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Image recovery under noise is widely studied. However, there is little emphasis on performance as a function of
object size. In this work we analyze the probability of recovery as a function of object spatial frequency. The ana-
lysis uses a physical model for the acquired signal and noise, and also accounts for potential postacquisition noise
filtering. Linear-systems analysis yields an effective cutoff frequency, which is induced by noise, despite having no
optical blur in the imaging model. This means that a low signal-to-noise ratio (SNR) in images causes resolution
loss, similar to image blur. We further consider the effect on SNR of pointwise image formation models, such as
added specular or indirect reflections, additive scattering, radiance attenuation in haze, and flash photography.
The result is a tool that assesses the ability to recover (within a desirable success rate) an object or feature having
a certain size, distance from the camera, and radiance difference from its nearby background, per attenuation
coefficient of the medium. The bounds rely on the camera specifications. © 2012 Optical Society of America

OCIS codes: 110.0110, 030.4280.

1. INTRODUCTION
Signal-to-noise ratio (SNR) and mean square error are widely
used as image quality criteria in image processing and com-
puter vision applications. However, these criteria were shown
to be only loosely related to human performance [1]. This mo-
tivates research of visibility limits with richer capabilities than
SNR. This paper takes a broad look and analyzes the relation
between noise and spatial resolution. We study how the ability
to distinguish an object from a background depends on spatial
frequencies, as well as noise.

Image blur is widely analyzed in terms of the system mod-
ulation transfer function (MTF), image defocus, and depth of
field. Nevertheless, as we study in this paper, imaging noise by
itself also decreases the effective resolution. In Fig. 1c, the
noise is substantially stronger than in Figs. 1a and 1b. Thus,
the fine details (e.g., small branch) are lost, whereas the
coarse details such as the trunk are still visible. The fine de-
tails correspond to high spatial frequencies, and the coarse
details correspond to lower spatial frequencies. This demon-
strates that noise induces an effect resembling a low-pass fil-
ter. Digital denoising enhances the results [2,3], but even then,
there is a limit, which we seek in this paper. Some works de-
rived recovery-induced amplifications of white noise, con-
cluding that recovery is limited when a signal matches the
noise intensity [4]. However, limits based directly on white
noise do not account for effective noise suppression possible
if the feature of interest is large enough.

In Fig. 2, the input noise standard deviation (STD) is inde-
pendent of the spatial frequency u: the latter linearly changes
with x, while the former linearly increases with y. The large
features on the left are visible even in a very low input SNR.
This may be due to implicit smoothing by the viewer’s neural
system [5], which suppresses noise to reveal the signal.
However, on the upper-right corner (Fig. 2), it is very difficult

(if at all possible) to reliably distinguish the signal details un-
der the noise. There appears to be a cutoff, around the marked
line, beyond which image signal details are effectively lost.
Small features of the signal are visible when the input SNR
is high; thus the image is not contrast-limited [6], but noise-
limited. Moreover, Fig. 3 shows that the energy distribution
along the discrete-time frequencies in the original signal is uni-
form. This rules out the possibility that the visibility differ-
ences (between low and high frequencies) are due to the
original signal. In fact, the Fourier transform of the continuous
signal a� s cos�2πuxx� has a constant amplitude [7].

Concepts of visibility under noise were introduced in [8,9].
There, the emphasis is on the minimum resolvable difference
between signals. This difference depends on the signal fre-
quency. Previous work has analyzed the effects of noise on
detectability for given tasks [10,11], based on defining an ideal
observer for each task and conducting psychophysical experi-
ments [12]. Quantitative relations between noise limits and ob-
served spatial frequencies were previously established in
systems suffering from imaging blur [6,13]. Imaging blur
can be caused by the medium (turbulence, scattering), optics
(aberrations, diffraction), and detector array (pixel integra-
tion, intrapixel electronic crosstalk). In these contexts, the cri-
teria used are termed minimum-resolvable contrast (MRC) or
temperature (MRT) [6]. The blur, expressed by the system’s
MTF, attenuates the signal’s high frequencies below a thresh-
old set by the noise STD. In pointwise degradations, lack of
imaging (optical) blur implies no such attenuation, hence ap-
parently inducing no effective resolution limits. Such analysis
cannot account for the loss of detail shown in Figs. 1 and 2 and
is unsuitable to the degradations dealt with here. In [14] a cut-
off stemmed solely from the typical falloff of signal energy at
high frequencies. This cannot explain the effect in Fig. 2,
where the input SNR is independent of the frequency u.
References [15,16] ask a question similar to ours, but under
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different settings. Reference [15] asks what is the minimum
SNR required to discriminate two points separated less than
the Rayleigh limit. Reference [16] finds the minimum detect-
able separation between two point sources at a given SNR, for
different blur kernels. However, these studies do not consider
absence of optical blur.

In this paper, we establish a theoretical quantitative relation
between SNR and detectable spatial frequencies. This means
that low SNR reduces the resolution in an image, even with no
imaging blur. SNR is often decreased by degradation effects
that are essentially pointwise. These include low light condi-
tions, specularities over a diffuse reflection [17,18], semire-
flections when looking through a window [17], attenuation
in flash photography [3], attenuation and veiling scatter (air-
light) in haze [19–22], and dirty windows [23]. We derive
bounds in problems that involve no optical blur, yet consider-
ing enhancement by potential linear postacquisition filtering
(implicit by the viewer or explicit by image processing). Then,
we use this theory to analyze resolution and range limits of
dehazing. Partial results were presented in [24].

2. THEORETICAL BACKGROUND
A. The Noise
Photon noise is a fundamental quantum-mechanical effect.
It cannot be overcome, regardless of the camera quality.

Accounting for this noise component [25,26], overall the noise
variance in the raw image data [27] is

σ2 ≈ AI�x� � B; (1)

where A;B > 0 and I is the image intensity given in Eq. (6),
excluding n�x�. The term B encompasses the variance of
the signal-independent components of the gray-level noise.
As detailed in [25,27–30], B � ρ2read � ρ2digit � DT . Here, ρread
is the amplifier readout noise STD, ρdigit is the noise STD of
a uniform quantizer, D is the detector dark current, and T
is the exposure time. Equation (1) is consistent with a calibra-
tion we have done for a Nikon D100 and a reported calibration
of a Point Grey Dragonfly [30].

