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Abstract
Stray light reflected by lens surfaces creates flare which

affects the image. A pronounced form of this flare is aperture
ghosting, where bright spots that resemble the shape of the
lens aperture are overlayed on the image. This might dis-
rupt image analysis. It occurs when a bright narrow source
(usually the Sun) is in the vicinity of the field of view, though
often the source may be outside the actual viewed field. This
paper analyzes the geometry of this phenomenon. It theoret-
ically proves empirical observations, particularly the con-
densation of this flare around a straight line. Based on the
image-formation model, we devise a very simple method for
mitigating this effect, using as few as two frames taken when
the camera moves. This significantly improves the images.
Furthermore, aperture ghosting is shown to encode useful
geometric information, specifically the location of the (of-
ten unseen) illumination source, and the optical center of
the camera. Hence, our approach decodes this information
as a by-product of deflaring. This is demonstrated experi-
mentally outdoors.

1. Introduction
The image irradiance may not represent well the object

radiance at the corresponding location. One reason is that
part of the light emanating from the scene undergoes reflec-
tions between components in the lens system [13], becom-
ing stray light. This light affects unintended locations in the
image plane, thus biasing the intensity readout in these lo-
cations. This phenomenon is known as lens flare or veiling
glare [9, 12, 13, 18, 15]. Flare is sometimes added inten-
tionally as a special effect [8].

Stray light may originate from sources outside (but close
to) the field of view (FOV): the source does not project
into the CCD area, but still shines into the lens and cre-
ates the effect. Most objects do not create stray light of
appreciable energy. The effect, however, is significant if the
scene in front has a very bright light source, while some ob-
jects in view are dim. The effect is particularly disturbing
if the bright light source is narrow: then the flare pattern
is strongly spatially varying, as seen in Fig. 1. This may
inhibit understanding of underlying objects. It may even
saturate the image. Furthermore, this additive component
increases photon noise [19]. This form of flare is termed
aperture ghosting [24], as it resembles scaled replicas of

Figure 1. Aperture ghosting: bright spots resembling the aperture
(nearly hexagonal here). Photo courtesy of Paul van Walree [21].

the lens aperture, e.g., hexagonals.
This paper analyzes the formation of aperture ghosting.

It yields radiometric and geometric models of the prob-
lem. The analysis shows that flare may actually be good for
vision. Aperture-ghosting encodes information about the
scene and the camera. Hence, a method that can isolate flare
can extract this information. The analysis explains analyti-
cally the locality of aperture ghosts (Fig. 1) and their geom-
etry. Based on this, we propose a very simple approach that
effectively counters the ghosting.

Effective glare-removal systems were proposed in
Refs. [12, 18]. The method in [12] requires insertion of a
special mask into the camera, and involves a significant loss
of spatial resolution. Ref. [18] requires a significant number
of raw frames taken by a static camera. There, imaging is
done through a mask which should be in approximate focus
with the scene. Light is lost in opaque areas of the mask. In
contrast, the approach described here is fast and works with
as few as two frames. It requires no special hardware, and
no light loss. It is thus easily demonstrated in outdoor ex-
periments. Note that flare may also be treated by image de-
convolution [18]. However, deconvolution is difficult if the
main source of the problem (the Sun) is not captured, being
outside either the FOV or the camera’s dynamic range.

The approach we use works with camera motion. This
enables its use in a wide range of applications. As a by-
product, our approach exploits the flare to extract additional
information. Specifically, it estimates the location of the
illumination source (which is often outside the FOV), and
the projection of the optical center of the camera.
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2. Theoretical Background
A compound camera lens typically contains several re-

fractive optical elements and an iris. As a light ray L en-
ters the lens and propagates in the system, this ray encoun-
ters air-glass interfaces. In each such interface, a portion of
the ray’s energy is reflected. Light which is reflected out-
wards from one inner interface may be back-reflected into
the camera chamber by another interface. Hence, a set of
secondary reflected light rays {L̃q}Nsecondary

q=1 is created.

In computer vision, other separation problems involved
secondary reflections. The reflections were not modeled in
the lens, but within the scene. Ref. [14] modeled lighting
with increasing orders of rays reflected from the surround-
ings. Ref. [4] modeled secondary semireflections in a win-
dow, and proposed a deghosting method for them.

