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Underwater, natural illumination typically varies strongly temporally and spatially. The reason is
that waves on the water surface refract light into the water in a spatiotemporally varying manner.
The resulting underwater illumination field forms a caustic network and is known as flicker. This
work shows that caustics can be useful for stereoscopic vision, naturally leading to range mapping of
the scene. Range triangulation by stereoscopic vision requires the determination of correspondence
between image points in different viewpoints, which is often a difficult problem. We show that the
spatiotemporal caustic pattern very effectively establishes stereo correspondences. Thus, we term the
use of this effect as CauStereo. The temporal radiance variations due to flicker are unique to each object
point, thus disambiguating the correspondence, with very simple calculations. Theoretical limitations
of the method are analyzed using ray-tracing simulations. The method is demonstrated by underwater
in situ experiments. © 2011 Optical Society of America
OCIS codes: 010.7295, 010.7340, 330.1400.

1. Introduction

Natural underwater environments exhibit several
optical effects in typical lengths that are somewhat
comparable to human and animal lengths. These
include scattering, absorption, and spatiotemporally
varying random scene irradiance [1–4]. The latter
phenomenon is sometimes termed sunlight flicker
[5] or caustic networks [6]. An example is shown
in Fig. 1(a). This phenomenon is caused by refraction
of sunlight through the wavy water surface [6] (Up-
welling radiance through the surface was studied
in [7]).

The mentioned optical phenomena strongly affect
underwater vision. Analysis of visual signals in this
environment is important for understanding bio-
logical vision of marine animals [8–12]. It is also
required in man-made systems handling oceanic
engineering tasks [13–16] and is useful in archae-
ological mapping [17]. Hence, computer vision meth-
ods have been developed for this environment, as

adaptations of open-air computer vision methods.
Some computer vision methods try to tackle poor
visibility conditions [18,19], which often exist [1]
underwater.

In the context of vision, the temporal inconsistency
of caustic networks has typically been considered
mainly as a significant disturbance. Thus, attempts
were made to reduce this effect by image postproces-
sing [5,20]. However, in this work we show that
natural flicker can actually be informative and useful
for vision.

An important visual task is estimation of the
scene’s range map. This is commonly achieved using
a stereoscopic setup. Two cameras (or eyes), image
the scene from two different viewpoints. Then, image
features (e.g., pixels or blocks) in the two viewpoints
are mutually matched. Once a correspondence be-
tween image features is established, the range to
the corresponding scene region is triangulated. How-
ever, establishing correspondence is often difficult,
prone to ambiguities and errors.

This work shows that spatiotemporal variations of
caustic networks solve this problem rather simply.
Thus, we term the use of this effect as CauStereo.
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The temporal radiance variations due to flicker are
unique to each object point, thus disambiguating
the correspondence. This is demonstrated by under-
water in situ experiments. The model underlying the
approach includes simplifying assumptions. The lim-
itation of the main assumption is therefore studied
as well. This is done using ray-tracing simulations.
Partial results appeared in [21,22].

2. Theoretical Background

A. Stereo and Correspondence

As shown in Fig. 1(b), a submerged scene is imaged
by two cameras from different viewpoints. The cen-
ters of projection of the two cameras are mutually
separated by a baseline b, as illustrated in Fig. 2.

Denote the left camera by L. We align the global
coordinate system to this camera, i.e., the position

of a scene point is uniquely defined by the left spatial
coordinate vector xL and the distance of an object
point from the stereo rig Zobj. The right camera is
denoted by R. The object corresponding to ðxL;ZobjÞ
in the left camera is projected to pixel xR in the right
camera.

Assume for a moment that there is only a single
point source of light in the field of view, and no light
is scattered by the volume or surface. Then, each of
the images is dark, except for a single point in each
(xL and xR, respectively). In this case, correspondence
between the bright image points is trivially estab-
lished. Then, the point source location can be trian-
gulated by back-projecting xL and xR into the volume,
along the rays illustrated in Fig. 2. Specifically, the
disparity vector of the two points is

d ¼ xR − xL: ð1Þ

Let d ¼ ∥d∥. For on-axis object points

Zobj ¼ bF=d; ð2Þ

where F is the distance between the camera exit
pupil and its detector array. Following Eq. (2), the
range map of the scene, ZobjðxLÞ is indicated by the
inverse of the disparity map dðxLÞ.

Of course, natural underwater scenes do not con-
tain a single radiation point source: the entire field
of view acquires light scattered and reflected in the
scene. This makes matching of xR to any xL some-
what more difficult, in what is known to be the
correspondence problem. Elaborate algorithms for
solving this problem have been developed during
the past decades [23] by the computer vision commu-
nity. Essentially, they rely on spatial correlation be-
tween viewpoints: a spatial block of pixels in the left
image is used as a template, for which a match is
searched in the right image. Because of the extended
spatial support, such methods face resolution diffi-
culties and frequently fail near distance edges.