The linear relation in Eq. (1) does not hold [31,32] for cam-
eras having amplifier nonlinearities. However, our fundamen-
tal analysis is targeted at recovery that uses high quality
cameras. In these cameras, Eq. (1) is typically followed. In
low intensities, cameras sometime exhibit deviations from
Eq. (1). This deviation is negligible in well exposed images.
In addition, Eq. (1) assumes there is no electronic crosstalk
or readout effects between the pixels. Part of our consequent
analysis (Sections 3 and 4) is independent of the validity of
Eq. (1). At a later stage, we comment on the consequences
of other noise models.

1σ =1σ =0.5σ = 0.5σ =

aa bb cc

Fig. 1. (Color online) (a) An image of a tree, with a negligible amount of noise. (b), (c) Noise is added to the image with a standard deviation
of σ � 0.5, 1 (image maximum is 1), respectively. At the higher noise level (c), the fine details (small branch) are lost, whereas the coarse
details (trunk) are still visible. The fine details correspond to high spatial frequencies, and the coarse details correspond to lower spatial
frequencies. Thus, the noise induces an effect that has resembling consequences to a low-pass filter, even when there is no blur in the image
formation.
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Fig. 2. (Color online) A raw noisy image. The horizontal amplitude change is given by a� s cos�2πuxx�. The spatial frequency is ux ∝ x. Here a is a
bias and s is the amplitude. White additive noise increases with y. The result is then contrast stretched. At low frequencies (small x) the pattern is
visible even in a very low input SNR. Beyond the marked line, on the upper-right corner, it becomes very difficult (if at all) to reliably distinguish the
signal details under the noise.
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Light detection noise is spatially uncorrelated (white).
Two dimensional detector arrays yield color images via
demosaicking, which induces spatial correlation. In this pa-
per, however, we concentrate on monochrome (gray scale)
images. White noise may be suppressed by smoothing. Aggres-
sive smoothing suppresses white noise more strongly, but
leads to increased blur of objects. This tradeoff of digital blur
and output noise yields to a useful conversion, which we ex-
ploit: performance limits due to input noise can be converted

to spatial resolution limits.

B. System Resolution
Let us observe an object of transversal lengthM at distance z.
The camera has focal length f and pixel pitch p. Then, the
image of the object stretches for m pixels, where

m � Mf
zp

: (2)

A digital image has a maximum discrete-space frequency of
0.5 �1 ∕ pixels�. In the discrete-time Fourier-transform (DTFT)
domain, this frequency is reached by a single-pixel object in
the image-domain. This is the ultimate resolution of the sys-
tem (one image pixel, and maximum frequency of 0.5). On the
other hand, if image features are effectively limited to a dis-
crete cutoff frequency jucutoff j ≤ 0.5 �1 ∕ pixels�, then their
equivalent effective lower limit size is

m ≈
1

2ucutoff
�3�

pixels. Equation (3) degenerates to m � 1 pixel in the upper
bound of ucutoff . Equation (3) enables analysis of system reso-
lution in the Fourier domain. According to Eqs. (2) and (3),
once ucutoff is determined, an object at distance z is within
the effective resolution of the system if its length is at least

M�z� � zp
2f ucutoff

: (4)

If the CCD resolution is designed to match the lens’ optical
resolution, and there is no additional blurring effect, the
expression in Eq. (4) degenerates to Eq. (2). This yields the
geometric bound for a minimum visible object size

Mgeometry � mzp ∕ f : (5)

C. Pointwise Degradation and Range Dependency
Let lobject�x� be the image irradiance of an object acquired at
pixel x � �x; y� in ideal, undisturbed conditions. The setup,
however, may impose pointwise degradation effects. Thus,
the measured image is in the form

I�x� � lobject�x�t�x� � a�x� � n�x�; (6)

where t�x� and a�x� account for deterministic multiplicative
and additive effects, respectively [see Fig. 4]. Signals can be
blurred by a medium and the optical system. In this paper,
however, we analyze resolution loss caused solely by noise.
Thus, we assume a setup with no blur. In addition, Eq. (6) in-
cludes unbiased uncorrelated random noise n�x�. Note that a
is nonnegative. As such, a�x� increases I, sometimes signifi-
cantly. Thus, it increases the variance of the random noise
[Eq. (1)]. This affects many imaging problems, as detailed
below.

We seek recovery of lobject�x�. This model fits a wide range
of problems:

• In analysis of reflections, lobject is the diffuse compo-
nent and a is the specular component (while t � 1) [18].

• A similar distinction exists in the mixture of direct and
indirect illumination components [33,34].

• In semireflections, lobject is the scene behind a window
of transmittance t, and a is the semireflected layer [17].

• When imaging through a dirty window, t is the spatially
varying transmittance of the dirty window, while a is the
spatially varying scatter by the dirt [23].

• A bright light source near the field of view can contri-
bute an additive component a�x� of flare [35].

• Fixed pattern noise is a deterministic effect [25,36] of
pointwise gain and bias variations, which is modeled by t�x�
and a�x� in Eq. (6).

The degradation effects may be distance-dependent. In
haze, t is the transmittance of the atmosphere [19–22,
37,38]. Its dependency on the object distance z�x� is given by

t�x� � e−βz�x� (7)

in a single scattering model. Here, β ∈ �0;∞� is the atmo-
spheric attenuation coefficient. The additive component a
here is the airlight [21,39], given by

a�x� � a∞�1 − t�x��; (8)

where a∞ is the value of airlight at a nonoccluded horizon.
Airlight increases with z and dominates the acquired image
irradiance at long range (see Fig. 5). Note that contrast is
mainly degraded by airlight, rather than blur [4]. There are

Fig. 4. Image formation and processing flow. The object radiance
lobject is degraded by pointwise effects. The measured image I is noisy,
characterized by SNRinput. After postprocessing, the recovery output
is characterized by SNRinput, leading to a success rate of ρsuccess.
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Fig. 3. (Color online) Horizontal discrete-time Fourier transform of
a� s cos�2πuxx�, which underlies Fig. 2 without noise. Except for the
DC component of the image, the energy is rather uniformly distributed
across all frequencies. There is no significant or consistent falloff at
high frequencies, specifically no 1 ∕ux falloff. Thus, the visibility loss in
Fig. 2 is due to noise, rather than the raw signal.
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other distance-dependent pointwise models, including syn-
thetic aperture lighting [40], which may include scatter, and
flash photography [41] (falloff of object irradiance).