In our case, the secondary rays are created in the lens and
propagate to the image plane. Usually, at each lens surface,
a ray L hits the curved lens interfaces at an angle. Hence,
the reflection deviates the ray direction. This causes the
secondary rays {L̃q} to spatially deviate from L. Hence,
light which was supposed to arrive at a certain pixel (if no
reflections occurred) is distributed over a set of different lo-
cations. This causes flare.

The number Nsecondary can be quite large, even for
simple systems. Suppose there are nlens optical element-
groups.1 They have 2nlens air-glass interfaces. Based on
Refs. [13, 18], the total number of secondary reflections is
Nsecondary = 2n2

lens − nlens . For example, in a rather
basic but common Tessar system, which has three element
groups, 15 secondary reflections are caused by the lenses.
Also, the CCD chip may reflect toward the lenses light,
which is then backreflected. As a result, it can be shown
that we get

Nsecondary = 2n2
lens + nlens . (1)

Stray light is reduced by anti-reflection coatings over the
glass interfaces [13], and by use of baffles [15]. Coatings
decrease reflection [11] from glass to ≈ 0.3%, down from
≈ 4% of uncoated interfaces. Reflection from two coated
surfaces thus channels ≈ O(10−5) of the energy of L to
each secondary (flare creating) ray L̃q. This is very low for
most objects in the scene. However, it is not sufficiently low
when a strong light source, such as the Sun or a lamp shines
light directly into the lens. Take the typical value [5] that
the radiance of such illumination sources is O(105 − 106)
brighter than the rest of the scene. Then, flare may appear
as bright as the imaged objects.

1An element group is either a single optical element, or multiple ele-
ments that are glued together such that there is no air between them.

3. Image Formation model
3.1. Photometry

The coordinate of a pixel is x = (x, y), in the local
coordinate system of a frame. Had there been no reflec-
tions in the camera system, the image irradiance would have
been i(x). Reflections inside the camera create two effects.
First, energy carried by the main beam towards an intended
pixel is decreased, since this energy is reflected elsewhere.
Overall, the transmittance of the lens system is decreased
to T < 1. If all the air-glass interfaces have reflectance R,
then, T = (1 − R)2nlens . Second, portion of the reflected
energy appears as an additive flare F (x), where F (x) ≥ 0.
Overall, the measured image irradiance is

G(x) = I(x) + F (x) , (2)

where I(x) = Ti(x).
The transmittance T is independent of the scene, and is

a fixed function of the lens hardware. Hence, T can be es-
timated or calibrated beforehand, and then be compensated
for in any new image. Thus, in this paper we are not in-
terested in such a fixed compensation. We aim to separate
I(x) from F (x), both of which are scene dependent.

3.2. Geometry
This section derives a theoretical geometric model for

aperture ghosting. The optical axis (OA) is a straight line,
which is the axis of radial symmetry of the system.2 A
world point has a three dimensional (3D) coordinate vector
X. The camera has a center of projection at Xcenter ∈ OA.
Let the scene be illuminated by an off-axis single bright
point source, such as the Sun. Its position in the world co-
ordinates is Xsol.

Consider Fig. 2. One plane in space, denoted by
Pmeridion includes both the OA and the off-axis point Xsol:

OA,Xsol ∈ Pmeridion . (3)

This is the meridional (tangential) plane [6] with respect
to Xsol. The chief ray [6], denoted as C, emanates from
Xsol and enters the lens system at Xcenter ∈ OA. As
Xcenter,Xsol ∈ C, following Eq. (3)

C ∈ Pmeridion . (4)

Let a point in the lens system be parameterized by
(ρ, φ, z), where z is the coordinate on the OA, ρ is the
distance from the OA, and φ is the azimuth. The plane
Pmeridion has a fixed φ. At all the lens interfaces, the sur-
face normal has no azimuthal component, as the lens has
radial symmetry around the OA. After it enters the lens, the
ray C propagates through the system and refracts. It also

2Radial symmetry exists if the optical system is aligned. Then, all its el-
ements are positioned such that they are centered and oriented on a shared
OA. The iris is typically not circular. Nevertheless, it is symmetric and its
center resides on the OA.