This paper shows that the natural phenomenon
of spatiotemporal caustics enables an easy and accu-
rate solution to the stereo correspondence problem.
Thanks to this effect, there is no need to use a wide
spatial support for matching wherever temporal
light variations exist: all calculations can be point-
wise. This bypasses the problems associated with
methods that rely on spatial content.

B. Underwater Flickering Caustics

Consider a short period of time. Generally, during
this period, the water surface is wavy [24–26]. There-
fore, the refraction of sunlight through the water sur-
face creates inhomogeneous irradiance underwater.
The resulting irradiance pattern is random. When
light reaches the sea floor or other underwater
objects, it forms bright regions in a caustic network
[6]. Because of the natural motion and evolution of
water surface waves, this light pattern changes in
time. Thus, it is sometimes referred to as sunlight

Fig. 1. (Color online) (a) Sunlight flicker irradiating a scene in a
pool. (b) Underwater stereoscopic video setup in the Mediterra-
nean. Taken from [21] with permission ©2009 IEEE.

Fig. 2. (Color online) Underwater stereoscopic pair consisting
of two cameras inside housings. The cameras are separated by
baseline b. An object point at distance Zobj is projected into the
cameras at xL and xR. If correspondence between the cameras is
known for the object point, it is possible to triangulate and calcu-
late Zobj out of the disparity d between the viewpoints.
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flicker [5]. This phenomenon occurs only in regions
that are illuminated by direct sunlight. In this
paper, the underwater irradiance is denoted by
IlightingðxL;Zobj;mÞ, where m is the temporal frame
index.

How does sunlight flicker change with depth? As
reported in [20], the problem was studied in [1].
The relative power of irradiance fluctuations decays
exponentially with underwater depth, at a rate that
depends on the water turbidity: in clearer water,
sunlight flicker remains significant deeper than in
turbid water. Thus, as rule of thumb, flicker is not
negligible at depths of meters to ∼20meters, depend-
ing on the water clarity. Furthermore, the temporal
changes of flicker slow down with depth [1,20].
Hence, longer periods are needed in order to sense
and make use of flicker, as objects are submerged
deeper.

C. Signal and Backscatter

Let the object radiance at a point be IobjðxÞ. Because
of attenuation in the water, the signal originating
from this object [18] is

SðxÞ ¼ IobjðxÞ expf−η½ZobjðxÞ − Zh�g; ð3Þ

where η is the attenuation coefficient of the water.
Here ZobjðxÞ is the distance to the object at x and
Zh is the distance between the entrance pupil of
the camera and the watertight housing in which
the camera resides.

In addition to the object signal, the camera also
senses path radiance, which is caused by ambient
illumination scattered into the line of sight (LOS) by
the water. This component is also termed backscatter
[27], and is denoted by BðxÞ. It is given [18] by an
integral over the LOS:

BðxÞ ¼
Z

ZobjðxÞ

~z¼Zh

Ilightingð~zÞpðθÞ expð−η~zÞdLOSx; ð4Þ

where dLOSx is a differential along the LOS. Here
p is the phase function and θ is the lighting angle
relative to the LOS, at a scatterer on the LOS.
Equation (4) can be approximated [18,28] as

BðxÞ ¼ B∞ð1 − expf−η½ZobjðxÞ − Zh�gÞ; ð5Þ

where B∞ is the path radiance in a LOS reaching
infinity. Overall, the radiance measured by the
camera is

IðxÞ ¼ SðxÞ þ BðxÞ: ð6Þ

3. Underwater Stereoscopic Model

The image formation model is simple. It combines
the spatiotemporal irradiance field described in
Section 2.B with the LOS effects described in
Section 2.C. We adapt the formulation to stereo.

In addition, we employ approximations that simplify
the model and the resulting shape recovery.

A. Flicker Signal

In the left camera, the signal corresponding to
Eq. (3) is

SLðxL;mÞ ¼ IlightingðxL;Zobj;mÞrLðxLÞ
× expf−η½ZobjðxLÞ − Zh�g; ð7Þ

where rL denotes the reflectance coefficient of the
object toward the left camera. The viewpoints of the
two cameras are different, separated by a baseline.
This has two consequences. First, the distance be-
tween the object and the left camera is different than
the distance of the object from the right camera. This
affects the signal attenuation. Second, the direction
from an object patch to the left camera is different
than the direction to the right camera. This may
affect the reflectance coefficient r.