In all the above cases (reflections, flare etc.), a�x� has two
degrading consequences. First, this deterministic component
degrades the contrast, and may confuse object appearance
(according to [42], human perception is affected by low con-
trast more than by blur). However, such deterministic distur-
bances are rather easy to invert by digital subtraction of an
estimate of a, as done by all the above mentioned studies.
A second degradation consequence is much more difficult
to counter: a increases the random noise, as detailed next.

3. NOISE-LIMITED RESOLUTION
Without noise, even small intensity changes over a back-
ground can be stretched to reveal objects and details.
Figures 5a and 5c demonstrate a piecewise contrast stretch
on a synthetic utopian noise-free hazy image. Even in parts
that appear blank in Fig. 5a, visibility is retrieved in Fig. 5c.
These parts correspond to more distant scene regions, where
the accumulated airlight is higher. Yet, actions such as con-
trast stretching affect both the signal and the noise. Noise fol-
lowing the model in Eq. (1) is introduced in Fig. 5b. Now,
objects are lost in the parts corresponding to distant regions,
despite regional contrast stretch in Fig. 5d. Noise reduction
operations affect the signal amplitude. The effect of this op-
eration varies as a function of the signal’s spatial frequency.

Figure 6 shows a scene extracted from the Weather and Il-
lumination Database (WILD) [43]. On a clear day, visibility ex-
ists at both z � 2 and 3.5 km for building outlines (large M)
and windows (smallM). In mist, there is a loss of spatial detail,
despite regional contrast stretch: at z � 2 km, windows (small
M) are unrecoverable, as contrast stretch simply amplifies the
overwhelming noise, yet the building outline (largeM) is seen
well. This detail loss is greatly exacerbated at somewhat long-
er distance: at z � 3.5 km, even the building outline is hope-
lessly obscured by noise. Note that the images in the WILD
database are color images, demosaicked from a Bayer pattern.
To avoid having spatially correlated noise in this example, we
used only every second pixel of the green channel.

We note that empirical work had been done about human
performance under noise in four specific vision tasks: object
detection, orientation, recognition, and identification. This
work culminated in the Johnson tables and National Image
Interpretability Rating Scales (NIIRS) image ratings

[6,36,44]. These tasks were associated [6,44] with the number
of resolvable lines in an object. For example, to detect a tank

with 50% success, the tank has to occupy 0.75 line pairs in the
field of view [6]. For the tank to be recognized as a tank, and
not, say, as a truck, its tower has to be visible. The tower is
smaller, thus corresponding to higher spatial frequencies than
the convex hull of the tank itself. Therefore, the recognition
task requires a higher spatial resolution. The number of visible
line pairs in an object is related to ucutoff . Consider an object of
size m pixels. Then, the number of visible line pairs in this
object is

ν � m · ucutoff : (9)

Note that ν � m ∕ 2 in the special case of ucutoff � 0.5, i.e.,
when the resolution is limited only by pixel size (geometry).
Following Eq. (9), frequency-domain analysis (which deter-
mines cutoff frequencies) may generalize some aspects of em-
pirical criteria such as those in [6,36,44]. More importantly,
however, our linear-systems analysis is general, and thus ap-
plies beyond human, to computer vision systems, in contrast
to the Johnson tables and NIIRS ratings.

A. How Much Would Filtering Help?
There are numerous denoising methods. This paper does not
introduce any new method. As a basic benchmark, we focus
the analysis on linear filtering (as in [10]). The main reason is
that linear-systems are the basis for frequency-domain analy-
sis, and thus the notion of cutoff frequencies. Moreover, this
enables analytic closed-form formulas for bounds, which are
intuitive. Extension to nonlinear operations is discussed in
Section 6. We start the analysis by considering suppressing
white noise by a flat averaging filter. In principle, better re-
sults can be potentially obtained by more sophisticated digital
low-pass filters, which may be designed by an array of engi-
neering methods. The flat filter we use leads to closed-form
expressions, which are useful both for obtaining insights and
for a baseline assessment. In Appendix B, we further discuss
the effect of a Gaussian filter.

Let u � �u; v� be a spatial frequency in units of [1 ∕ pixels],
where u; v ∈ �−0.5; 0.5�. Consider an image signal (similar
to [45])

aa bb cc dd

[ ]z km[ ]z km

Fig. 5. (Color online) (a) A noise-free hazy image, simulated by
β � 0.2 km−1 and a linearly changing z ∈ �1; 30� km. Airlight acts as
local bias. (b) A slightly noisy version. (c) Regional contrast stretching
of (a) reveals the objects and details. (d) Regional contrast stretching
of (b) does not recover small details at large z, over noise.

clear dayclear day

3.5[ ]z km=2[ ]z km= 2[ ]z km=z = 2[km] z = 3.5[km]

2[ ]z km=

misty day

z = 2[km]

z = 3.5[km]

Fig. 6. [Top] Clear day scene. [Middle] Small details seen on a clear
day at z ≈ 2 km but lost in mist. [Bottom] At z ≈ 3.5 km, visibility in
mist quickly worsens: even large buildings are lost. Images taken from
the WILD database [43]
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s�x� � 1
2
S�u� cos 2πux: (10)

Here jS�u�j is the difference between the maximum and
minimum values in this signal.

