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Radiometric framework for image mosaicking
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Nonuniform exposures often affect imaging systems, e.g., owing to vignetting. Moreover, the sensor’s radio-
metric response may be nonlinear. These characteristics hinder photometric measurements. They are particu-
larly annoying in image mosaicking, in which images are stitched to enhance the field of view. Mosaics suffer
from seams stemming from radiometric inconsistencies between raw images. Prior methods feathered the
seams but did not address their root cause. We handle these problems in a unified framework. We suggest a
method for simultaneously estimating the radiometric response and the camera nonuniformity, based on a
frame sequence acquired during camera motion. The estimated functions are then compensated for. This per-
mits image mosaicking, in which no seams are apparent. There is no need to resort to dedicated seam-
feathering methods. Fundamental ambiguities associated with this estimation problem are stated. © 2005
Optical Society of America

OCIS codes: 100.3190, 100.3020, 110.0110, 350.2660, 150.0150, 040.1490.
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. INTRODUCTION
maging systems are prone to problems stemming from
onuniform irradiance of the detector plane and from a
onlinear response of the sensor. The first problem is op-
ical: Owing to vignetting and foreshortening,1 the sensor
eriphery is not illuminated as intensely as its center.
he second problem is electronic: The light signal is
ranslated into a weak electric signal, which is then am-
lified prior to being sent to the camera output or storage.
his amplifier may not be linear. Moreover, a nonlinear
esponse may partly be due to special optical components
n the imaging system.2,3 These phenomena should be
ompensated, if quantitative photometric measurements
re sought on the basis of the image data.
A particular application in which these effects are ap-

arent is image mosaicking.4 Mosaicking is a common
ethod to obtain a wide field-of-view (FOV) image of a

cene. Images are captured as a camera moves and are
hen stitched together to obtain an extended image. Mo-
aicking has been used extensively in various scientific
elds.7–9,11–17 Typically, a radiometric mismatch exists be-
ween the different frames, owing to the above-mentioned
roblems. This results in seams in the stitched image mo-
aic. Various methods were developed to feather the
eams12,18–20 or camouflage them10 in scene edges. How-
ver, those pure image-processing methods address the
erceptual effects of seams rather than accounting for the
oot cause of the mismatch.

Apparently, these problems can be solved in the optical
evel: Had the imaging system been perfect, radiometric
nconsistencies would not have occurred. However, even
n inconsistency of 1% is noticeable in 8-bit sensors (and
ertainly in higher-sensitivity sensors). Moreover, hu-
ans can easily detect such minute radiometric errors, as

emonstrated in Fig. 1. Hence this utopian line of thought
ay pose impractical tolerances on the optical engineer-

ng process. For this reason, image nonuniformities and
ensor nonlinearities are a fact of life. Moreover, some-
1084-7529/05/050839-10/$15.00 © 2
imes spatial nonuniformities can be of benefit, since they
an improve the dynamic range of the imaging
ystem.21–23 In particular, this was demonstrated by gen-
ralized mosaicking22,23: Scene points that are saturated
n some frames become unsaturated in others, thanks to
he spatial nonuniformity of the system (Fig. 2). In the
ast, however, generalized mosaicking was limited to
ameras having a linear radiometric response or at least a
nown response.
Nonuniformities and sensor nonlinearly can be com-

ensated for if they are carefully precalibrated. A stan-
ard calibration process, however, may not always be
ractical. For example, in zoom lenses the nonuniformi-
ies should be measured for all possible zoom, focus, and
perture settings. In addition, the performance of the
amera (in particular its electronics) may somewhat de-
rade over long periods of time, especially in harsh envi-
onments. Moreover, calibration equipment may not be
vailable or affordable to all.
For these reasons, in this paper we propose a hybrid so-

ution to the problem. It combines computer-vision tools
ith a model that accounts for the physical processes oc-

urring in the imaging system. The nonuniformity and
onlinearity are blindly self-calibrated on the basis of or-
inary scenes, as part of the mission the imaging system
s designed to do. The situation analyzed is such that an
nknown optical nonuniformity exists in the imaging sys-
em, as well as an unknown nonlinear radiometric re-
ponse. We then suggest a method for simultaneously es-
imating both of them.

In addition, we discuss fundamental ambiguities asso-
iated with our estimation problem. In spite of these am-
iguities, the method is able to compensate for the image
onuniformity, such that all the resulting images are mu-
ually consistent. Hence the output value of a scene point
s the same (excluding random noise), whether it is im-
ged at the center of a frame or at the periphery of a
rame. The compensation for the nonuniformity and non-
005 Optical Society of America
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inearity yields images that are equivalent to the scene
adiance. We then use the outputs corresponding to dif-
erent frames to construct wide FOV image mosaics. The
ompensation quality is sufficiently high to practically
liminate the visibility of seams in mosaics without re-
orting to dedicated seam-removal techniques.

We note that studies have been carried out with the
im of estimating the radiometric response function by
sing known temporal variations of exposure.24,25 On the
asis of those studies, methods for estimating the radio-
etric response, by using unknown temporal variations

f exposure26–28 or gain29,30 were developed. There are
nalogies between these studies and our work, because
ptical nonuniformity in a moving camera has an effect
imilar to temporal variation of exposure. However, Refs.
6,30,31 are based on parametric models of the radiomet-
ic response. In contrast, it is demonstrated in this work
hat it is possible to estimate the radiometric response
nd the optical nonuniformity without prior parametric
odels. The ambiguities involved in our estimation prob-

em are analogous to those determined by Grossberg and
ayer32 (with regard to methods that use temporal varia-

ions of exposure25,26,28,30,31). Nevertheless, we show that
hese ambiguities can be solved with very little a priori
nowledge of either the camera non uniformity or the ra-
iometric response function.
This work may be related to methods designed for ther-
al infrared imaging. Nonuniformity correction (NUC)

lgorithms have been devised to handle fixed pattern
oise caused by pixel-dependent sensitivities to thermal

ig. 1. Illustrating human sensitivity to radiometric mismatch.
everal consecutive image parts were biased by 4% with respect
o each other, as if stitched by a process of mosaicking. Even such
small mismatch creates clear visual artifacts.