For reasons that we detail below, we assume that
these differences do not have significant conse-
quences on the eventual range recovery. Overall we
use

Approximation 1: At both cameras, the signal is
attenuated in the same manner, ≈ expf−η½ZobjðxLÞ−
Zh�g. Differences of attenuation have no significance.

Approximation 2: The reflectance coefficients
are the same for both cameras: rL ¼ rR. Differences
between these coefficients have no significance.

Suppose for the moment that the attenuation to
the right camera is significantly different than the
left, by a factor f 1ðxRÞ. Furthermore, suppose the cor-
responding reflectance coefficients are different by a
factor f 2ðxRÞ. Then, the signal in the right camera is

SRðxR;mÞ ¼ IlightingðxL;Zobj;mÞrLðxLÞ expf−η½ZobjðxLÞ
− Zh�gf 1ðxRÞf 2ðxRÞ

¼ SLðxR;mÞf 1ðxRÞf 2ðxRÞ: ð8Þ
The factors f 1 and f 2 are a function of space, but are
temporally invariant. Hence, they are canceled out
if matching between xL and xR is established by nor-
malized temporal correlation of the signals.

These approximations are supported by other
reasons. The distance difference to the two cameras
is typically much lower than b, since the baseline is
approximately perpendicular to the optical axis, and
b ≪ ZobjðxLÞ. Anyway, the distance difference is
bounded by b. Thus, f 1ðxRÞ is bounded by expð−ηbÞ.
Typically, ηb ≪ 1. For example, in water having vis-
ibility distance (1=η) of 10m and baseline of 30 cm,
expð−ηbÞ ≈ 0:97. Hence, f 1ðxRÞ ≈ 1. The assumption
f 2ðxRÞ ≈ 1 is common in the stereo matching litera-
ture, and is known as the brightness constraint. It
holds if in the two viewpoints the object appears
Lambertian. In water, objects often satisfy this con-
dition better than in air [29]. Recapping, following
the above approximations in the context of Eq. (8),
signals in the two cameras are related by
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SLðxL;mÞ ≈ SRðxR;mÞ ∀ m: ð9Þ

B. Backscatter

Backscatter under flickering illumination depends
both on time and viewpoint. Rewriting Eq. (4) for
the left camera,

BLðxL;mÞ

¼
Z

ZobjðxLÞ

~z¼Zh

Ilightingð~z;mÞpðθLÞ expð−η~zÞdLOSxL : ð10Þ

Is the spatiotemporal variation of the integral sig-
nificant? Note that flicker hardly changes the overall
energy irradiated into the water. At each frame, the
caustic pattern essentially changes the spatial distri-
bution of this energy. In this random spatial pattern,
some regions on the LOS have higher irradiance
than others. However, different regions have differ-
ent weight in Eq. (10): a closer water voxel contri-
butes more to the overall backscatter than a
distant voxel. If the caustic distributes much of its
energy at nearby voxels, the backscatter can be sig-
nificantly higher than if this energy is focused only at
very distant voxels. So, an important question is, how
wide are the features of the caustic pattern? In other
words, what is the correlation length of the random
pattern IlightingðzÞ?

In this work, we make the following assumption:
Approximation 3: The correlation length of

IlightingðzÞ is much smaller than the attenuation
length 1=η.

This means that the caustic pattern changes from
bright to dark features within short mutual dis-
tances along the LOS, while the attenuation weight
does not change much in such mutual proximity.
According to [30], a typical flicker correlation dis-
tance may vary between a few centimeters to a few
tens of centimeters, depending on the underwater
depth and the water surface waves. On the other
hand, the attenuation distance typically varies [1]
between a few meters to a few tens of meters. There-
fore, there is typically at least 1 order of magnitude
between the flicker correlation length and 1=η.

Under approximation 3, the spatial variations of
the caustic are filtered out by the integral in Eq. (10).
Consequently, Eq. (5) approximately holds for the left
camera, and, for the same reasons, also for the right
camera. Hence,

BRðxR;mÞ ≈ BLðxL;mÞ
¼ B∞ðmÞð1 − expf−η½ZobjðxLÞ
− Zh�gÞ ∀ m: ð11Þ

The temporal variations in B∞ðmÞ are small, for
the reason mentioned above: the flicker changes
the distribution of energy, but not its spatial integral.
Hence, in different frames, the pattern changes,

bright voxels dim and vice versa, but the integral
over the LOS is usually insensitive to these temporal
changes. Compounding Eqs. (6), (9), and (11), the
overall scene radiance, as measured by the two
stereo cameras can be formulated as

IRðxR;mÞ ≈ ILðxL;mÞ ∀ m: ð12Þ

The limits and validity range of approximation 3 are
analyzed using ray-tracing simulations described in
Section 7.