The image is corrupted by white additive noise, whose in-
put STD is σ [Eq. (1)]. Note that the image in Eq. (10) is com-
posed of a single discrete spatial frequency u � �u; 0� and its
conjugate �−u; 0�. Following one of the definitions in [46], the
SNR of the raw image (see Fig. 4) is defined as

SNRinput�u� �
jS�u�j
σ

: (11)

We study the signal at a specific spatial frequency. This
indicates the potential for recovering object-features that cor-
respond to a specific size [Eq. (3)]. Eventually, we seek an
effective cutoff frequency (resolution) of the overall system,
accounting for the pointwise degradations, noise, and the
potential smoothing induced by linear postacquisition proces-
sing. In contrast to the signal, noise is not treated at different

frequencies. The reason is that the camera output I (which is
the input for postprocessing) has white noise, irrespective of
the feature size, as illustrated in Fig. 2, and seen in most
natural images (e.g., Figs. 1 and 5).

To suppress white noise, consider a flat averaging filter hW ,
having a support ofW ×W pixels. As we prove in Appendix A,
applying hW on s�x� amplifies the SNR by

C�u�≡ SNRoutput�u�
SNRinput�u�

� sin�πWu�
sin�πu� ; (12)

where SNRoutput�u� is the SNR of the processed image (Fig. 4).
Figure 7 illustrates C�u� for a range ofW . We seek the window
size Wmax that maximizes the improvement of SNR, similar
in spirit to a linear matched filter that was used in [8,9]. The
window size Wmax is obtained when sin�πWu� � 1, i.e., when

Wmax � 1
u
�2κ � 0.5�; κ � 0; 1; 2…: (13)

The maximal SNR amplification Cmax�u� that can be achieved
by spatial averaging is then

Cmax�u�≡ CWmax
�u� � 1 ∕ sin�πu�; (14)

for all κ values that solve Eq. (13). Thus, from now on we set
Wmax ≡ 1 ∕ �2u� (plotted in Fig. 7). The value of Cmax�u� is
plotted in Fig. 8. In the Rose model [47], the SNR is multiplied
by the linear dimension of the object to allow for averaging. In
small frequencies, this can be considered equivalent to the im-
provement in Eq. (14). However, for higher frequencies, our
model predicts a faster deterioration in SNR.

Figure 9 demonstrates the use of a window of length Wmax

on the image of Fig. 2. Here, Wmax adapts spatially to u�x�.
Across all frequencies, the signal pattern is more visible in
Fig. 9 than in Fig. 2. Nevertheless, as u increases, the pattern
can be observed reliably only at higher values of SNRinput (at
smaller y), and is effectively lost at low SNRinput. This is con-
sistent with Eq. (14): a smaller SNR improvement C�u� can be
achieved at high u, thus requiring a higher input SNR. How
much SNR is actually needed at the output of processing?
As discussed in Subsection 4.B, this question is related to
the desired success rate of detecting a feature. For the mo-
ment, let us denote the minimum output SNR that is required
as SNRmin

output.

B. The Cutoff Frequency
If the raw image has a high SNR, there is no need to smooth
the image: objects at all sizes are reasonably seen despite the
noise. Then, smoothing may be counterproductive, due to the
consequent detail loss. In this case, without filtering

SNRinput�u� ≥ SNRmin
input: (15)

In moderate SNR, gentle filtering with W < Wmax may suffice
to bring the output SNRoutput to the acceptable level SNRmin

output.
However, at the limit of recovery, the signal in u is so low
relative to the noise that Wmax�u� should be used. There is
no point in trying to use a kernel wider than Wmax, since it
would yield a lower C�u� than a Wmax-sized kernel [see
Eq. (13)], while blurring excessively. Hence, we hope to have

Cmax�u�SNRinput�u� ≥ SNRmin
output: (16)

From Eqs. (14) and (16),

SNRinput ≥ sin�πu�SNRmin
output: (17)

Equation (17) is an important performance bound. It dictates
a minimum input SNR, in order to recover a signal compo-
nent having spatial frequency u, at the desired success rate. If
SNRinput < sin�πu�SNRmin

output, the SNR in the original image is

2

15

0.50.03

u [1/pixels]

W
 [p

ix
el

s]

max( )W u

Fig. 7. (Color online) SNR improvement C, as a function of u andW .
The curve of Wmax�u� is plotted on top. As u increases, windows are
limited to smaller sizes. This limits the ability to suppress noise while
maintaining the signal.

averaging window

Gaussian window

Cmax (u)

0

15

0.50
u [1/pixels]

1

Fig. 8. (Color online) Maximal possible SNR improvement Cmax, as a
function of u. As u increases, Cmax decreases. The derivation for the
Gaussian window appears in Appendix B.
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too low and cannot be increased to the desired level SNRmin
output,

no matter what filter size we use. This is a recovery limit,
posed by noise.

For given values of SNRinput and SNRmin
output, the lower bound

in Eq. (17) is met at a cutoff frequency

ucutoff �
1
π

�
arcsin

�
SNRinput

SNRmin
output

��
: (18)

The cutoff in Eq. (18) is plotted in Fig. 10, for a few values of
SNRoutput

min . Note in this plot that when Eq. (15) is satisfied,
there is no cutoff.

Suppose for a moment that SNRinput is independent of u.
The sine function is monotonically increasing in the consid-
ered interval �0; π ∕ 2�. Thus, if ucutoff < 0.5, then considering
Eq. (17),

∀ u > ucutoff ; SNRinput < sin�πu�SNRmin
output: (19)

Statement (19) is strengthened by the fact that in natural
images, SNRinput�u� tends to fall off with u (most of the signal’s
energy is in low frequencies). Therefore, ∀ u > ucutoff the
minimum desired image quality cannot be achieved.

The cutoff frequency sets the resolution limit to images
with additive white noise, since ucutoff can be used to deter-
mine the object size of the least-resolved objects, using
Eq. (4). This spatial resolution limit exists, although the degra-
dation model in the raw data I�x� is pointwise, and no blur
affects the raw image formation.