ig. 2. Several frames from a simulated image sequence ac-
uired by a camera with optical nonuniformity. Owing to the
onuniformity, each scene point is acquired with a different op-
ical setting. The selected region is saturated in frame 5 and not
aturated in frames 1 and 3.
adiation. Analogous to our method, recent nonuniformity
orrection algorithms have been scene based and ex-
loited image motion33–36; however, these studies are dif-
erent from ours. Existing NUC algorithms for thermal
ensors assume a linear radiometric response with spa-
ially varying bias. On the other hand, our work handles
eneral nonlinear radiometric response functions and, in
ddition, exploits the spatial correlations of nonuniformi-
ies caused by optical transfer.

. STATEMENT OF THE PROBLEM
onsider a system in which the irradiance at the detector
lane is spatially varying, when the scene radiance is uni-
orm. This can happen because of vignetting, foreshorten-
ng, or lens distortions (Fig. 3). This spatially varying op-
ical response is denoted Msxd, where x= sx ,yd is a
ocation vector in the local coordinate system of the frame,
here xP f1,Ng2. Here N denotes the number of pixels
long each transversal axis of the detector array. We de-
ne Ĩsxd=MsxdIsxd as the irradiance falling on the camera
etector, accounting for the spatial variation. Here I is the
rradiance falling on the camera detector when M=1. The
rradiance falling on the detector is converted into an
lectric signal via the camera amplifier, which has a ra-
iometric response rsId. The radiometric function is gen-
rally nonlinear,24–27,31,32,37,38 usually owing to properties
f electronic amplifiers. Alternatively, in image intensifi-
rs, nonlinearity can stem from the response of the
hosphors39 of the intensifying tube.
The gray-level value v in pixel x is

vsxd = rfĨsxdg = rfMsxdIsxdg. s1d

he range of gray-level values in the detector is
P f0,vmaxg, where vmax=255 for 8-bit digital cameras.
Suppose that the radiometric response function rsId

nd the optical nonuniformity Msxd of this system are un-
nown. Our goal is to estimate these unknown functions.
onsequently, we aim to estimate the image irradiance I
ith high dynamic range and in a wide FOV. The ques-

ions we pose are the following:

1. Can this estimation problem be solved on the basis
f an image sequence taken for mosaicking?

2. What are the fundamental limitations of this esti-
ation?

ig. 3. Imaging system model. The optical system induces spa-
ial inhomogeneities on the image, which are characterized by

sxd. The camera electronics has an unknown radiometric re-
ponse rsId.
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3. Can this estimation be good enough to create seam-
ess image mosaics without resorting to feathering tech-
iques?

. SOLUTION
. Fundamental Equation
ypically, the radiometric response function of the camera
is monotonic.40 Therefore r is invertible, and hence we

an write

r−1fvsxdg = Ĩsxd = MsxdIsxd. s2d

hus

loghr−1fvsxdgj = logfMsxdg + logfIsxdg. s3d

e define the functions gfvsxdg; loghr−1fvsxdgj and
sxd; logfMsxdg. Equation (3) is then

gfvsxp
f0dg = lsxp

f0d + logsId, s4d

here xp
f0 denotes the pixel in frame f0 onto which a scene

oint p is imaged.
Owing to camera motion, the same scene point is mea-

ured in frame f1 at image pixel xp
f1. We assume that the

cene is static during the acquisition of the sequence.
hus the radiance at scene points does not change in
ime. This allows us to compare measurements across
rames. Particularly, the scene point analyzed in Eq. (4)
ields

gfvsxp
f1dg = lsxp

f1d + logsId. s5d

ssume that the image registration process8,16,20,22,30,41–45

s successful, i.e., that corresponding image pixels are reg-
stered. We define

Qfvsxp
f0d,vsxp

f1d,xp
f0,xp

f1g ; gfvsxp
f0dg − gfvsxp

f1dg
− lsxp

f0d + lsxp
f1d. s6d

ccording to Eqs. (4) and (5), we should obtain

Qfvsxp
f0d,vsxp

f1d,xp
f0,xp

f1g = 0. s7d

his is the basic equation on which we further develop
ur analysis. We note that at this stage there is no need
or accurate registration. The reason is that for the recov-
ry of g and l we may decide to include only points that
eside on smooth image regions, discarding pixels in prox-
mity to edges. On the basis of Eqs. (6) and (7), we aim to
alculate g and l simultaneously, subsequently deriving
,M, and I.

. Least-Squares Formalism
n this subsection we formulate the least-squares optimi-
ation equations for estimation of gsvd and lsxd. The
anges of v and x are discrete and finite. Hence the ranges
f gsvd and lsxd are finite and discrete as well. Let P be the
umber of registered scene points, which are arbitrarily
hosen, and let F be the number of frames. We denote by
p
f the location of a specific scene point p in frame f, in the
oordinate system of f. We define an error function C0 on
he basis of Eqs. (6) and (7):
C0 = o
p=1

P

o
f=1

F−1

o
e=f+1

F

Q2fvsxp
f d,vsxp

e d,xp
f ,xp

eg

+ lg o
v=0

vmax

g9svd2 + llo
x=1

N

o
y=1

N

f¹2lsxdg2. s8d

he first sum in Eq. (8) penalizes for violation of Eq. (7).
he second and third sums are regularizing terms, which
equire smoothness of the functions. The regularization
eeks to minimize the second derivations of gsvd and lsxd.
e use the following approximations of second deriva-

ives:

g9svd ; gsv − 1d − 2gsvd + gsv + 1d, s9d

¹2lsxd ; lsx − 1,yd + lsx,y − 1d − 4lsx,yd

+ lsx + 1,yd + lsx,y + 1d. s10d

he parameters lg and ll are weights of the regulariza-
ion terms, relative to the data-fitting term. Equation (8)
reats correspondences across the entire image sequence.
hat is, our estimation problem is not based solely on cor-
espondences between consecutive frames, in contrast to
efs. 26,30. Therefore we expect this method to be more
obust.

