponding row n of R.

For regularization, we add matrix rows expressing
second-order derivatives of g and [. We use the common
approximation for the one-dimensional (1D) second-
derivative operator:

1-2 1 0

001 -2 1 0 oo

D-|. C|oey
0 v i e e e 01 201

We also use the common approximation for the two-
dimensional (2D) Laplacian operator, which is a generali-

zation of Eq. (21). This 2D operator is denoted by L and is
a sparse matrix of dimensions N X N. For details about
the mathematical expression of L, see Appendix B.
We then define an operator on s, which effectively op-
erates the second-order derivative on g(v), as
D,=(D, 0zl (22)
where 1~)v . is of the form of Eq. (21), with dimensions
(Vmax—2) X Upax. Here Of is a zero matrix of size
(Vmax—2) X N. As for the spatial smoothness of /(X), we

define an operator on s, which effectively operates the 2D
Laplacian over [(%), as

D,=[0,  LJ, (23)

where 0, s a zero matrix of size N X Upax

Combining Egs. (19), (20), (22), and (23) results in an
overconstrained system of equations. We seek the least-
squares solution of this system,

§ = arg min(s’A’As), (24)
S
where
WR
A=[\D,]|. 25)
ND;

This is achieved by singular-value decomposition (SVD).
SVD yields multiple solution vectors. Some vectors corre-
spond to a zero singular value and represent the trivial
solution described in Subsection 3.C. When these vectors
are excluded, the sought solution is the vector correspond-
ing to the smallest singular value.*® This solution under-
goes several transformations, which are described in Sec-
tion 4.

Let us assume now that M(x) is a 1D function over the

domain (1...N). As examples, we note two cases to which
this 1D model applies. In the first case, the nonuniformity
varies only along the x axis, and thus N=N. In the second
case, M(x) is isotropic; i.e., it changes only as a function of
the radius p from the center of the frame. In this case,

N=N/+2. In both cases, the number of unknown values of
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[ is much smaller than N2, and, for this reason, it is much
easier to solve the problem numerically.

In the 1D model we do not need to use the operator L in
Eq. (23) to regularize /(x). Rather, we use in Eq. (23) the

matrix D, defined in Eq. (21),
D,=[0, Dyl (26)

where ﬁg; is of the form of Eq. (21), with dimensions (N
-2) X N.

4. FUNDAMENTAL AMBIGUITIES

In this section we describe ambiguities that are funda-
mental to the problem. These ambiguities exist in every
method attempting to blindly estimate the radiometric re-
sponse function r() in conjunction with the optical non-
uniformity M(x). These ambiguities are analogous to
those that appear when r(I) is estimated in conjunction
with exposure times.?? Let us take a closer look at Egs. (6)
and (7). We denote by g(v) and /(x) the functions derived
from the true radiometric response and the true optical
nonuniformity. Together, they form the vector s and sat-
isfy Egs. (7) and (16). Let c, and ¢; be arbitrary constant
offsets. Interestingly, §=g(v) +c, and [=1(x)+c, satisfy Eq.
(16) as well. Therefore we cannot determine from the data
what the true offsets are. To alleviate this ambiguity, we
set max[r(I)]=1 and max[M(x)]=1. We should note that
this setting does not affect the appearance of the image
but only its global brightness scale.

In addition, the solution suffers from an exponential
ambiguity. If s is a true solution satisfying Eq. (16), then
Ks satisfies Eq. (16) as well. K is an arbitrary scale factor.
Hence g(v)=Kg(v) and Z(x)=Kl(x) are legitimate solutions.
Thus

#1(v) = exp[g(v)] = exp[Kg()]=[r ') [, (27
and
M(x) = exp[z(x)] =exp[Kl(x)] = [M(x)]K. (28)

Since K is arbitrary, the solution is ambiguous.