4. RECOVERY WITHIN A BOUND
A. Defining the Signal
Typically, there is an interest to distinguish objects, e.g., cars,
over a nearby background, such as a field, or distinguish finer
details, e.g., digits over a license plate. The ability to distin-
guish an object/detail depends on its spatial size, the radiance
difference relative to the background, and the amount of
noise. Let the image components lobject�u� and lback�u� corre-
spond to the object and background in ideal, undisturbed con-
ditions. Because of Eqs. (6) and (7), the difference in their
image values is �lobject�u� − lback�u��t. These components de-
pend on u, since an object can be described in different scales:
rough, large scale structures correspond to a low u, while
fine-scale details correspond to a high u.

We use the goal of object-versus-background distinction in
order to define the signal of interest. In consistency with
Subsection 3.A and Appendices A and B, S�u� is the difference
between the two extrema of the signal. Thus, here, define the
signal as

S � �lobject�u� − lback�u��t; (20)

in the problem of differentiating an object over a background.
What about the image component a�x�? Recall from
Subsection 2.C that a�x� is a deterministic component (though
it generally varies spatially) and can thus be subtracted from I,
either by contrast stretch or by estimation [17–19,21,22,33]. By
itself, this removable nonrandom component does not de-
crease the object-versus-background difference. However, a
increases the photon noise, thus affecting the image SNR
(see Subsection 2.A).

B. Success in a Confidence Interval
Subsection 3.A showed that postacquisition filtering may en-
hance the SNR to SNRoutput. Now, the question is which value
of SNRoutput is sufficient for succeeding in seeing an object
feature? Look, for example, at Fig. 11, which shows a clean
and a very noisy version of an image of a dark square over
a bright background. In the noisy image, the coarse detail
(the dark object) is visible. What happens to the fine details?
The left edge is still somewhat visible, while the right one is
almost completely lost. These different outcomes of noise oc-
cur despite the uniformity of the noise variance. This demon-
strates that SNR does not give a deterministic answer

Fig. 9. (Color online) Filtering the image in Fig. 2 with window sizeWmax�u� improves visibility. Cutoff lines are derived using Eqs. (17) and (18).
Below the line of ρsuccess � 70%, the pattern is clearly seen. Above the upper line, ρsuccess < 50%, and noise dominates. The definition of ρsuccess
appears in Subsection 4.B.

Fig. 10. (Color online) Cutoff frequency as a function of SNRinput,
for different values of SNRmin

output. A better input SNR yields a better
output resolution. When SNRinput < SNRmin

output, the image starts to lose
reliability.
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regarding detection, as the noise is a random process. The
higher the SNRoutput�u� is, the more confidence there is in
the recovery of u. Over a large ensemble, the success rate in-
creases with SNRoutput�u�. The randomness of noise imposes
randomness in the success of recovering a single object
whose characteristic frequency is u. In this section we discuss
this relation.

Let us look at an edge; one pixel is over an object, and the
second pixel is of the background (Fig. 12[Left]). However, in
reality, both pixels are noisy. Is the edge from the clear image
still visible in the noisy image? In the following, assume that
the edge is maintained if the intensity difference between the
signal and background pixels maintains its sign, regardless of
its magnitude (Fig. 12 [Center]). This analysis is targeted at
detection bounds at lowest visibility conditions. In this limit,
even a difference of one gray level above noise is considered
an edge. Cases where the edge reverses its sign are shown in
Fig. 12 [Right].

Ignoring the magnitude is reasonable in digital applications,
where each intensity difference can be stretched to emphasize
the edges. For human vision, however, this assumption may
not hold, as some intensity differences are not discerned
by the eye. According to Weber’s law [48], the just noticeable
difference (JND) is linearly related to the background inten-
sity. At high spatial frequencies, there is a transition from
Weber’s law to the De-Vries Rose law, where the JND is pro-
portional to the square root of the background intensity [49].
For analysis of image quality perception, see [48].

The signal S is defined in Eq. (20). After filtering, the signal
becomes Soutput � S � hW . Denote the noise values in the ob-
ject and background pixels as Nobject

output and Nback
output, respectively.

The edge maintains its sign if

Nback
output − Nobject

output < Soutput: (21)

The signal difference is related to SNRmin
output similarly to

Eq. (11)

Soutput � SNRoutputσoutput; (22)

where σoutput is the noise STD after filtering. Define ρmaintain as
the probability that Eq. (21) holds. From Eqs. (21) and (22),

ρkeepsign � P�Nback
output − Nobject

output < SNRoutputσoutput�: (23)

Equation (23) is the cumulative distribution function (CDF)
of the random variable (Nback

output − Nobject
output) at the value

SNRmin
outputσoutput. What is the distribution of (Nback

output − Nobject
output)?

The noise is approximated to be normally distributed with
zero mean and variance 2σ2output. (The number of Poisson-
distributed photons [creating photon noise] per pixel is
typically large. Then, the Poisson distribution is approximated
well by a normal distribution.) The CDF η∼N �0; 2σ2output� at a
value χ is

P�η < χ� � 1
2

�
1� erf

�
χ

2σoutput

��
: (24)

Combining Eqs. (23) and (24),

ρkeepsign � 1
2
�1� erf�SNRoutput ∕ 2��: (25)

The noise can destroy true edges and can also cause the
opposite: edges are aliased in locations that had been smooth
in the original scene. The probability that an edge in the noisy
image is false is

ρfalse � 1 − ρkeepsign : (26)

The total number of edges visible in the noisy image is the
number of the true edges that maintained their sign plus
the number of the false edges that were created by the noise.
Thus, based on Eqs. (25) and (26), the probability that an edge
that is visible in the image is a true edge is

ρsuccess � ρkeepsign − ρfalse � 2ρkeepsign − 1 � erf�SNRoutput ∕ 2�: (27)

Thus, as depicted in Fig. 4, the output SNR determines the
success rate in detection. Figure 13 plots Eq. (27).

Equation (27) yields an expression for the minimum re-
quired output SNR as a function of the desired success rate

SNRmin
output � 2 erf−1�ρsuccess�: (28)

Fig. 12. (Color online) An edge under noise. [Left] Original. [Center] Noise is added to both pixels; however, the edge still keeps its sign. [Right]
The edge reverses its sign under noise.