Measurements of low gray-level values have high rela-
ive uncertainty due to noise. Thus we want to increase
he relative weight of measurements [Eqs. (6) and (7)] cor-
esponding to high gray-level values v. For this purpose
e use a weighted error function

C1 = o
p=1

P

o
f=1

F−1

o
e=f+1

F

w2fvsxp
f d,vsxp

e dgQ2fvsxp
f d,vsxp

e d,xp
f ,xp

eg

+ lg o
v=0

vmax

g9svd2 + llo
x=1

N

o
y=1

N

f¹2lsxdg2. s11d

or any two readout values v1 and v2, we defined the
eight function as

wsv1,v2d =
v1v2

sv1
2 + v2

2d1/2 . s12d

or a detailed explanation for this choice of weighting, see
ppendix A. We seek ĝsvd and l̂sxd that minimize C1.
The solution somewhat depends on the values of lg and

l used. This issue is common in optimization processes
hat include regularization terms. The effect of regular-
zation depends on the amount of data versus the number
f unknown variables. When we have enough data in the
orm of Eq. (7), low values of lg and ll can be used. Using
alues for lg and ll that are too low may result in fluc-
uations in gsvd and lsxd.

. Avoiding a Trivial Solution
nterestingly, any two constant functions gsvd=const1 and
sxd=const2 satisfy Eq. (7), yielding C1=0 in Eq. (11). A
onstant gsvd implies r−1svd=I0, where I0 is a constant.
his is a nonphysical solution for the radiometric re-
ponse function, because in this case rsId is not defined for
he full range of I but, rather, only for a single value. It is
lear that this class of solutions is not a desired one. To
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void it, we can make a minor assumption: Assume that,
n one local domain of v, the radiometric response func-
ion of rsvd is linear; thus also r−1svd is linear in that
ange. Let us denote the boundaries of this domain as
start and vend; then, for this local domain,

]r−1

]v
= r−1sv + 1d − r−1svd = k, s13d

here k is a slope of r−1. The choice of the slope is arbi-
rary, as long as k.0 (for monotonically increasing radio-
etric functions). Denote the irradiance correspondents

o r−1svstartd by Istart. Then

r−1svd = sv − vstartdk + Istart, s14d

or vP fvstart ,vendg. The error function C is then

C = C1 + lm o
v=vstart

vend

hgsvd − logfsv − vstartdk + Istartgj2.

s15d

he parameter lm weights this local linearity require-
ent. As with k, the value Istart is arbitrarily chosen, off-

etting the solution of gsvd. The aspect of offsets is ad-
ressed in Section 4. We select vstart and vend as being a
ew gray levels apart, around the middle of the gray-scale
ange.

. Matrix Formulation
n this subsection we describe a simple method for obtain-
ng the solution by using a matrix formulation. Let us or-
anize Msxd in a column-stack vector and denote the vec-
or by Msx̃d, where the scalar x̃ corresponds to the vector
. This vector is of length Ñ=N2. Tracking some of the
cene points in several images provides many linear equa-
ions such as Eq. (7). This set of equations can be written
s

Rs = 0, s16d

here

s = Sg

lD s17d

s the sought solution, composed of

g = fgs0d,… gsvmaxdgT, l = fls1d,… lsÑdgT. s18d

The matrix R is sparse. In each row n, the nonzero el-
ments of R are determined as follows:

Rfn,vsxp
f0dg = − Rfn,vsxp

f1dg = 1,

− Rsn, x̃p
f0d = Rsn, x̃p

f1d = 1, s19d

here xp
f0 and xp

f1 are pixels corresponding to the same
cene point p as seen in different frames f0 and f1.
he matrix R is of dimensions E 3 O, where E is the
umber of equations of the form of Eqs. (6) and (7) and
=vmax+Ñ is the length of the vector s.
To accommodate the weighting described in Eqs. (11)

nd (12), we define the diagonal matrix W of size E 3 E.
ny element on the diagonal is of the form
Wsn,nd = wfvsxp
f0d,vsxp

f1dg, s20d

here w is defined in Eq. (12). Note that each element
sn ,nd varies according to the values of the intensities

sed in the corresponding row n of R.
For regularization, we add matrix rows expressing

econd-order derivatives of g and l. We use the common
pproximation for the one-dimensional (1D) second-
erivative operator:

D̃ = 3
1 − 2 1 0 … … … … … …

0 1 − 2 1 0 … … … … …

] ]

0 … … … … … 0 1 − 2 1
4 . s21d

e also use the common approximation for the two-
imensional (2D) Laplacian operator, which is a generali-
ation of Eq. (21). This 2D operator is denoted by L̃ and is
sparse matrix of dimensions Ñ 3 Ñ. For details about

he mathematical expression of L̃, see Appendix B.
We then define an operator on s, which effectively op-

rates the second-order derivative on gsvd, as

Dg = fD̃vmax
0Ñg, s22d

here D̃vmax
is of the form of Eq. (21), with dimensions

vmax−2d 3 vmax. Here 0Ñ is a zero matrix of size
vmax−2d 3 Ñ. As for the spatial smoothness of lsx̃d, we
efine an operator on s, which effectively operates the 2D
aplacian over lsx̃d, as

Dl = f0vmax
L̃g, s23d

here 0vmax
is a zero matrix of size Ñ 3 vmax.