5. IRRADIANCE ESTIMATION

We will now describe how the ambiguities described in
Section 4 influence the estimation of image irradiance. On
the basis of the estimated spatial and radiometric func-
tions [Egs. (27) and (28)], we express the estimated irra-

diance value I by using Eq. (2):

[

f=——=
[M(x)]*

X (29)
This means that we may err in estimating the true value
of the image irradiance by this exponential ambiguity.
Note that K in Eq. (29) behaves exactly like a
y-correction operation. To appreciate the significance of
this result, recall that the entire analysis had not as-
sumed any parametric form for the response function.
Thanks to the process we performed, the problem became
much simpler: Now it is a parameterized problem, with
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only a single parameter that needs to be estimated for full
recovery of the irradiance. It is interesting to see that no
matter what the original response function is, the inten-
sity resulting from the estimation is y distorted, at most.

This exponential ambiguity is not severe in applica-
tions that do not require quantitative photometric mea-
surements. Such applications include display for human
interpretation. In these cases, recall that the user can
tune the display 7y correction for visual plausibility, and
therefore there is no need to determine K a priori.

A simple way to disambiguate the solution is to define a
criterion for image quality and then optimize it as a func-
tion of K. Reference 37 presents a blind gamma-
estimation method based on minimization of high-order
frequency correlation. Another suitable criterion can be
image entropy, to be maximized. This is the criterion we
used in the experiments described in Section 7. For quan-
titative photometric measurements, we can alleviate the
ambiguity by using minor a priori knowledge of either the
camera nonuniformity or of the radiometric response
function. In particular, knowledge of system transmit-
tance M(x) at two distinct pixels is sufficient to disam-
biguate the result. Then the unknown parameter K can
be calculated.

6. DATA FUSION

We now describe the method for estimating the irradiance
of each mosaic point, given its multiple corresponding
measurements. More explanations are described in Ref.
23. Let a measured intensity readout at a point be v(x)
with uncertainty Av(x). The estimated optical nonunifor-
mity is M(x), and the estimated radiometric response
function is 7. Compensating for the nonuniformity, we
find that the image irradiance in frame f is

A u(x)]
Ijy=——, (30)
M(x)
and its uncertainty is
ol
Al= A . 31
! v (x) v(x) 31)

We let the readout uncertainty be Av(x)=0.5, since the in-
tensity readout values are integers. In saturated pixels
the uncertainty is very high; thus their corresponding
Av(x) is set to be a very large number. Pixels are consid-
ered saturated if their value v(x) is very close to the cam-
era saturation limit, e.g., to 255 for an 8-bit detector.2’ We
estimate the irradiance as

=A%, I—’; (32)

ALy

where

1 -1/2
ﬁ:(}‘, ) . (33)

AT2
r Aly

Equation (32) is the maximum-likelihood estimation of I,
if the measurements I; are Gaussian and independent.
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Fig. 4. Images created with the filter M(x) and the radiometric
response function r(I). Scene features become darker toward the
frame periphery.

7. EXPERIMENTS

To demonstrate our method, we performed simulations as
well as experiments based on real data. First, we describe
the simulations and then the results of experiments.

A. Simulations

To create a sequence of simulated images, we took a wide
FOV image and divided it into a sequence of small
frames. Each frame was multiplied by a known nonuni-
form function M(x), which simulates a vignetting effect.
In our examples, we simulated 1D variations, in which
nonuniformity varies only along the x axis. We used the
resulting frames as inputs to a simulated radiometric re-
sponse function r(I). Finally, we added to each image v(x)
independent white Gaussian noise having a standard de-
viation of 2.5 gray levels. Figure 4 shows several images
that were created by this process, where M(x)=exp[
—(x/200)2] and r(I)=1°%. Here x denotes the horizontal
coordinate relative to the frame center, in units of pixels.
Subsequently, g(v)=log[r~1(v)] and I(x)=1og[M(x)] are de-
fined. Both g(v) and /(x) create the vector s according to
Eq. (17). The solid curve in Fig. 5 plots r~1(v) and M(x).