4. Correspondence from Flicker

Equation (12) claims intensity similarity at points xR
and xL at frame m. However, this similarity is gener-
ally not unique, at frame m. A set of pixels ΩRðmÞ ¼
fxincorrectR g in IR have intensities that are very close to,
or equal to ILðxLÞ. One reason why this can happen is
that objects at such noncorresponding pixels may
have the same reflectance, irradiance and backscat-
ter. This situation leads to the classic correspondence
problem in nonflickering environments. More gener-
ally, the reflectance, irradiance and backscatter in
xincorrectR are all different than the ones in xL, but their
combination in Eq. (6) yields the same overall inten-
sity, at frame m.

Fortunately, in flicker, such ambiguities are com-
pletely resolved with high probability, since the light-
ing is dynamic. It can be claimed that flicker grants
each object point a unique temporal signature that
disambiguates stereo correspondence. Because of
the lighting dynamics, noncorresponding pixels in
ΩRðmÞ are generally different than those at ΩRðm0Þ,
in frame m0 ≠ m. A coincidence of matching intensi-
ties at m has rare chances of reoccurring at m0.
Considering a large number of frames NF,

∩
NF

m¼1
ΩRðmÞ → ∅; ð13Þ

where in practice even a small NF suffices to elimi-
nate the noncorresponding pixels.

Correspondence is determined in our work using
simple temporal normalized correlation. Define the
vector

ILðxLÞ≡ ½ILðxL; 1Þ; ILðxL; 2Þ;…; ILðxL;NFÞ�T; ð14Þ

where T denotes transposition. Now, in the right
image, there is a set of pixels Ψ, each of which is a
candidate for correspondence with xL. Without cali-
bration of the stereo setup, Ψ is the whole field of
view (all the pixels in the right image). If calibration
of the system had been done, then Ψ is the epipolar
line [31,32] corresponding to xL. For a candidate pixel
xcandR ∈ Ψ, define

IRðxcandR Þ
≡ ½IRðxcandR ; 1Þ; IRðxcandR ; 2Þ;…; IRðxcandR ;NFÞ�T: ð15Þ
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Subtracting the mean of each vector, we obtain

~ILðxLÞ ¼ ILðxLÞ − hILðxLÞi; ð16Þ

~IRðxcandR Þ ¼ IRðxcandR Þ − hIRðxcandR Þi: ð17Þ

The empirical normalized correlation [33] between
xL and xcandR is

CðxcandR Þ ¼ ½~ILðxLÞT · ~IRðxcandR Þ�=½∥~ILðxLÞ∥2∥~IRðxcandR Þ∥2�:
ð18Þ

For pixel xL in the left image, the corresponding pixel
in the right image is then estimated as

x̂R ¼ arg max
xcandR ∈Ψ

CðxcandR Þ: ð19Þ

As described in Section 3.A, the criterion of nor-
malized temporal correlation is rather insensitive
to intercamera differences in signal attenuation
and object reflectance. It is also insensitive to differ-
ences in camera exposure parameters (gain and
shutter speed) [34].

This method is very simple and accurate. It does
not blur range edges, since it involves no spatial
operations. However, it requires that correlation be
established over a length of time. In static scenes,
this is not a problem. However, it does not work well
if camera and scene motions exist. In order to handle

a certain level of motion, themethod can be enhanced
by using spatiotemporal [21] rather than just tem-
poral correlation. Furthermore, the acquisition time
can be significantly reduced using regularization
terms [35] to handle dynamic scenes, at the expense
of pointwise accuracy.

5. Experiments

We conducted a set of in situ field experiments in the
ocean and in a pool. Different scenes and cameras
were used. In general, Ψ can be limited to a line in
IR, termed the epipolar line. Knowing the epipolar
geometry requires calibration of the stereo rig, which
is affected by a peculiar distortion [36]. Our work
focuses on finding stereo correspondences, rather
than calibration. Therefore, in all the following
experiments, the setup is uncalibrated. Hence, the
search domain Ψ includes the entire field of view.

A. Swimming Pool Experiment

Consider our first example, which is an experiment
conducted in a swimming pool. The scene includes
several objects at Zobj ∈ ½1m; 2m�, near the corner of
the pool. The depth at the bottom was ∼1m. The
stereo setup was a Videre Design head shooting at
7 fps, with b ¼ 25 cm. A sample frame-pair appears
in Figs. 3(a) and 3(b). Temporal correlation was
performed using NF ¼ 35. Examples of temporal
matches in corresponding and noncorresponding
points are shown in Figs. 3(c) and 3(d), respectively.