Fig. 11. Randomness of noise imposes randomness in the success of
recovering a single object. [Left] A clear square. [Right] Under the
same noise level, the bottom and left edges are visible, while the right
one is lost.
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Combining Eqs. (18) and (28) yields the cutoff frequency as a
function of the desired success rate:

ucutoff �
1
π

arcsin
�

SNRinput

2 erf−1�ρsuccess�

�
: (29)

The cutoff in Eq. (29) is plotted in Fig. 9, for a few values of
ρsuccess. Below the cutoff line for ρsuccess ≈ 70%, the pattern is
clearly seen. Above the upper cutoff line, where ρsuccess ≈ 50%,
noise dominates.

Equation (29) can be viewed as an equation relating SNR to
actual performance under noise:

ρsuccess � erf
�
SNRinput

2 sin�πu�
�
: (30)

Equation (30) differs from other image quality criteria by
depending explicitly on the spatial frequency.

C. Comparison to Image Quality Methods
Recent studies [1,50] have shown that SNR is only loosely re-
lated to human performance and perceived image quality, con-
founded by contrast, brightness, etc. The structural similarity
(SSIM) index [1] measures similarity between two images.
When a degraded image is compared to a nondegraded ver-
sion, SSIM can be viewed as a quality measure of the degraded
image. The SSIM is composed of three terms comparing lumi-
nance, contrast, and structure across small windows in the
images. It ranges from 0 to 1, where 1 corresponds to identical
images. Figure 14 depicts an experiment comparing Eq. (30)
to SSIM. We generated images, each containing a distinct spa-
tial frequency. Then, to each image, white noise was added,

such that ρsuccess is constant across frequencies:

σ � jSj ∕ �2 sin�πu�erf−1�ρsuccess��; (31)

i.e., the noise STD σ decreases with u. We calculated the SSIM
score between each clear image and its corresponding noisy
version. The SSIM score is monotonic with ρsuccess. However,
for constant ρsuccess, SSIM varies with u, which is monotonic in
σ. The SSIM score does not take into account the visibility dif-
ferences between the different spatial frequencies.

5. LIMITATIONS IN HAZE
In this section, we apply the analysis of Section 3 to a specific
type of degradation: haze in images. We seek bounds that do
not depend on the algorithm, e.g., whether airlight or dis-
tances are derived by polarization or an auxiliary map. In
other words, optimal operations can achieve a bound, but a
suboptimal algorithm or inaccurate model parameters would
achieve worse performance.

A. SNR in Raw Hazy Images
The noise variance σ2 is derived in Eq. (1), simply based on the
total image intensity I. Using the midway intensity between
lobject and lback, the mean of the noise variance over the object
and its immediate background is

σ2�b� � B� A
�
1
2
�lobject � lback�t�b� � a∞�1 − t�b��

�
; (32)

where b � βz, based on Eqs. (1) and (6)–(8). In this way, the
random noise induced by airlight is incorporated. The signal
here is defined in Eq. (20). The value of SNRinput of a raw hazy
image is obtained by using Eq. (20) and σ from Eq. (32) in
Eq. (11). For cameras exhibiting nonlinear noise models, the
variance in Eq. (32) should be calculated according to the
specific model.

We now introduce some variables that ease the assessment.
The saturation gray level is

V � 2B − 1; (33)

where B is the number of bits per pixel. Define the object
saliency (without disturbances) as

~E � jlobject − lbackj ∕V: (34)

Fig. 13. (Color online) Probability for success as a function of the
output SNR (Eq. 27).

Fig. 14. (Color online) [Left] Examples of four image pairs from our simulation. The noise STD that was added to each frequency u is calculated to
achieve a fixed, constant ρsuccess [Eq. (31)]. Their SSIMs are plotted on the graph [right] using black dots. [Right] SSIM as a function of u for three
values of ρsuccess.
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For example, ~E � 1 for a bright white object (which exploits
the full dynamic range) on a black background, or vice versa.
Analogously, ~l � �lobject � lback� ∕ �2V� is the mid-radiance
between the object and background, normalized by the
camera’s dynamic range. The same normalization is applied
to the horizon airlight: ~a∞ � a∞ ∕V . Using these definitions
in Eqs. (1) and (6)–(8), Eq. (11) yields the input SNR as a
function of b

SNRinput�b� �
e−b ~EV���������������������������������������������������������

B� AV �~le−b � ~a∞�1 − e−b��
q : (35)

In Eqs. (1) and (35), the parameters A, B, and V are scene
independent. They depend on the specific camera model and
operation mode. They can easily be calibrated or extracted
from the camera’s specifications [30]. In the following, we ca-
librated the respective parameters in a couple of ISO settings
in a Nikon D100, where V � 214 − 1. For ISO 200, we got
�A; B� � �0.9; 210�. For ISO 800, we got �A; B� � �10; 2116�.
We also plot results for a Point Grey Dragonfly camera, where
V � 28 − 1 and �A;B� � �0.02; 0.16� (data taken from [30]).

The parameters ~E, ~l, and ~a∞ are scene dependent. For
practical assessments, assume that in properly exposed

images, ~l ≈ 0.5 (nearby objects are at the middle of the cam-
era’s dynamic range) and ~a∞ ≈ 1. In practice, variations

around these values of ~l and ~a are not critical. Nevertheless,
~E is important, since SNRinput is proportional to it. The value

of ~E is the main input by a user for assessing object visibility.

For instance, if a nearby car over a street occupies ~E � 20% of
the dynamic range, this has a prime effect on the car’s distinc-
tion in the presence of attenuation (at a distance) and noise.

We measured typical values for ~E in well exposed outdoor
images we took. Results ranged between 5–50%. For example,

houses in the background of trees had ~E ≈ 10%. This is con-
sistent with daylight images in the Columbia WILD database

[43]. Thus, as an example, we set ~E � 25% in the follow-
ing plots.