Figure 2. A lens is radially symmetric around an optical axis (OA). The entrance pupil is an image of the iris, formed by the front lens
elements. Light is projected to Psensor, in which the CCD array resides. Jointly with the OA, the chief ray C from the light source at Xsol

defines the meridional plane Pmeridion. Secondary reflected rays {C̃q} created by C are confined to Pmeridion, and create flare in the form
of aperture ghosting. It condenses on line `flare. This line passes through xsol and o, i.e., the respective projections of Xsol and the OA.

generates a set of internally reflected rays {C̃q}Nsecondary
q=1 .

Since the refracting/reflective interfaces have no azimuthal
inclination, the chief ray C maintains a fixed φ and thus can-
not leave Pmeridion. For the same reason, also the reflected
rays (generated by C) are constrained to this plane, i.e,

{C̃q}Nsecondary
q=1 ∈ Pmeridion , (5)

as illustrated in Fig. 2.
Denote the image plane as Psensor, i.e. CCD ⊂ Psensor.

This plane is intersected by the OA at

o = Psensor ∩ OA , (6)

which is defined here as the optical center of the image
frame. The projection of Xsol on the sensor plane is at

xsol = Psensor ∩ C . (7)

Often, xsol is outside the camera FOV, i.e., the Sun’s pro-
jected image lies outside the area occupied by the CCD.

The planes Psensor and Pmeridion intersect at a straight
line,

`flare = Psensor ∩ Pmeridion . (8)
Considering Fig. 2, this line has the following properties:
• It represents a line in the image data, since
`flare ⊂ Psensor.
• It is a radial line in the image: `flare passes through o.
This follows from Eqs. (3,6), which dictate that o lies at the
intersection expressed in Eq. (8).
• The point xsol resides on `flare. This follows from
Eqs. (3,7), which dictate that xsol lies at the intersection
expressed in Eq. (8).

For the moment, let the lens iris be closed almost com-
pletely, such that the system functions similarly to a pin-
hole camera, geometrically. Then, only the chief ray exists.
Hence, the only secondary reflected rays originating from
the Sun are the set {C̃q}. These reflected rays hit Psensor at
a set of locations

ΦC = {C̃q} ∩ Psensor . (9)

This is the set of points in the image plane that have lens
flare3 originating from Xsol. Using Eqs. (5,9) in Eq. (8), it
follows that ΦC ∈ `flare, i.e., the flare’s aperture ghosts all
reside on the line `flare. To conclude, the following theorem
applies to well-aligned cameras:
Theorem 1: If the iris is nearly closed, flare is limited to
a straight line in the image. This line passes though the
frame’s optical center o and the Sun’s image location xsol.

Since a radial line is invariant to radial distortions, it is
straightforward to prove the following:
Corollary 2: The line `flare is invariant to radial geometric
distortions and their corrections.
However, ΦC is distorted, since it can move and change
within `flare. Generalization of the analysis to more real-
istic systems is provided in App. A and B, which deal with
finite (not pinhole) apertures. They result in the following:
Corollary 3: An illumination point source creates a flare
pattern which is symmetric around `flare, if the iris is
radially symmetric.

Proposition 4: Lens flare caused by secondary reflections
contains a dilated version of ΦC . The dilation around each
point in ΦC is set by the shape of the iris.

The latter conclusion theoretically expresses a familiar ob-
servation which had prompted the term aperture ghosting.

4. Aperture Deghosting
This section presents an estimation of I , from which

aperture ghosting is eliminated. As a by-product, images
of the aperture ghosts are derived. In Sec. 5, these images
are used to extract geometric information.

3Veiling glare is also created by scattering, e.g., from dust or finger-
prints on the lens. Our analysis does not deal with this kind of flare, but
only with flare associated with reflections from the glass interfaces. This
form causes the strong spatial variations characteristic of aperture ghosts.



x

y

Flare images   F (x        )
~
kRegistered images    G (x        )k

~Raw images    G (x)k

x

y

xglobal

yglobal

xglobal

yglobal

xglobal

yglobal

xglobal

yglobal

globalglobal

Figure 3. Experiment. [Left] Sample raw frames. [Middle] The corresponding geometrically registered frames. [Right] The resulting
estimated flare images, in the global coordinate system. Most of their energy is in spots (aperture ghosts) along a straight line ˜̀flare

k .
However, the real-life system is not going by the perfect model: there is a weak aperture ghost on the right, way off ˜̀flare

k . In addition,
there is some energy elsewhere, caused by slight errors of image alignment. Nevertheless, the algorithms tolerated these imperfections.