Combining Eqs. (19), (20), (22), and (23) results in an
verconstrained system of equations. We seek the least-
quares solution of this system,

ŝ = arg min
s

sstAtAsd, s24d

here

A = 3 WR

lgDg

llDl
4 . s25d

his is achieved by singular-value decomposition (SVD).
VD yields multiple solution vectors. Some vectors corre-
pond to a zero singular value and represent the trivial
olution described in Subsection 3.C. When these vectors
re excluded, the sought solution is the vector correspond-
ng to the smallest singular value.46 This solution under-
oes several transformations, which are described in Sec-
ion 4.

Let us assume now that Msxd is a 1D function over the
omain s1…Ñd. As examples, we note two cases to which
his 1D model applies. In the first case, the nonuniformity
aries only along the x axis, and thus N=N. In the second
ase, Msxd is isotropic; i.e., it changes only as a function of
he radius r from the center of the frame. In this case,
˜ =N /Î2. In both cases, the number of unknown values of
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is much smaller than N2, and, for this reason, it is much
asier to solve the problem numerically.

In the 1D model we do not need to use the operator L̃ in
q. (23) to regularize lsxd. Rather, we use in Eq. (23) the
atrix D̃, defined in Eq. (21),

Dl = f0vmax
D̃Ñg , s26d

here D̃Ñ is of the form of Eq. (21), with dimensions sÑ
2d 3 Ñ.

. FUNDAMENTAL AMBIGUITIES
n this section we describe ambiguities that are funda-
ental to the problem. These ambiguities exist in every
ethod attempting to blindly estimate the radiometric re-

ponse function rsId in conjunction with the optical non-
niformity Msxd. These ambiguities are analogous to
hose that appear when rsId is estimated in conjunction
ith exposure times.32 Let us take a closer look at Eqs. (6)
nd (7). We denote by gsvd and lsxd the functions derived
rom the true radiometric response and the true optical
onuniformity. Together, they form the vector s and sat-

sfy Eqs. (7) and (16). Let cg and cl be arbitrary constant
ffsets. Interestingly, ĝ=gsvd+cg and l̂= lsxd+cl satisfy Eq.
16) as well. Therefore we cannot determine from the data
hat the true offsets are. To alleviate this ambiguity, we

et maxfrsIdg=1 and maxfMsxdg=1. We should note that
his setting does not affect the appearance of the image
ut only its global brightness scale.
In addition, the solution suffers from an exponential

mbiguity. If s is a true solution satisfying Eq. (16), then
s satisfies Eq. (16) as well. K is an arbitrary scale factor.
ence ĝsvd=Kgsvd and l̂sxd=Klsxd are legitimate solutions.
hus

r̂−1svd = expfĝsvdg = expfKgsvdg = fr−1svdgK, s27d

nd

M̂sxd = expfl̂sxdg = expfKlsxdg = fMsxdgK. s28d

ince K is arbitrary, the solution is ambiguous.

. IRRADIANCE ESTIMATION
e will now describe how the ambiguities described in

ection 4 influence the estimation of image irradiance. On
he basis of the estimated spatial and radiometric func-
ions [Eqs. (27) and (28)], we express the estimated irra-
iance value Î by using Eq. (2):

Î =
fr−1svdgK

fMsxdgK = IK. s29d

his means that we may err in estimating the true value
f the image irradiance by this exponential ambiguity.

Note that K in Eq. (29) behaves exactly like a
-correction operation. To appreciate the significance of
his result, recall that the entire analysis had not as-
umed any parametric form for the response function.
hanks to the process we performed, the problem became
uch simpler: Now it is a parameterized problem, with
nly a single parameter that needs to be estimated for full
ecovery of the irradiance. It is interesting to see that no
atter what the original response function is, the inten-

ity resulting from the estimation is g distorted, at most.
This exponential ambiguity is not severe in applica-

ions that do not require quantitative photometric mea-
urements. Such applications include display for human
nterpretation. In these cases, recall that the user can
une the display g correction for visual plausibility, and
herefore there is no need to determine K a priori.

A simple way to disambiguate the solution is to define a
riterion for image quality and then optimize it as a func-
ion of K. Reference 37 presents a blind gamma-
stimation method based on minimization of high-order
requency correlation. Another suitable criterion can be
mage entropy, to be maximized. This is the criterion we
sed in the experiments described in Section 7. For quan-
itative photometric measurements, we can alleviate the
mbiguity by using minor a priori knowledge of either the
amera nonuniformity or of the radiometric response
unction. In particular, knowledge of system transmit-
ance Msxd at two distinct pixels is sufficient to disam-
iguate the result. Then the unknown parameter K can
e calculated.

. DATA FUSION
e now describe the method for estimating the irradiance

f each mosaic point, given its multiple corresponding
easurements. More explanations are described in Ref.

3. Let a measured intensity readout at a point be vsxd
ith uncertainty Dvsxd. The estimated optical nonunifor-
ity is M̂sxd, and the estimated radiometric response

unction is r̂. Compensating for the nonuniformity, we
nd that the image irradiance in frame f is

If =
r̂−1fvsxdg

M̂sxd
, s30d

nd its uncertainty is

DIf = U ]If

]vsxd
DvsxdU . s31d

e let the readout uncertainty be Dvsxd=0.5, since the in-
ensity readout values are integers. In saturated pixels
he uncertainty is very high; thus their corresponding
vsxd is set to be a very large number. Pixels are consid-
red saturated if their value vsxd is very close to the cam-
ra saturation limit, e.g., to 255 for an 8-bit detector.23 We
stimate the irradiance as

Î = DÎ2o
f

If

DIf
2 , s32d

here

DÎ = So
f

1

DIf
2D−1/2

. s33d

quation (32) is the maximum-likelihood estimation of I,
f the measurements I are Gaussian and independent.
f
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. EXPERIMENTS
o demonstrate our method, we performed simulations as
ell as experiments based on real data. First, we describe

he simulations and then the results of experiments.