As common in studies dealing with stereo corre-
spondence [23], the result is displayed as a disparity
map, rather than a calibrated range map.
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Fig. 3. (Color online) Left (a) and right (b) frames at one instance in the sequences. (c) Temporal plots of ~ILðxLÞ and ~IRðx̂RÞ extracted
from corresponding pixels. These pixels are marked by ⊗ in the respective frames. (d) Temporal plots of ~ILðxLÞ and ~IRðx̂RÞ extracted from
noncorresponding pixels. These pixels are marked by ⊗ and ⊙ in the respective frames.
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The disparity map is derived based on Eq. (1):

d̂ðxLÞ ¼ ∥x̂R − xL∥: ð20Þ

The inverse-disparity map derived in this experi-
ment is displayed in Fig. 4.

B. Oceanic Experiments

We conducted field experiments in the Mediterra-
nean and the Red Sea, aided by scuba diving. The
experiments were conducted at depths of 3–5m. The
stereo setup is shown in Fig. 1(b). Here, we used
Canon HV-30 high-definition PAL video cameras in
Ikelite underwater housings. To synchronize the
video sequences, a blinking flashlight was shined
into the running cameras before and after each ex-
periment. These blinks were later detected in post-
processing and used to temporally align the videos.

In the sea, the visibility was much poorer than in
the pool. Hence, the flicker pattern had lower con-
trast. This required somewhat longer sequences to
reliably establish the correlation, and thus corre-
spondence. In any case, the sequences were just a
few seconds long.

In one experiment, a natural scene in an under-
water archeological site was captured using a b ¼
70 cm baseline and NF ¼ 66. The resulting disparity
map is presented in Fig. 5. The distance of the large
cube from the cameras was ∼5m. Some regions are
marked in black. They represent low correspondence
reliability, as we explain in Section 6.

Another experiment conducted in the Red Sea is
shown in Fig. 6. Here, visibility was better than in
the Mediterranean experiment. The baseline was

b ¼ 30 cm and NF ¼ 50. The distances of the bowl,
the board and the chair were 2m, 2:5m and 3m,
respectively.

6. Limitations Because of Shadows and Occlusions

It is possible to assess at which image locations cor-
respondence estimation using Eq. (18) is unreliable.
As in any stereo setup, occluded regions cannot be
directly matched. More particular to this approach,
however, is that some pixels simply correspond to
object points that reside in the shadow of downwel-
ling lighting, due to objects above them. Points in
the shadow are unaffected by flicker and thus

Fig. 4. (Color online) (a) The estimated inverse disparitymap 1=d̂
of the pool experiment. The result in (a) is used for texture map-
ping a different viewpoint in (b).

Fig. 5. (Color online) (a) Raw left frame from an experiment in a
marine archaeological site (Caesarea). (b) The estimated inverse
disparity map. Black areas represent low correspondence reliabil-
ity, as explained in Section 6. Taken from [21] with permission
©2009 IEEE.

Fig. 6. (Color online) (a)–(c) Raw left frames from the Red Sea
experiment. (d) The estimated inverse disparity map. Black areas
represent low correspondence reliability, as explained in Section 6.
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contain no temporal modulation. Therefore, the re-
sulting correspondence estimation in shadowed re-
gions is unreliable, if based solely on temporal
correlation.

The set of pixels in IL that are occluded in IR have a
low value ofC even in the optimal match x̂R. Hence, if
Cðx̂RÞ is below a threshold χC, it indicates the corre-
spondence is unreliable. In pixels in which flicker is
absent or too weak to detect, the standard deviation
(STD) of the pixel value ∥~ILðxLÞ∥2 is very low. Hence,
this set can be assessed by thresholding the field
∥~ILðxLÞ∥2 by a parameter χSTD.

Thus, wemay define a setΨreliable of reliable pixels.

Ψreliable ¼ fxL:½CxL > χC� AND

½∥~ILðxLÞ∥2 > χSTD�g:
ð21Þ

Range information in pixels outside Ψreliable should
be filled-in using other mechanisms, such as regular-
ization [35] or inpainting.

7. Limitations Because of Backscatter

A. Motivation

As explained in Section 3.B, backscatter under flick-
ering illumination varies in time, space and view-
point. Let us consider a pair of corresponding
points in two viewpoints. The temporal signal of
these imaged points should have a strong match
and achieve a high correlation score. However, the
backscatter pattern varies between the two view-
points. Therefore, backscatter variations are consid-
ered a random disturbance to the correlation of
corresponding pairs. This may affect the matching
score between corresponding object points.