There is a critical optical depth bcritical, up to which no
cutoff frequency exists. This optical depth can be found by
solving a quadratic equation based on Eq. (35),

SNRinput�bcritical� � SNRmin
output: (36)

At b < bcritical, Eq. (17) is satisfied ∀ u. At b > bcritical, some
frequencies start to become unrecoverable and thus some
objects become lost. Figure 15 shows values of bcritical as a
function of SNRmin

output, for different cameras.

B. Resolution Cutoff in Haze
We want to assess the limit that can be achieved, even if
denoising by an optimal window size is employed implicitly
or explicitly. Plugging SNRinput�b� from Eq. (35) into Eq. (29)
yields

ucutoff�βz� �
1
π

arcsin
�

SNRinput�βz�
2 erf−1�ρsuccess�

�
: (37)

This cutoff is plotted in Fig. 16, using ~E � 25%, calibration
data of Point Grey Dragonfly and a Nikon D100 at two ISO
settings, in Eq. (35). The value of ucutoff decreases with βz.
Moreover, the two ISO settings of the same camera yield a
significant difference in the visible distances.

Using ucutoff�βz� from Eq. (37) in Eq. (4) yields the least-
resolved object length in haze

Mhaze�β; z� �
πzp

2f arcsin�SNRinput�βz� ∕ 2 erf−1�ρsuccess��
. (38)

Equations (35) and (38) depend on the (scene independent)
system parameters fp; f ; A; B; Vg. They also depend on the
scene’s z, β, and ~E. Figure 17 plots Mhaze for different para-
meter values. In both cameras, the ratio p ∕ f was the same.
This corresponds to f � 200 mm, p � 7.8 μm in the Nikon
D100 and f � 120 mm, p � 4.7 μm in the Dragonfly. The value
of Mhaze is plotted for ρsuccess � 50%. Note that in color cam-
eras that have a single sensor, the effective pixel pitch is larger
than the physical one, due to subsampling by the sensor’s
Bayer mosaic.

Recall the geometric bound for a minimum visible object
size Mgeometry [Eq. (5)]. Note that Mhaze � Mgeometry if
βz < bcritical. As βz increases, the haze increases and thus

Fig. 15. (Color online) Values of bcritical [in Eq. (36)] as a function of
SNRmin

output, for different cameras. Here, ~E � 25%.

Fig. 16. (Color online) Values of ucutoff�βz� from Eq. (37) as a function of βz, for different cameras and values of SNRmin
output. Here ~E � 25%. When βz

reaches the value of bcritical, the value SNRinput drops below the value SNRmin
output. Then, there is a frequency cutoff.

1524 J. Opt. Soc. Am. A / Vol. 29, No. 8 / August 2012 T. Treibitz and Y. Schechner



the SNR decreases. At βz � bcritical, the SNR decreases below
the minimum level and then we start to get a frequency cutoff.
Thus, there is an abrupt increase of Mhaze.

6. CONSIDERING NONLINEAR FILTERING
This paper deals only with linear filtering. What about non-
linear, anisotropic filtering, e.g., [51–55]? State-of-the-art (e.g.,
[51–55]) methods are well superior to linear filtering in ex-
tracting and preserving image details. Hence, linearity as-
sumptions appear to lead to bounds [Eq. (38)] that are
overly pessimistic.

Recently, [56,57] analyzed bounds to image denoising with
nonlinear filtering in terms of minimum mean square error.
However, also in nonlinear methods, as noise levels rise, de-
tails are increasingly lost. Small and low saliency details are
lost before the larger, more salient ones (see [58]). Yet, the
resolution bounds in this case may be somewhat different.
The analysis is beyond the scope of this paper. Still, this sec-
tion considers some possible aspects.

Frequency-domain analysis (as we have done) assumes
system linearity: any image is a superposition of cosines
and sines, the eigenfunctions of linear blur operations. In non-
linear filtering, thus, the generality of frequency-domain
analysis of bounds would be difficult to apply, if at all. Hence,
limits to nonlinear filters should be assessed directly on spe-
cific objects, not via frequencies. Moreover, considering Fig. 2,
if averaging is performed only in the vertical direction, noise
can be substantially reduced without eliminating the domi-
nant horizontal variations and features. This property is
exploited by nonlinear anisotropic filters. They are affected
by rich regional characteristics, e.g., gradient, curvature, con-
tour length and aspect ratio. Thus, these features and regional
parameters should be incorporated into the analysis of
bounds of nonlinear filters, in addition to the parameters
we used (feature size and saliency).

Despite the complexity and difficulty to assess limits of
such filters, the results may not differ greatly from Eq. (38).
Close to the visibility limit, the signal modulation is very weak
(relative to the noise). Then, linear operations may offer a
lower bound to nonlinear filters that are differentiable. Refer-
ence [51] calculates the noise reduction of some denoising
methods. It may thus serve as a basis for further calculation
of resolution limits.

Many nonlinear methods locally adapt smoothing to the
scale and contrast of objects [2]. The results of our analysis

can guide the design of adaptive filtering. Suppose a certain
SNRmin

output is desired, given SNRinput. Then, a suitable kernel
sizeW can be derived from Eq. (12) for each u, corresponding
to the required feature size.

7. CONCLUSIONS
We presented a theoretical analysis of resolution bounds,
where the degradation is dominantly pointwise. Even then,
there can be a cutoff frequency ucutoff < 0.5�1 ∕ pixels�, which
bounds the resolution of details that can be recovered at a
desired success rate. These resolution bounds should be
considered in addition to bounds stemming from blur in the
system.

By placing noise and resolution on an equal footing, it be-
comes possible to analyze tradeoffs that combine blur and
noise. For example, in low light conditions, an open aperture
improves the SNR but causes blur outside the depth of field.
The depth of field can be expanded by closing the aperture,
but this decreases the SNR. Following this paper, a reduced
SNR can translate to an effective cutoff frequency and thus en-
able an informeddecision aboutwhat results in less blur: cutoff
because of noise or blur from an open aperture. This analysis
requires additional work, to consider also intermediate setups
where both blur and cutoff frommoderate noise exist. This re-
sembles [59], which analyzes tradeoffs to optimize high dy-
namic range imaging. Further work is required to generalize
this work to color images. Extension to video is straightfor-
ward. There, spatio-temporal noise filtering leads to spatio-
temporal resolution bounds.