4.1. Image Acquisition
Take Kframes raw images, each denoted as Gk(x), where

k ∈ [1,Kframes]. All of them capture the same scene. Be-
tween frames, the camera moves e.g., in an uncontrolled
manner, as in hand-held cameras. For example, using a
moving Nikon D100 camera outdoors,4 we simply acquired
a set of three frames from the same point of view. Two of
these frames are shown in the left column of Fig. 3.

The light source at Xsol is projected to a different image-
plane location xsol

k in each frame k, due to camera motion.
Thus, following Theorem 1, in each frame k, the flare is
concentrated on a different line in the frame’s internal coor-
dinate system x. This line passes through the static o and
the varying xsol

k . Denote this line as `flare
k .

Since Xsol is typically very far, motion of xsol
k is

achieved only if the camera motion has a rotation compo-
nent. The line `flare

k still does not move, if the camera rota-
tion axis is normal to the plane Pmeridion. In general, how-
ever, such pathological cases are rare: typically, the camera
rotates, and not around a particularly degenerate axis.

The subsequent stages require image registration. This
is easier to achieve if the camera rotates around Xcenter, or
if the objects are far enough. In this paper, we assume that
motion can indeed be compensated for by registration.

4.2. Deghosting the Sequence
Aperture ghosts condense around a line in each frame.

In the frames acquired in Sec. 4.1, this line moves. Hence,

4The frames were acquired in RAW format to maintain linearity.
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Figure 4. The internal coordinates x in frame k, are transformed
to the global coordinates xglobal via an operator Tk.

object parts that are overlayed with aperture ghosts in one
frame, can generally come out of this flare component in
other frames. This is the key for our simple deghosting.

Let us compensate for the scene/camera motion. Any
coordinate x in frame k is transformed to a cor-
responding point in a global 2D coordinate system
xglobal = (xglobal, yglobal), using a registration operator Tk

xglobal = Tk(x) , (10)

as illustrated in Fig. 4. The registered frames are denoted
G̃k(xglobal). Now, Eq. (2) becomes

G̃k(xglobal) = I(xglobal) + F̃k(xglobal) . (11)

The middle column in Fig. 3 shows registered frames
G̃k(xglobal). In Eq. (11), the component I(xglobal) is inde-
pendent of k, since the true scene (without flare) is assumed
to be temporally constant in the global system.



Figure 5. A deghosted image, based on data corresponding to
Fig. 3.

The component F̃k(xglobal) changes between the reg-
istered frames. Before registration, the flare moves with
(and within) the line `flare

k . As described in Sec. 4.1, the
motion of the line is different than the apparent motion
of the scene within each frame. For this reason, registra-
tion which is tuned to the object I(xglobal) does not align
the flare, as illustrated in Fig. 4. This is similar to the
situation of motion of transparent layers, as analyzed in
Refs. [1, 2, 7, 17, 20, 22].

For each location xglobal in the captured FOV there is a
set of frames that acquire measurements at this global coor-
dinate. Denote this set of frame-indices as Ω(xglobal). Now,
recall that the flare F̃k(xglobal) is always non-negative.
Hence, we use a simple deflaring estimator

Î(xglobal) = min
k∈Ω(xglobal)

G̃k(xglobal) . (12)

Fig. 5 shows the result of this operation, based on the exper-
imental data shown in Fig. 3. Indeed, the aperture ghosts are
effectively eliminated.

Note that Î(xglobal) is an upper bound for I(xglobal).
Flare may exist at xglobal even in the dimmest measurement.
However, aperture ghosts are rather localized with signif-
icantly lower flare intensity outside the aperture ghosts.
Thus, Eq. (12) is effective in eliminating this component.