In Section 3.B, approximation 3 neglects backscat-
ter variations. It assumes that these variations are
filtered out by the LOS integral. In the following sec-
tions, a simulation is used to test this approximation
and indicate limitations of approximation 3 and thus
of the correspondence-finding principle. The simula-
tion focuses on coastal ocean sea surface and water
volume properties. These properties may be different
in other scenarios, such as pools and small lakes.
Thus, to better study the limitations in such places,
the simulated model (specifically, the surface statis-
tics) may need to be adapted.

B. Statistics

In a simulated scene, the signal and backscatter
images are Sðx;mÞ and Bðx;mÞ, respectively. The
temporally averaged signal �SðxÞ is

�SðxÞ ¼ ð1=NFÞ
XNF

m¼1

Sðx;mÞ: ð22Þ

The STD of the signal is estimated by

σSðxÞ ¼
�
ð1=NFÞ

XNF

m¼1

½Sðx;mÞ − �SðxÞ�2
�

1=2
: ð23Þ

The definitions of �BðxÞ and σBðxÞ are analogously set
by substituting B instead of S in Eqs. (22) and (23).
We spatially average these quantities, per constant
object range ~Zobj. For example,

σSð~ZobjÞ ¼
1

jΘð~ZobjÞj
X

x∈Θð~ZobjÞ
σSðxÞ; ð24Þ

where

Θð~ZobjÞ≡ fx:ZobjðxÞ ¼ ~Zobjg: ð25Þ

Similarly, �Bð~ZobjÞ, �Sð~ZobjÞ and σBð~ZobjÞ are derived.
Now, consider the ratio

ρSð~ZobjÞ ¼ σSð~ZobjÞ=�Sð~ZobjÞ: ð26Þ

If one simply desires to capture a flicker-free image,
then �S represents the signal while the STD σSð~ZobjÞ
indicates the noise in the signal. Hence, for flicker-
free imaging, the signal-to-noise ratio (SNR) is 1=ρS.
However, our task is not a flicker-free image, but
establishing stereo correspondence. In this task, σS
is not noise: it is the key for achieving the task.
The higher σS is, the better. So, for our task, σS is
the flicker signal. What is flicker noise? In our con-
text, noise is random radiance that counters approx-
imation 3. In other words, σB is the flicker noise.
To assess the SNR in the context of our task, we
consequently define a flicker signal-to-noise ratio
(FSNR) as

FSNRð~ZobjÞ ¼ σSð~ZobjÞ=σBð~ZobjÞ: ð27Þ

We use the FSNR to assess the range in which the
flicker-signal σS is dominant, relative to the flick-
er-noise σB. In this range, we expect to achieve good
correspondence using temporal correlation. In the
next sections, the simulation steps that yield these
statistics are described.

C. Simulation Description

First, we describe the principles used in the ray-
tracing simulation. Specific dimensions and param-
eters are listed in Section 7.E. The simulation is
divided into four parts:

1. Setting parameters: Scene (object) structure,
medium properties, illumination properties and data
structures.

2. Dynamic data: Water surface generation and
dynamics [37,38].

3. Ray-tracing simulation including reflection,
refraction, attenuation, and scattering.

4. Viewpoint generation: Signal and backscatter
calculations, per viewpoint.
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We now elaborate on these parts.

1. Setting Parameters

The scene is set by some parameters. These include
the dimensions of the water tank, voxel resolution
and initial density of traced rays. In addition, a water
surface is generated. It is possible to measure the
water surface, for example, using sun or laser glitter
[39,40]. However, in this work we do not measure
the surface, but simulate it using a sea surface
model and statistics, as described in [37]. Further
details regarding the surface simulation appear in
Appendix A.

2. Illumination Ray-tracing

In this part, light rays are generated and propagated.
Figure 7 illustrates the processes of surface genera-
tion and ray tracing.

A ray is indexed by w. Let ĉðw; tÞ be the direction
unit vector of rayw at time t. The speed of light in the
medium is cn, where n denotes the optical refractive
index of the medium (air or water). Ray propagation
is divided into small temporal stepsΔt. At time t, the
position of propagating ray w is yðw; tÞ. Then,

yðw; tþΔtÞ ¼ yðw; tÞ þ cnĉðw; tÞΔt: ð28Þ
All rays are initialized outside the water, carrying
equal irradiance. When ray w encounters the water
surface, the direction vector ĉ changes and its asso-
ciated radiance is attenuated according to Snell’s and
Fresnel’s laws, respectively. In the water, the ray
radiance is attenuated according to the attenuation
coefficient and the length of each step:

Ilightingðw; tþΔtÞ ¼ Ilightingðw; tÞ expð−ηcnΔtÞ: ð29Þ

Ray tracing continues until all the rays either exit
the water tank or get absorbed at the bottom.