. Simulations
o create a sequence of simulated images, we took a wide
OV image and divided it into a sequence of small

rames. Each frame was multiplied by a known nonuni-
orm function Msxd, which simulates a vignetting effect.
n our examples, we simulated 1D variations, in which
onuniformity varies only along the x axis. We used the
esulting frames as inputs to a simulated radiometric re-
ponse function rsId. Finally, we added to each image vsxd
ndependent white Gaussian noise having a standard de-
iation of 2.5 gray levels. Figure 4 shows several images
hat were created by this process, where Msxd=expf
sx /200d2g and rsId=I0.45. Here x denotes the horizontal
oordinate relative to the frame center, in units of pixels.
ubsequently, gsvd=logfr−1svdg and lsxd=logfMsxdg are de-
ned. Both gsvd and lsxd create the vector s according to
q. (17). The solid curve in Fig. 5 plots r−1svd and Msxd.
We used the synthetic image sequence to estimate the

ector ŝ. First, the matrix R was created according to Eqs.
19). To impose smoothness, the Laplacian operators for
svd and lsxd were formulated. We estimated ŝ according
o Eq. (24). We chose moderate values of lg and ll that
ere sufficient for avoiding fluctuations in the solution.
ccording to Section 4, we expected an ambiguity in our
olution. For display purposes only, we alleviated this am-
iguity by manually multiplying ŝ by a global factor, such
hat its plot is comparable with the plot of s. The dashed
urve in Fig. 5 plots r̂−1svd and M̂sxd, and it shows that the
stimated ŝ closely matches the original vector s, except
or the said ambiguity.

On the basis of ŝ, we extracted the functions r̂sId and
ˆ sxd, and, on the basis of them, we then fused the frames
nto a mosaic, as described in Section 6. Figure 6 shows
he final image mosaic that was derived from the simu-

ig. 4. Images created with the filter Msxd and the radiometric
esponse function rsId. Scene features become darker toward the
rame periphery.
ated image sequence, samples of which are shown in Fig.
. Note that no seams appear in Fig. 6, although we have
ot performed any process dedicated to seam removal. In
ontrast, Fig. 7 shows an image mosaic produced without
ccounting for the radiometric distortions. That mosaic
ontains seams. It is possible to remove those seams by
nown feathering methods. However, we have demon-
trated that there is no need for such a process, since in
ig. 6 we obtained a seamless mosaic without using feath-
ring. We have also checked our algorithm by using vari-

ig. 5. Solid curve, the true inverted radiometric response func-
ion r−1svd and the true nonuniformity function Msxd. Both func-
ions are concatenated. Dashed curve, the estimated solution

ˆ−1svd and M̂sxd (concatenated).

ig. 6. Image mosaic constructed in the simulation. No seams
ppear in the mosaic, although the original images suffered from
n unknown vignetting, and the recovered vignetting and radio-
etric response erred by an exponential function. No dedicated

eam-removal method was applied.

ig. 7. Image mosaic constructed by direct stitching without
ompensating for the radiometric response function rsId and the
ptical nonuniformity Msxd.
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us other functions for the optical nonuniformity Msxd
nd camera radiometric response rsId. The results all re-
emble Figs. 5 and 6.

. Experiments with Real Data
ur experiments were based on the use of a Nikon D100
igital single-lens reflex camera. An advantage of this
ortable camera is its ability to acquire images in 12 bits
y use of a linear radiometric response. Moreover, its
AW format yields data that have not undergone any pro-
essing, including white balancing. This enables us to cre-
te the effect of arbitrary radiometric response functions
n 8-bit images, in postprocessing. Thus the known radio-

etric response is helpful for assessing the effectiveness
f our calibration method. The camera exposure time and
perture were constant during the acquisition process. To
reate a strong vignetting effect, we attached a spatially
arying optical filter to the camera lens.47 The filter at-
enuation of the irradiance varied along the x axis. In our
xperiments we assumed that the effect of this 1D filter is
uch more significant than the intrinsic 2D vignetting of

he lens. Hence we applied the simpler 1D analysis pro-
edure. The solid curve in Fig. 8 shows r−1svd and Msxd for
his system. The function Msxd was calibrated in a sepa-
ate process, to permit future validation.

Figure 9 shows some image frames that were acquired
y us. After acquisition, the frames were registered. We
hen created the matrix A according to Eq. (25). For this
urpose, we selected 6000 random pairs of corresponding
ixels in different frames. Using this data, we estimated

ˆ−1svd and M̂sxd, which are plotted by a dashed curve in
ig. 8.
Figure 10 shows two mosaics resulting from the fusion

rocess described in Section 6. These mosaics differ only
y the value K, which we assigned in their construction.
he top result was based on a K value that maximized the
ntropy of the displayed image. The bottom result was

l data. Two different values of K were used to construct these
ered from an unknown vignetting, and the recovered vignetting
ed seam-removal method was applied.
ig. 8. Experiment that uses real data. Solid curve, the true in-
erted radiometric response function r−1svd and the true nonuni-
orm function Msxd. Both functions are concatenated. Dashed
urve, the estimated solution r̂−1svd and M̂sxd (concatenated).
ig. 9. Image frames sampled from a sequence acquired by a
ikon D100 digital camera. A spatially varying optical filter had
een attached to the camera lens. Scene features become darker
oward the periphery of each frame.
ig. 10. Image mosaics constructed on the basis of real experimenta
osaics. Seams are hardly apparent, although the original images suff

nd radiometric response erred by an exponential function. No dedicat



c
c
e
m
s
i
s
m
s
s

8
W
t
r
c
F
b
s
t
n
a
a
g

a
m
s
s
t
n
g
b
u

m
m
w
r
s
m

t
t
t
t
m

r
w
i
d
O
d
m
a
i
s
t
m
t
t
s

A
T
S
u
i
n
l
t
t
b
I
f
a
v
p
f
t
i
v

w
s
t
D
s

w
D

F
t

846 J. Opt. Soc. Am. A/Vol. 22, No. 5 /May 2005 A. Litvinov and Y. Y. Schechner
onstructed with another arbitrary K. We show these
ases to demonstrate that seams are hardly apparent,
ven if we do not know what K is. Hence the nonunifor-
ity was corrected such that all frames are mutually con-

istent. We stress again that we obtained seamless mosa-
cking without using any dedicated seam-removal method
uch as feathering. In contrast, Fig. 11 shows the image
osaic obtained without considering M̂sxd and r̂sId. Incon-

istencies of the radiometric measurements create seams,
ince no feathering is attempted there.