In Ref. [17], an operation similar to Eq. (12) was used
in the context of window semi-reflections. However, the
favorable locality of ghosting is usually not the case in win-
dow semi-reflections [1, 2, 7, 17, 20, 22]. In a window, the
disturbing spatially varying reflection may cover the whole
FOV. There, the minimization (Eq. 12) may not suffice if
the motion of the reflected layer is not long enough, but
in aperture ghosting just a small motion5 usually suffices.
Consequently, the deghosting shown in Figs. 3,5 is success-
fully achieved also with Kframes = 2, experimentally.

As a by-product, an estimate of the set of aperture-
ghosting images is derived by

ˆ̃F k(xglobal) = G̃k(xglobal)− Î(xglobal) . (13)
5Too small motion may maintain residual overlap between aperture

ghosts in different frames G̃k(xglobal). Then, gradient-domain ap-
proaches [23] can be helpful.

The right column in Fig. 3 shows the resulting flare images
ˆ̃F k(xglobal) in the experiment.

5. Geometry from Flare
Theorem 1 states a constraint about flare, which involves

two points: the location of the light-source’s projection, and
the optical center of a frame. In this section, we exploit this
constraint in order to estimate these two points.

5.1. Where is the Sun?
The light source from which flare originates (associated

here with the Sun6) is at a fixed 3D position Xsol. In the
global coordinate system, the Sun’s projection is at xsol

global,
common to all registered frames. However, xsol

global is of-
ten outside the camera FOV. Otherwise, it may saturate the
camera, or induce underexposure of the rest of the scene.
Now, we describe a way to recover xsol

global, even-though the
Sun may not be visible in the images.

5.1.1 Principle

“There has to be an invisible sun.”
- Sting & The Police

The registered flare images ˆ̃F k(xglobal) were derived in
Eq. (13). Each of them condenses around a line ˜̀flare

k . This
line is equivalent to the unregistered line `flare

k , yet rectified
to the global coordinate system xglobal. Following Theo-
rem 1, each such line must pass through the projection of
the Sun. Hence, ˜̀flare

k must pass through xsol
global. This is

illustrated in Fig. 4.
As the images are registered, their internal coordinates

are transformed by Eq. (10). Hence, any central pixel o is
transferred to location õk = Tk(o). These locations are
generally different and not co-linear with xsol

global, as seen in
Fig. 4. Consequently, xsol

global can be found as the intersec-
tion of the lines ˜̀flare

k , in the global coordinate system.

5.1.2 Low Level Estimator of the Sun’s Location
We avoid explicit implementation of the description in
Sec. 5.1.1, which might apparently involve detection of
features such as edges or hexagonal ghosts, line detection
and then least-squares estimation of intersection by multi-
ple lines. We preferred a simple low-level approach which
involves no feature extraction. The approach seeks the point
xsol

global, which is most consistent with the whole data.
Let a be a coordinate column vector in an arbitrary spa-

tial domain. A line in the a plane is parameterized by a
vector l = (r, θ). Here, θ ∈ [0, π] is the angle of a normal
to the line (See Fig 6a), and r is the signed displacement the
line from the origin of the a coordinate system. The Radon
transform of a function h(a) is defined as

6Ref. [16] studied the distribution of the Sun’s location in art.
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Rl{h(a)} =
∫∫

h(a)δ

(
r −

[
cos θ
sin θ

]t

a

)
da, (14)

where t denotes transposition and δ is Dirac’s delta func-
tion. Now, take the estimated flare images derived by
Eq. (13), and apply the Radon transform (14) on each of
them. Here, we set a = xglobal, and h = ˆ̃F k(xglobal). The

result is Rl{ ˆ̃F k(xglobal)}. A high value of this function in-
dicates a high score for an intense line parameterized with
(r, θ), in flare-image k (See Fig. 6b).