The simulated space is divided into small voxels,
each indexed by v. We set the step cnΔt to be much
smaller than the voxel length (see Fig. 8). This gen-
erally creates several recorded instances of ray w in
any voxel that w passes through. This reduces nu-
merical errors. Define the set of rays

ΩvðtÞ≡ fw: yðw; tÞ ∈ vg: ð30Þ

A data structure lists all the values of Ilightingðw; tÞ
that correspond to voxel v

ϒlighting
v ¼ ⋃

t
⋃

w∈ΩvðtÞ
Ilightingðw; tÞ: ð31Þ

An additional data structure lists all the correspond-
ing vectors ĉðw; tÞ in v:

ϒdirections
v ¼ ⋃

t
⋃

w∈ΩvðtÞ
ĉðw; tÞ; ð32Þ

These data structures enable consequent calcula-
tion of the signal and backscatter images in any
viewpoint.

3. Backscatter and Signal Calculations

This part deals with scattering in each voxel, follow-
ing data accumulated in Eqs. (31) and (32). Camera
properties such as field of view, resolution, location
and orientation are accounted for. For each pixel
in each camera, the backscatter integral (10) is
discretized to a sum over all the voxels on the LOS
corresponding to that pixel and camera. This results
in backscatter images. Signal images are calculated
separately using irradiance in voxels that reside at
the bottom of the water tank. The signal calculations
assume the surfaces to be Lambertian, with a certain
albedo.

Finally, the signal and backscatter images are
added, thus creating a rendered underwater image.
The attenuation and scattering coefficients vary as
function of light wavelength [1,41]. Thus, we repeat
the entire ray-tracing process three times, each using
different coefficients, corresponding to red, green and
blue light wavelengths. The result of this process is
a color image of the underwater scene, as shown
in Fig. 9.

D. Sky Radiance

Without direct sunlight, underwater flicker is very
weak. Skylight contributes to underwater ambient
lighting, but has very little effect on underwater
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Fig. 7. (Color online) A simulated water surface having random
light rays refracted and attenuated. The faded red color represents
attenuation of normalized irradiance, due to absorption and
scattering.

Fig. 8. (Color online) A light ray passing through a voxel. A record
of irradiance and direction of the ray at each temporal step is kept.
The angle between LOS and the ray θ is calculated for backscatter
calculations.
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flicker. In order to demonstrate this, we simulated
different types of overcast International Commission
on Illumination standard sky radiance [42], refracted
through the wavy water surface, as described in
Section 7.C.2. The relative skylight and sunlight var-
iations were compared using different physical para-
meters. Overall, considering Eq. (26), our simulation
yielded ρSunS ∈ ½60%; 80%�, while ρSkyS ∈ ½0:5%; 2%�. As
for backscatter variations (Eq. (27)), ρSunB ∈ ½2%;10%�,
while ρSkyB ∈ ½0:06%; 0:2%�. We are interested in sig-
nal and backscatter variations. Therefore, ambient
skylight and its contribution to flicker variations
can be neglected.

E. Simulation and Results

The following figures present results of a simulation
using attenuation coefficients of coastal ocean
[41,43]: ðη450nm; η550nm; η650nmÞ ¼ ð0:22; 0:23; 0:49Þ,
respectively. The zenith angle of the sun is set to
be 20° and the azimuth angle with respect of the
LOS is 90°. The water depth is 3m and wind speed
is 4m=Sec [38]. The voxel resolution is 0:1m. The
ray-tracing resolution (step) is 0:01m. The bottom
of the sea is set to have spectral reflectance of a
quartz beach sand [44]. The phase function pðθÞ
we used [41,45], is

pðθÞ ¼ ð1 − φ2Þ=½4πð1þ φ2 − 2φ cos θÞ1:5�; ð33Þ
where φ ¼ 0:924, following [41].

The following results are based on statistics of 600
images of the fixed scene. In Fig. 10, σS, �S and ρS of
the sea bottom are plotted as a function of Zobj, for
three light wavelengths.

It can be noticed that there is an exponential decay
of �S as function of Zobj. This decay is consistent
with the image formation model [Eq. (3)]. Moreover,
Fig. 10(c) shows that approximately σS ∝ �S. This
means that σS can be used as a good indicator for �S.

Fig. 9. (Color online) (a) Rendered signal. (b) Rendered backscat-
ter pattern. (c) Rendered color image of an underwater scene.
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Fig. 10. (Color online) (a) �S versus Zobj, for different light wave-
lengths. (b) σS versus Zobj, for different light wavelengths. (c) ρS
versus Zobj, λ ¼ 550nm.