We used the synthetic image sequence to estimate the
vector §. First, the matrix R was created according to Egs.
(19). To impose smoothness, the Laplacian operators for
g(v) and I(x) were formulated. We estimated § according
to Eq. (24). We chose moderate values of \, and \; that
were sufficient for avoiding fluctuations in the solution.
According to Section 4, we expected an ambiguity in our
solution. For display purposes only, we alleviated this am-
biguity by manually multiplying § by a global factor, such
that its plot is comparable with the plot of s. The dashed
curve in Fig. 5 plots #71(v) and M (x), and it shows that the
estimated § closely matches the original vector s, except
for the said ambiguity.

On the basis of §, we extracted the functions #(I) and
M(x), and, on the basis of them, we then fused the frames
into a mosaic, as described in Section 6. Figure 6 shows
the final image mosaic that was derived from the simu-
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lated image sequence, samples of which are shown in Fig.
4. Note that no seams appear in Fig. 6, although we have
not performed any process dedicated to seam removal. In
contrast, Fig. 7 shows an image mosaic produced without
accounting for the radiometric distortions. That mosaic
contains seams. It is possible to remove those seams by
known feathering methods. However, we have demon-
strated that there is no need for such a process, since in
Fig. 6 we obtained a seamless mosaic without using feath-
ering. We have also checked our algorithm by using vari-

0

0 256 856

Fig. 5. Solid curve, the true inverted radiometric response func-
tion 7~!(v) and the true nonuniformity function M(x). Both func-
tions are concatenated. Dashed curve, the estimated solution

#1(v) and M(x) (concatenated).

Fig. 6. Image mosaic constructed in the simulation. No seams
appear in the mosaic, although the original images suffered from
an unknown vignetting, and the recovered vignetting and radio-
metric response erred by an exponential function. No dedicated
seam-removal method was applied.

Fig. 7. Image mosaic constructed by direct stitching without
compensating for the radiometric response function (/) and the
optical nonuniformity M(x).
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0
0 256 856

Fig. 8. Experiment that uses real data. Solid curve, the true in-
verted radiometric response function ~(v) and the true nonuni-
form function M(x). Both functions are concatenated. Dashed

curve, the estimated solution 7#~1(v) and M (x) (concatenated).

Fig. 9. Image frames sampled from a sequence acquired by a
Nikon D100 digital camera. A spatially varying optical filter had
been attached to the camera lens. Scene features become darker
toward the periphery of each frame.
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ous other functions for the optical nonuniformity M(x)
and camera radiometric response r(I). The results all re-
semble Figs. 5 and 6.

B. Experiments with Real Data

Our experiments were based on the use of a Nikon D100
digital single-lens reflex camera. An advantage of this
portable camera is its ability to acquire images in 12 bits
by use of a linear radiometric response. Moreover, its
RAW format yields data that have not undergone any pro-
cessing, including white balancing. This enables us to cre-
ate the effect of arbitrary radiometric response functions
in 8-bit images, in postprocessing. Thus the known radio-
metric response is helpful for assessing the effectiveness
of our calibration method. The camera exposure time and
aperture were constant during the acquisition process. To
create a strong vignetting effect, we attached a spatially
varying optical filter to the camera lens.*” The filter at-
tenuation of the irradiance varied along the x axis. In our
experiments we assumed that the effect of this 1D filter is
much more significant than the intrinsic 2D vignetting of
the lens. Hence we applied the simpler 1D analysis pro-
cedure. The solid curve in Fig. 8 shows r~1(v) and M(x) for
this system. The function M(x) was calibrated in a sepa-
rate process, to permit future validation.

Figure 9 shows some image frames that were acquired
by us. After acquisition, the frames were registered. We
then created the matrix A according to Eq. (25). For this
purpose, we selected 6000 random pairs of corresponding
pixels in different frames. Using this data, we estimated

7 1(v) and M (x), which are plotted by a dashed curve in
Fig. 8.