. DISCUSSION
e have presented a simple and practical method for es-

imating the optical nonuniformity and the radiometric
esponse function of imaging systems. This estimation
an be used for creating high-data-rate images in a wide
OV. We have demonstrated this method by experiments
ased on real data. We have created wide FOV image mo-
aics that are nearly seamless, without using dedicated
echniques for seam removal. The method is not limited to
onuniformities caused by imaging optics. Rather, it can
lso be applied if the camera gain is nonuniform (varies
cross the frame FOV), while the spatial variations are
radual.

The resulting mosaics are prone to an ambiguity. This
mbiguity is analogous to a fundamental ambiguity in
ethods that simultaneously estimate the radiometric re-

ponse function and exposure ratios when multiple expo-
ures are used.32 We have proved that the ambiguity has
he form of a g correction. Hence our method transforms a
onparametric problem into the much simpler
-correction operation. Interestingly, Ref. 37 presents a
lind g-correction method. Therefore it may be possible to
se the method of Ref. 37 to disambiguate the solution.
We do not claim that our method makes standard
ethods for seam removal totally unnecessary. Those
ethods are of general scope and can deal with cases in
hich seams are not caused by camera nonuniformity but

ather by scene dynamics. Nevertheless, it is demon-
trated that for static scenes, seams can be mostly re-
oved simply by addressing their root cause.
There are three directions in which this work can be ex-

ended. First, we intend to generalize the solution to sys-
ems in which the camera gain varies temporally (owing
o an automatic gain-control mechanism), beyond the ac-
ion of the nonlinear response and the optical nonunifor-
ity. The second direction deals with cameras in which

ig. 11. Image mosaic constructed by direct stitching without c
ical nonuniformity Msxd.
sId varies spatially in a nongradual way. In the current
ork, rsId is a global operation applied to all pixels. This

s a good model for CCD cameras, since all pixels on the
etector chip transfer their charge to a single amplifier.
n the other hand, CMOS semiconductor cameras have a
istinct amplifier inside each pixel, and thus the radio-
etric response may slightly vary between pixels. An

nalogous behavior occurs in thermal infrared cameras,
n which each pixel may have its own radiometric re-
ponse, parameterized by gain and bias.33–36 We expect
hat generalizing the method to such cameras will be
ore challenging. Finally, a similar analysis of color pic-

ures is a natural extension. In that case, there is a need
o model the nonlinear operations performed in color
paces.

PPENDIX A: THE WEIGHT FUNCTION
o improve the performance of the algorithm described in
ection 3, we increase the influence of high gray-level val-
es. The reason is that the signal-to-noise ratio typically

ncreases with the gray-level value. Moreover, as shown
ext, the influence of camera nonuniformity in high gray-

evel values is dominant over quantization, contrary to
he situation in low gray levels. Assume that we acquire
wo scene points, one of which is dark and the other is
right, with corresponding image irradiances of Idark and
bright, respectively. Both points are acquired in two
rames f1 and f2. In f1, both points are measured through

region in the camera FOV for which M=1, leading to
alues vdark

f1 =1 and vbright
f1 =100, respectively. In f2 both

oints are measured through a region in the camera FOV
or which M=0.9. Hence in f2 we measure vbright

f2 =90. On
he other hand, vdark

f2 =1, rather than 0.9, owing to round-
ng by the quantizer. This means that Eq. (7) is strongly
iolated for dark scene points.

To address this problem, we define a weight function
svf1 ,vf2d, where vf1 and vf2 are the gray levels of the

cene point in frames f1 and f2, respectively. The uncer-
ainties of these values are Dvf1 and Dvf2. We assume that
vf1=Dvf2=s, where s is a constant (unless the pixel is
aturated). Owing to the noise, Eq. (7) is violated:

gsvf1d − gsvf2d − lsxf1d + lsxf2d = 0 ± DQsvf1,vf2d, sA1d

here DQ is the uncertainty of Eq. (7) due to Dvf1 and
vf2. We can express it as

sating for the radiometric response function rsId and for the op-
ompen
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DQsvf1,vf2d = sFS ]Q

]vf1
D2

+ S ]Q

]vf2
D2G1/2

. sA2d

hus

DQsvf1,vf2d = sHF 1

r−1svf1d

]r−1

]vf1 G2

+ F 1

r−1svf2d

]r−1

]vf2 G2J1/2

.

sA3d

ssume for a moment that the radiometric response26,37

unction r is of the form r,vg. In this case,

DQsvf1,vf2d = gsFS 1

vf1
D2

+ S 1

vf2
D2G1/2

= gsH vf1vf2

fsvf1d2 + svf2d2g1/2J−1

. sA4d

The uncertainty [Eq. (A4)] increases for low gray-level
alues. We want to give a low weight to less reliable
oints. To accomplish this, we use the weight function
svf1 ,vf2d in Eqs. (11), (24), and (25) such as wsvf1 ,vf2d
DQsvf1 ,vf2d−1:

wsvf1,vf2d =
vf1vf2

fsvf1d2 + svf2d2g1/2 . sA5d

his weight function increases the influence of high gray
evels and decreases the influence of low gray levels in
qs. (11), (24), and (25). Note that the development of this
eight function was based on a response function of the

orm r,vg. Recall, however, that we generally assume no
arametric knowledge of r. Hence, in general, it is not of
he form r,vg. Nevertheless, we assume that the above
eight function is good enough to achieve its purpose.