Let a candidate position for the Sun’s projection be at
xcandidate

global . Similarly to Fig. 6a, any line that passes through

this point should satisfy

r = [cos θ sin θ] xcandidate
global , (15)

where xcandidate
global is a column vector. For each θ there is a

unique r that satisfies Eq. (15). Hence, a specific xcandidate
global

defines a set of vectors l = (r, θ). This set describes all
possible straight lines passing through this point as plotted
in Fig. 6b. Denote this set of lines as Λ(xcandidate

global ).
Now, instead of scoring a line, as in Eq. (14), we score a

candidate solar point xcandidate
global : in a single flare-image k,

sk(xcandidate
global ) = max

l∈Λ(xcandidate
global )

Rl

{
ˆ̃F k(xglobal)

}
. (16)

A high score sk(xcandidate
global ) means that through xcandidate

global

passes an intense line (for which the line-ranking
Rl{ ˆ̃F k(xglobal)} is high) in flare-image k. Based on this,
the total score for a candidate point is

S(xcandidate
global ) =

Kframes∑

k=1

sk(xcandidate
global ) . (17)

The best ranking candidate is the estimated solar projection:

x̂sol
global = arg max

xcandidate
global

S(xcandidate
global ) . (18)

Lines passing through x̂sol
global have the most accumulated

energy.
The result that corresponds to the data described in Fig. 3

is shown in Fig. 6c. The function S(xcandidate
global ) is in green.

The selected point x̂sol
global resulting from Eq. (18) is shown,

as well as the lines l, that maximize the score in each frame
(Eq. 16). By definition, they all intersect at x̂sol

global. Over-

layed in red are three registered flare images ˆ̃F k.

5.2. Where is the Optical Axis?
Due to hardware misalignment the OA nay not inter-

sect the image plane at the frame’s center. Here o is esti-
mated as a by-product of deflaring. According to Sec. 4.1,
flare is condensed around a line `flare

k in each raw (unregis-
tered) frame k. Following Theorem 1, each such line passes
through o. Thus, o can be found as the intersection of `flare

k ,
in the internal coordinate system x of the frames.

Estimation of o can be done in a manner analogous to
Sec. 5.1.2. Take the flare images derived by Eq. (13). Then,
invert the registration (Eq. 10): a flare value in a pixel of the
image ˆ̃F k(xglobal) is assigned to a pixel x = T −1

k (xglobal)
in frame k. This yields flare images F̂k(x), which geomet-
rically correspond to the raw unregistered frames.

Now we set a = x and h = F̂k(x), and apply the
Radon transform (14), in analogy to Sec. 5.1.2. The result is
Rl{F̂k(x)}. Let a candidate position for o be at ocandidate,
which defines a set Λ(ocandidate) of lines passing through
it. In analogy to Eqs. (16,17), the score for the candidate is
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S(ocandidate) =
Kframes∑

k=1

max
l∈Λ(ocandidate)

Rl

{
F̂k(x)

}
. (19)

The candidate that maximizes S(ocandidate) is the estima-
tion of o, denoted ô.

The result that corresponds to the data of Fig. 3 is shown
in Fig. 6d. The function S(ocandidate) is in green. The point
ô is shown, as well as the lines l that maximize the score.
Three unregistered flare images F̂k are overlayed in red.

6. Selective Processing
Deghosting as in Eq. (12) can be more efficient, by ap-

plying it only to pixels around `flare
k . Other pixels in frame

k are unaffected by ghosting, and need no processing. Such
a mode can help processing of dynamic scenes, since most
of the FOV maintains the raw moving information, and only
the regions of `flare

k are temporally processed.
Such a selective processing is demonstrated in an exper-

iment. Fig. 7a shows a sample raw frame. The Sun is in
the FOV, but it saturates and blooms the area around xsol.
Hence, the Sun is not visible. The area adjacent to the Sun
exhibits a glare type which is not aperture-ghosting, since it
contains thin lines not directed to the frame’s center. Such a
glare component is not dealt with in our method. Neverthe-
less, the acquired images suffered from significant aperture
ghosting, which affects areas distant from xsol.

The data was processed first using Eqs. (12,13,16,17,18).
This yielded the estimated xsol

global, as well as the lines in
Λ(xsol

global) which maximized Eq. (16), per frame. The latter
are associated with ˜̀flare

k . Finally, Eq. (12) was re-applied
to the data, this time only in a band around ˜̀flare

2 . The rest
of Î was simply pasted from the registered frame G̃2. The
result is shown in Fig. 7b.