Figure 10 shows two mosaics resulting from the fusion
process described in Section 6. These mosaics differ only
by the value K, which we assigned in their construction.
The top result was based on a K value that maximized the
entropy of the displayed image. The bottom result was

Fig. 10. Image mosaics constructed on the basis of real experimental data. Two different values of K were used to construct these
mosaics. Seams are hardly apparent, although the original images suffered from an unknown vignetting, and the recovered vignetting
and radiometric response erred by an exponential function. No dedicated seam-removal method was applied.
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Fig. 11. Image mosaic constructed by direct stitching without compensating for the radiometric response function r(I) and for the op-

tical nonuniformity M(x).

constructed with another arbitrary K. We show these
cases to demonstrate that seams are hardly apparent,
even if we do not know what K is. Hence the nonunifor-
mity was corrected such that all frames are mutually con-
sistent. We stress again that we obtained seamless mosa-
icking without using any dedicated seam-removal method
such as feathering. In contrast, Fig. 11 shows the image

mosaic obtained without considering M (x) and 7(I). Incon-
sistencies of the radiometric measurements create seams,
since no feathering is attempted there.

8. DISCUSSION

We have presented a simple and practical method for es-
timating the optical nonuniformity and the radiometric
response function of imaging systems. This estimation
can be used for creating high-data-rate images in a wide
FOV. We have demonstrated this method by experiments
based on real data. We have created wide FOV image mo-
saics that are nearly seamless, without using dedicated
techniques for seam removal. The method is not limited to
nonuniformities caused by imaging optics. Rather, it can
also be applied if the camera gain is nonuniform (varies
across the frame FOV), while the spatial variations are
gradual.

The resulting mosaics are prone to an ambiguity. This
ambiguity is analogous to a fundamental ambiguity in
methods that simultaneously estimate the radiometric re-
sponse function and exposure ratios when multiple expo-
sures are used.>?> We have proved that the ambiguity has
the form of a y correction. Hence our method transforms a
nonparametric problem into the much simpler
y-correction operation. Interestingly, Ref. 37 presents a
blind y-correction method. Therefore it may be possible to
use the method of Ref. 37 to disambiguate the solution.

We do not claim that our method makes standard
methods for seam removal totally unnecessary. Those
methods are of general scope and can deal with cases in
which seams are not caused by camera nonuniformity but
rather by scene dynamics. Nevertheless, it is demon-
strated that for static scenes, seams can be mostly re-
moved simply by addressing their root cause.

There are three directions in which this work can be ex-
tended. First, we intend to generalize the solution to sys-
tems in which the camera gain varies temporally (owing
to an automatic gain-control mechanism), beyond the ac-
tion of the nonlinear response and the optical nonunifor-
mity. The second direction deals with cameras in which

r(I) varies spatially in a nongradual way. In the current
work, r(I) is a global operation applied to all pixels. This
is a good model for CCD cameras, since all pixels on the
detector chip transfer their charge to a single amplifier.
On the other hand, CMOS semiconductor cameras have a
distinct amplifier inside each pixel, and thus the radio-
metric response may slightly vary between pixels. An
analogous behavior occurs in thermal infrared cameras,
in which each pixel may have its own radiometric re-
sponse, parameterized by gain and bias.333¢ We expect
that generalizing the method to such cameras will be
more challenging. Finally, a similar analysis of color pic-
tures is a natural extension. In that case, there is a need
to model the nonlinear operations performed in color
spaces.