PPENDIX B: TWO-DIMENSIONAL
APLACIAN OPERATOR
et B be an arbitrary matrix of size N 3 N while b is a
olumn-stack vector representation of this matrix. We
hould express the 2D Laplacian operator L̃ for the vector
. Apparently, Eq. (10) can be written as a Toeplitz ma-

rix. However, boundary pixels should be treated differ-
ntly. The matrix B, as depicted in Fig. 12, has two mar-
in columns (first and last) and several internal columns.
argin columns consist of corner elements, which we call

m, and internal elements, which we call ai. In a similar
ay, each internal column b of B (see Fig. 12) has two
arginal elements, which we call bm (elements of the first

nd last rows of B). Accounting for these boundary
onsiderations, we find that the Laplacian operator
˜ PRN2 3 N2

is a sparse matrix having five nonzero diago-
als: The main diagonal is

L̃sn,nd = 5
− 4 if N , n , N2 − N and n Þ jN,jN + 1,

j P f1,N − 1g

0 if n = 1,N,N2 − N + 1,N2

− 2 otherwise
6 ,

sB1d

he first diagonals are
L̃sn,n ± 1d = H1 if n Þ jN,jN + 1, j P f0,Ng

0 otherwise J , sB2d

nd the Nth diagonals are

L̃sn,n ± Nd = H1 if N , n ø N2 − N

0 otherwise J . sB3d

CKNOWLEDGMENTS
oav Schechner is a Landau Fellow, supported by the
aub Foundation, and an Alon Fellow. This research is
upported by the German–Israeli Foundation and the Ol-
endorff Minerva Center in the Department of Electrical
ngineering at the Technion. Minerva is funded through

he BMBF.

A. Litvinov and Y. Y. Schechner may be reached by
-mail at lanatol@tx.technion.ac.il and yoav@
e.technion.ac.il, respectively.

EFERENCES AND NOTES
1. S. B. Kang and R. Weiss, “Can we calibrate a camera using

an image of a flat, textureless Lambertian surface?” in
Proceedings of European Conference on Computer Vision,
(Springer, New York, 2000), Part 2, pp. 640–653.

2. I. C. Khoo, M. V. Wood, M. Y. Shih, and P. H. Chen,
“Extremely nonlinear photosensitive liquid crystals for
image sensing and sensor protection,” Opt. Express 4,
432–442 (1999).

3. N. Tabiryan and S. Nersisyan, “Liquid-crystal film eclipses
the sun artificially,” Laser Focus World 38, 105–108 (2002).

4. In different communities the terms mosaicing5,6 and
mosaicking7–10 are used.

5. D. Capel and A. Zisserman, “Automated mosaicing with
super-resolution zoom,” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (IEEE Press,
Piscataway, N.J., 1998), pp. 885–891.

6. S. Peleg, M. Ben-Ezra, and Y. Pritch, “Omnistereo:
panoramic stereo imaging,” IEEE Trans. Pattern Anal.
Mach. Intell. 23, 279–290 (2001).

7. R. Kwok, J. C. Curlander, and S. Pang, “An automated
system for mosaicking spaceborne SAR imagery,” Int. J.
Remote Sens. 11, 209–223 (1990).

8. R. Eustice, O. Pizarro, H. Singh, and J. Howland, “UWIT:
Underwater Image Toolbox for optical image processing
and mosaicking in MATLAB,” in Proceedings of IEEE

Fig. 12. Arbitrary 2D matrix B.



1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

848 J. Opt. Soc. Am. A/Vol. 22, No. 5 /May 2005 A. Litvinov and Y. Y. Schechner
International Symposium on Underwater Technology (IEEE
Press, Piscataway, N.J., 2002), pp. 141–145.

9. R. Garcia, J. Batlle, X. Cufi, and J. Amat, “Positioning an
underwater vehicle through image mosaicking,” in
Proceedings of IEEE International Conference on Robotics
and Automation (IEEE Press, Piscataway, N.J., 2001), Part
3, pp. 2779–2784.

0. M. L. Duplaquet, “Building large image mosaics with
invisible seam lines,” in Visual Information Processing VII,
S. K. Park and R. D. Juday, eds., Proc. SPIE 3387, 369–377
(1998).

1. C. J. Lada, D. L. DePoy, K. M. Merrill, and I. Gatley,
“Infrared images of M17,” Astron. J. 374, 533–539 (1991).

2. L. A. Soderblom, K. Edwards, E. M. Eliason, E. M.
Sanchez, and M. P. Charette, “Global color variations on
the Martian surface,” Icarus 34, 446–464 (1978).

3. J. M. Uson, S. P. Boughn, and J. R. Kuhn, “The central
galaxy in Abell 2029: an old supergiant,” Science 250,
539–540 (1990).

4. A. R. Vasavada, A. P. Ingersoll, D. Banfield, M. Bell, P. J.
Gierasch, and M. J. S. Belton, “Galileo imaging of Jupiter’s
atmosphere: the great red spot, equatorial region, and
white ovals,” Icarus 135, 265–275 (1998).

5. S. Negahdaripour, X. Xu, A. Khemene, and Z. Awan, “3-D
motion and depth estimation from sea-floor images for
mosaic-based station-keeping and navigation of ROV’s/
AUV’s and high-resolution sea-floor mapping,” in
Proceedings of IEEE Workshop on Autonomous Underwater
Vehicles (IEEE Press, Piscataway, N.J., 1998), pp. 191–200.

6. M. Hansen, P. Anandan, K. Dana, G. van der Wal, and P.
Burt, “Real-time scene stabilization and mosaic
construction,” in Proceedings of IEEE Workshop on
Applications of Computer Vision (IEEE Press, Piscataway,
N.J., 1994), pp. 54–62.

7. E. M. Reynoso, G. M. Dubner, W. M. Goss, and E. M. Arnal,
“VLA observations of neutral hydrogen in the direction of
Puppis A,” Astron. J. 110, 318–324 (1995).