Our framework can benefit other problems of imaging,
computer vision, and photography, where pointwise degrada-
tions are dominant. There, it may be possible to anticipate the
potential recoverability of objects and features in a setting,
either for existing recovery methods or for ones to be
proposed.

APPENDIX A: THE EFFECT OF SPATIAL
AVERAGING
In Subsection 3.A, an image I formed by the model of Eq. (6) is
filtered by an averaging filter hW . The processed image

Î � I � hW (A1)

has noise

Fig. 17. (Color online) Values ofMhaze from Eq. (38) as a function of z, for different cameras, SNRmin
output � 1, ~E � 25%. [Left] Nikon D100, ISO 200,

[Right] Nikon D100, ISO 800. Increasing z decreases SNRinput. When SNRinput drops below SNRmin
output, there is a frequency cutoff. Then, Mhaze in-

creases above Mgeometry. For example, at ISO 200, when β � 0.2 km−1, at z � 30 m the visibility is so bad that only large objects the size of tens of
meters can be reliably seen. Changing the ISO setting dramatically changesMhaze. For example, at β � 0.2 km−1,Mhaze in ISO 800 is five times larger
than Mhaze in ISO 200.
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noutput�x� �
1

W2

X
xi∈Ω�x�

n�xi�: (A2)

Here Ω�x� � fxi : ∥xi − x∥∞ < W ∕ 2g. The noise noutput�x� is
spatially correlated (not white) and its STD is

σoutput � σ ∕W: (A3)

The filter hW affects each spatial frequency by an amount
expressed by Dirichlet’s function (the frequency response is
calculated using the DTFT, as the images are discrete signals).

HW �u� � DTFTfhW �x�g �
sin�πWu� sin�πWv�
W2 sin�πu� sin�πv� : (A4)

Using l’Hospital’s rule in the limit v → 0 yields

HW �u; 0� �
1
W

sin�πWu�
sin�πu� : (A5)

Applying hW on Eq. (10) results in a cosine signal having the
same frequency,

jS�u�outputj � HW �u; 0�S�u�: (A6)

Consider Eqs. (6), (11), (39), and (41). Similarly to Eq. (11),
the SNR in the processed image Î is

SNRoutput�u� �
jS�u�outputj
σoutput

� HW �u; 0�jS�u�j
σ ∕W

: (A7)

Combining Eqs. (11), (43), and (45) results in Eq. (12).
When W � 1 ∕u, the filter hW is destructive. Then, the fre-

quency u is averaged out, as SNRoutput � HW �u� � 0, eliminat-
ing by smear details featured by size 1 ∕u. For W > 1 ∕u, there
are negative sidelobes in HW �u; 0�, causing reversal of con-
trast (artifacts). Hence, the domain considered legitimate
for Eq. (45) is W < 1 ∕u. In Fig. 7, window lengths outside this
domain are in the blank region.

APPENDIX B: GAUSSIAN FILTER
Our analysis in Appendix A yields a closed-form analytical ex-
pression of the SNR change as a result of using an averaging
filter. Yet, a Gaussian filter is often preferred over flat window
averaging. The Gaussian filter is defined as

hg�x; y� �
1

2πW2
g
exp

�
−
x2 � y2

2W2
g

�
; (B1)

where Wg is the STD of the Gaussian. The following analysis
assumes that the effect of filter truncation is negligible.

How does the Gaussian filter affect the signal? The Fourier
transform of a continuous Gaussian is also a Gaussian with an
STD that equals 1 ∕ �2πWg�. Therefore, the transform of the
discrete (sampled) Gaussian is a Gaussian duplicated in the
frequency space. Suppose the replicas are mutually well sepa-
rated (e.g., by three STDs, Wg > 0.95). Then in the frequency
range �−0.5; 0.5�,

Hg�u; v� ≈ exp�−2π2�u2 � v2�W2
g�: (B2)

Since the raw image noise is uncorrelated, the noise variance
in the filtered image is

σ2output �
X

∀ x;∀ y

h2g�x; y�σ2: (B3)

For high frequencies, we expect using a filter with
Wg < 0.95, where Eq. (47) does not hold. Therefore, we start
by a numerical calculation. For a range of values of Wg, the
discrete Fourier transform is calculated. In addition, the noise
change (σoutput ∕ σ) is calculated using Eq. (48). Then, the SNR
change at a single horizontal frequency u � �u; 0� is calculated
as in Appendix A

C�u;Wg�≡
SNRoutput�u�
SNRinput�u�

: (B4)

For each frequency,

Cgaus
max �u� � max

Wg

C�u;Wg�: (B5)

The value of Cmax�u� is plotted in Fig. 8 (dashed). The curve of
Cmax�u� corresponding to a Gaussian is very similar to the plot
corresponding to a simple averaging window.

The SNR change for the Gaussian filter for Wg > 0.95 can
be analytically calculated. Using Parseval’s theorem for DTFT,

�σoutput ∕ σ�2 �
X

∀ x;∀ y

h2g�x; y� �
Z

0.5

−0.5

Z
0.5

−0.5
H2

g�u; v�dudv

� 1 ∕
�
2

���
π

p
Wg

	
2
: (B6)

Combining Eqs. (47) and (51) into Eq. (49),

C�u;Wg� �
Hg

σoutput ∕ σ
� exp�−2π2u2W2

g�
�
2

���
π

p
Wg

	
: (B7)

The STD that yields the maximum possible SNR improve-
ment is

∂

∂Wg
C�u;Wg� � 0 ⇒ Wmax

g � 1 ∕ �2πu�; (B8)

resulting in an SNR improvement of

Cgaus
max �u� � e−0.5���

π
p

u
1
3u

≈
1
πu

: (B9)

This curve is identical to the numerical calculation in Fig. 8,
except for high frequencies. In the low frequencies,
sin�πu� ≈ πu, and thus Cmax ≈ Cgaus

max , as shown in Fig. 8.
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