APPENDIX A: THE WEIGHT FUNCTION

To improve the performance of the algorithm described in
Section 3, we increase the influence of high gray-level val-
ues. The reason is that the signal-to-noise ratio typically
increases with the gray-level value. Moreover, as shown
next, the influence of camera nonuniformity in high gray-
level values is dominant over quantization, contrary to
the situation in low gray levels. Assume that we acquire
two scene points, one of which is dark and the other is
bright, with corresponding image irradiances of 4, and
Liyignt, respectively. Both points are acquired in two
frames f; and f5. In f7, both points are measured through
a region in the camera FOV for which M=1, leading to
values v/l ,=1 and v’{}right=100, respectively. In f5 both
points are measured through a region in the camera FOV
for which M=0.9. Hence in f; we measure v’;%ight=90. On
the other hand, v’:fark= 1, rather than 0.9, owing to round-
ing by the quantizer. This means that Eq. (7) is strongly
violated for dark scene points.

To address this problem, we define a weight function
w(,v2), where v/1 and v/ are the gray levels of the
scene point in frames f; and f5, respectively. The uncer-
tainties of these values are Av/t and Av/2. We assume that
Avfi=Avf2=¢, where o is a constant (unless the pixel is
saturated). Owing to the noise, Eq. (7) is violated:

g - g(W?) - 1(x") + 1(x/2) = 0+ AQ(W1,v/2), (A1)

where AQ is the uncertainty of Eq. (7) due to Av/t and
Av’2. We can express it as
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0Q 2 (7Q 2 11/2
f1 f2) = — _°
AQV'1,v"2) 0|:(8vf1> +(¢9vf2) ] . (A2)

Thus

1 (97'_1 2 1 (97'_1 211/2
AQ(1,v2) = & — | | .
Q ) r‘_l(vfl) gul r—l(Ufz) Juvl2

(A3)
26,37

Assume for a moment that the radiometric response
function r is of the form r~v”. In this case,

1 2 1 2 11/2
]

vfpf2 -1

[0 + (WP ey

= yo

The uncertainty [Eq. (A4)] increases for low gray-level
values. We want to give a low weight to less reliable
points. To accomplish this, we use the weight function
w(,vf2) in Eqs. (11), (24), and (25) such as w(v/1,vf2)
<« AQ(v1,vf2)1:

vfpfe

fipfey o ——
W) = TR o

(A5)

This weight function increases the influence of high gray
levels and decreases the influence of low gray levels in
Eqgs. (11), (24), and (25). Note that the development of this
weight function was based on a response function of the
form r~uv?”. Recall, however, that we generally assume no
parametric knowledge of . Hence, in general, it is not of
the form r~v”. Nevertheless, we assume that the above
weight function is good enough to achieve its purpose.

APPENDIX B: TWO-DIMENSIONAL
LAPLACIAN OPERATOR

Let B be an arbitrary matrix of size N X N while b is a
column-stack vector representation of this matrix. We
should express the 2D Laplacian operator L for the vector
b. Apparently, Eq. (10) can be written as a Toeplitz ma-
trix. However, boundary pixels should be treated differ-
ently. The matrix B, as depicted in Fig. 12, has two mar-
gin columns (first and last) and several internal columns.
Margin columns consist of corner elements, which we call
a,,, and internal elements, which we call ;. In a similar
way, each internal column B of B (see Fig. 12) has two
marginal elements, which we call 3,, (elements of the first
and last rows of B). Accounting for these boundary
considerations, we find that the Laplacian operator
LeRN x N ig 5 sparse matrix having five nonzero diago-
nals: The main diagonal is

-4 ifN<n<N?-Nandn+#jNjN+1,
jell,N-1]
0 ifn=1N,N°-N+1,N? ’

-2 otherwise

L(n,n) =

(B1)

the first diagonals are
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Fig. 12. Arbitrary 2D matrix B.

- 1 ifn#jN,jN+1,j€[O0,
L(n,nil)={ o J.,J # 1/ <l0N] , (B2)
0 otherwise
and the Nth diagonals are
i 1 fN<n<N?’-N B
(n,n = N) = 0 otherwise (B3)
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