7. Discussion
Useful results can also be extracted if the camera is

static, but the light source moves. This occurs naturally out-
doors, due to the Sun’s trajectory. Then, `flare changes its
orientation in time. The orientation and its kinetics depend
on the camera’s viewing direction relative to the south (in
the northern terrestrial hemisphere). This provides cues that
may complement Ref. [10] as a visual compass.

In artificial lighting, ghosting can be caused by multi-
ple illumination sources. In each raw frame, multiple flare
lines `flare exist, all passing through o. We expect Eq. (12)
to work there as well, perhaps requiring more frames. Find-
ing the locations x̂sol

global of the multiple sources is more in-
volved, and may require turning Eq. (18) from an expres-
sion of a single-maximum to a clustering formulation.

Flare also occurs in other sensing modalities. For in-
stance, in thermal imaging, radiation from hot sources and
the camera interior are diverted and reflected [3] by the op-
tics towards pixels. It may be possible to deflare such mea-
surements using a method similar to the one presented here.

The geometric model in the paper assumes that the op-
tical elements share the same OA. Deviations from this as-
sumption are caused by slight unintended misalignment of
elements, which may be the reason for the off-`flare ghost
in Fig. 3. In some systems, some elements are necessarily
radially asymmetric, such as prisms (used in optical image
stabilization). The impact of these deviations on the geo-
metric estimation of xsol is yet to be studied. Nevertheless,
the photometric model (Sec. 3.1) is valid even under devi-
ation from radial symmetry. Hence, aperture deghosting as
described in Sec. 4 is resistant to such deviations.

A. Ghosting by a Finite-Aperture
The chief ray creates flare at a set of points ΦC , which

lies on `flare (Theorem 1). The aperture has a finite size,
hence allowing into the lens rays from Xsol that are not-
chief. How does this affect the flare?

Let u be a point in the entrance pupil, as illustrated in
Fig. 8. A ray L(u) is emitted from Xsol. It passes through
u in the entrance pupil, slightly deviating from the chief
ray. The ray L refracts through the lens system, and eventu-
ally it projects onto xsol on Psensor (if the focus settings are
tuned to the distance of Xsol). On its way, L(u) yields a set
of internally reflected rays {L̃q(u)}Nsecondary

q=1 . The param-
eters (location and direction) of each secondary ray L̃q(u)



Figure 8. The entrance pupil is bisected by Pmeridion at line
`tangential. A tangential ray Ltan is in Pmeridion. Rays L(u) and
L′(u′) pass at symmetric points relative to `tangential, and follow
symmetric trajectories.

are smooth functions of u. The reason is that the laws of
specular reflection (e.g., outgoing angle equals the incident
angle) are smooth, and the lens surfaces are smooth as well.

Consequently, the intersection of L̃q(u) with Psensor is
a smooth function at a small u. Hence, if L infinitesimally
deviates from the chief ray C, then the flare caused by L
would deviate infinitesimally from ΦC . As a consequence,
aperture ghosts are mostly a dilated version of ΦC , where
the dilation around each point in ΦC is continuous.

The deviation u is bounded by the entrance pupil [6],
which has the shape of the lens iris. Hence, the shape of
this pupil bounds the deviation of the flare from ΦC . The
entrance pupil has the shape of the iris (it is an image of
the iris [6]). Thus, the iris shape sets the image domain of
finite-aperture ghosting, leading to Proposition 4 in Sec. 3.2.

B. Symmetry
Approximate the entrance pupil by a circle. Then, as

discussed here, `flare is an axis of reflection symmetry
for finite-aperture flare. Consider Fig. 8. The entrance-
pupil is intersected by Pmeridion at a line `tangential. Since
Xcenter ∈ `tangential, the symmetric pupil is bisected by
`tangential. Thus, for any position u in the pupil, there is a
reflected position u′ (with respect to `tangential) in the pupil.

Now, consider a flare point outside `flare. It is created
by internally reflected rays, which stem from a non-chief
ray L(u). There is thus another ray L′(u′) which passes
through the symmetric position u′ in the entrance pupil. By
symmetry considerations, it creates a reflected flare around
`flare. This yields Corollary 3 in Sec. 3.2.
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