8. P. J. Burt and E. H. Adelson, “A multiresolution spline with
application to image mosaics,” ACM Trans. Graphics 2,
217–236 (1983).

9. A. Levin, A. Zomet, S. Peleg, and Y. Weiss, “Seamless image
stitching in the gradient domain,” in Proceedings of
European Conference in Computer Vision (Springer, New
York, 2004), Part IV, pp. 377–390.

0. H. Y. Shum and R. Szeliski, “Systems and experiment
paper: construction of panoramic image mosaics with
global and local alignment,” Int. J. Comput. Vision 36,
101–130 (2000).

1. M. Aggarwal and N. Ahuja, “High dynamic range
panoramic imaging,” in Proceedings of IEEE International
Conference on Computer Vision (IEEE Press, Piscataway,
N.J., 2001), Vol. I, pp. 2–9.

2. Y. Y. Schechner and S. K. Nayar, “Generalized mosaicing,”
in Proceedings of IEEE International Conference on
Computer Vision (IEEE Press, Piscataway, N.J., 2001), Vol.
I, pp. 17–24.

3. Y. Y. Schechner and S. K. Nayar, “Generalized mosaicing:
high dynamic range in a wide field of view,” Int. J. Comput.
Vision 53, 245–267 (2003).

4. P. E. Debevec and J. Malik, “Recovering high dynamic
range radiance maps from photographs,” in Proceedings of
SIGGRAPH 97 (Association for Computing Machinery,
New York, 1997), pp. 369–378.

5. S. Mann and R. W. Picard, “On being ‘undigital’ with digital
cameras: extending dynamic range by combining
differently exposed pictures,” in Proceedings of IS&T 48th
Annual Conference (Society for Imaging Science and
Technology, Springfield, Va., 1995), pp. 422–428.

6. S. Mann, “Comparametric equations with practical
applications in quantigraphic image processing,” IEEE
Trans. Image Process. 9, 1389–1406 (2000).

7. T. Mitsunaga and S. K. Nayar, “Radiometric self
calibration,” Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (IEEE Press, Piscataway,
N.J., 1999), Vol. I, pp. 374–380.

8. S. J. Kim and M. Pollefeys, “Radiometric alignment of
image sequences,” in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (IEEE Press,
Piscataway, N.J., 2004), Vol. I, pp. 645–652.

9. J. Jia and C. K. Tang, “Image registration with global and
local luminance alignment,” in Proceedings of IEEE
Conference on Computer Vision (IEEE Press, Piscataway,
N.J., 2003), Vol. I, pp. 156–163.

0. F. M. Candocia, “Jointly registering images in domain and
range by piecewise linear comparametric analysis,” IEEE
Trans. Image Process. 12, 409–419 (2003).

1. S. Mann and R. Mann, “Quantigraphic imaging: estimating
the camera response and exposures from differently
exposed images,” in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (IEEE Press,
Piscataway, N.J., 2001), Vol. 1, pp. 842–849.

2. M. D. Grossberg and S. K. Nayar, “Determining the camera
response from images: what is knowable?,” IEEE Trans.
Pattern Anal. Mach. Intell. 25, 1455–1467 (2003).

3. P. Törle, “Scene-based correction of image sensor
deficiencies,” MSc. thesis (Linköping Institute of
Technology, Linköping, Sweden, 2003).

4. R. C. Hardie, M. M. Hayat, E. Armstrong, and B. Yasuda,
“Scene-based nonuniformity correction with video
sequences and registration,” Appl. Opt. 39, 1241–1250
(2000).

5. B. M. Ratliff, M. M. Hayat, and J. S. Tyo, “Radiometrically
accurate scene-based nonuniformity correction for array
sensors,” J. Opt. Soc. Am. A 20, 1890–1899 (2003).

6. S. N. Torres, J. E. Pezoa, and M. Hayat, “Scene-based
nonuniformity correction for focal plane arrays by the
method of the inverse covariance form,” Appl. Opt. 42,
5872–5881 (2003).

7. H. Farid, “Blind inverse gamma correction,” IEEE Trans.
Image Process. 10, 1428–1433 (2001).

8. S. Lin, J. Gu, S. Yamazaki, and H. Shum, “Radiometric
calibration from a single image,” in Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition
(IEEE Press, Piscataway, N.J., 2004), Vol. II, pp. 938–946.

9. S. Inoue, Video Microscopy (Plenum, New York, 1986). pp.
209–214.

0. The radiometric response function is usually monotonically
increasing. It monotonically decreases in negative films
and in some camera modes.

1. S. Hsu, H. S. Sawhney, and R. Kumar, “Automated mosaics
via topology inference,” IEEE Comput. Graphics Appl. 22,
44–54 (2002).

2. M. Irani, P. Anandan, J. Bergen, R. Kumar, and S. Hsu,
“Efficient representations of video sequences and their
application,” Signal Process. 8, 327–351 (1996).

3. R. K. Sharma and M. Pavel, “Multisensor image
registration,” in Proceedings of the Society for Information
Display (Society for Information Display, Playa del Ray,
Calif., 1997), Vol. XXVIII, pp. 951–954 (1997).

4. P. Thevenaz and M. Unser, “Optimization of mutual
information for multiresolution image registration,” IEEE
Trans. Image Process. 9, 2083–2099 (2000).

5. P. Viola and W. M. Wells III, “Alignment by maximization
of mutual information,” Int. J. Comput. Vision 24, 137–154
(1997).

6. We may avoid the apperance of trivial solution by
expressing Eq. (15) in a matrix formulation. This is only
one of the possible realizations of the requirement to avoid
a nontrivial g. Another possibility is to fix the boundary
range values of g.

7. We placed the filter a few centimeters ahead of the lens. If
the filter is placed right next to the lens, it affects the
aperture properties48 without producing spatially varying
effects in the image.

8. H. Farid and E. P. Simoncelli, “Range estimation by optical
differentiation,” J. Opt. Soc. Am. A 15, 1777–1786 (1998).