1 October 2011 / Vol. 50, No. 28 / APPLIED OPTICS F97



Figure 11 presents σB, �B and ρB of the same scene.
Here there is exponential saturation of �B as a func-
tion of Zobj, which is also consistent with the image
formation model [Eq. (5)]. Moreover, σB is almost
constant as a function of Zobj. This is due to the fact
that the majority of backscatter variations are con-
tributed by nearby parts of the LOS.

Another interesting matter is revealed by ρS and
ρB. In Figs. 10(c) and 11(c), ρS ∈ ½60%; 70%�, while
ρB ∈ ½2%; 10%� only. This raises an important obser-
vation: �S is often of the same order of magnitude as
�B, but the flicker signal from objects is much more
prominent than flicker noise, since σS ≫ σB. This
observation supports our approximation (Section 3.B)
and emphasizes the advantage of using temporal
image variation, instead of the image itself, for
stereo. Figure 12(a) presents FSNRðZobjÞ.
F. FSNR and Performance Assessment

Which FSNR level is required to assure good corre-
spondence? To assess this, another viewpoint was
rendered, to simulate stereoscopic vision. Corre-
spondence between simulated viewpoints was found
using temporal correlation and compared to the
known ground truth. Figure 12(b) presents the rate
of successful correspondence as function of FSNR,
for various values of NF. As a rule of thumb, more
than 90% correct correspondence is achieved when
FSNR > FSNRT , where FSNRT ≅ 5. This is based
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Fig. 11. (Color online) (a) �B versus Zobj, of different light
wavelengths. (b) σB versus Zobj, of different light wavelengths.
(c) ρB versus Zobj, λ ¼ 550nm.

2 4 6 8 10

N
F
=20

N
F
=40

N
F
=60

Correct correspondence vs. FSNR

FSNR

Range [m]

F
S

N
R

%
 o

f c
or

re
ct

 c
or

re
sp

on
de

nc
e

20

40

60

80

100

0

0 5 10 15 20
0

5

10

15

20

25

30

35
450nm
550nm
650nm

FSNR vs. Z obj

Fig. 12. (Color online) (a) FSNR versus Zobj, of different light
wavelengths. (b) The rate of successful match versus FSNR,
λ ¼ 550nm.

F98 APPLIED OPTICS / Vol. 50, No. 28 / 1 October 2011



solely on temporal variations of flicker, and is inde-
pendent of the spatial reflectivity texture. If the
objects are textured with high contrast and spatial
frequency, the high rate of correct correspondence
is achieved using even a lower FSNR.

Observing Figs. 12(a) and 12(b), a good FSNR
(yielding a high rate of good correspondence) can be
observed up to Zobj between 2η−1 and 3η−1. This obser-
vation may be used as a practical rule of thumb for a
lower bound for the validity range of the method.

8. Discussion

The method presented in this paper exploits the
natural phenomenon of underwater flicker to create
a dense correspondence map. This is related to
[46,47], where controlled artificial lighting patterns
used a projector to assist stereo video cameras. The
effectiveness of our method is demonstrated by
in situ experiments in the field. In order to explore
the theoretical limits of the method, a ray-tracing
simulation was implemented. The method estab-
lishes correspondence rather reliably even without
epipolar constraints. So, in turn, the results of a
sequence of such correspondence mappings can pos-
sibly establish the epipolar geometry of the system.
The method strongly depends on direct sunlight.
Therefore, correspondence results in shadowed areas
are unreliable. In order to overcome this problem,
spatial support [21] and regularization [35] should
be considered.

The study of stereo vision under flicker may be re-
levant to biological vision. Consider marine animals
that share three properties: (1) They live in shallow
water, where there is abundance of natural light and
thus flicker; (2) They have binocular vision, which
can potentially enable them to assess distance by
triangulating objects from different eye elements;
(3) Their brain is very small. Can such small brains
solve the complex problems associated with corre-
spondence? Specifically, such animals include sto-
matopods and other crustaceans (e.g., lobsters)
[8,48]. The mechanism proposed in this paper may
potentially assist stereo vision in such animals: it
suits their habitat, and requires very simple, point-
wise calculations. We have no supporting evidence
for such a hypothesis, but it is worth exploring.
For instance, the animals may undergo controlled
lab tests, in a task that requires distance assessment
(prey, navigation). Their performance under flicker
(wavy water surface, or artificially projected illumi-
nation) can be compared to the success in still water
and lighting. Interestingly, the spatial and temporal
frequencies of flicker match the contrast sensitivity
and temporal visual response [49] of some marine
animals.

Appendix A—Sea Surface Model

We use a surface model described in [37]. To make
the paper self-contained, we describe the steps
of sea surface simulation. Let r be a horizontal
coordinate in the world. Then, define hðrÞ to be the

surface height relative to a flat sea surface at r.
The autocorrelation function of hðrÞ is

ξðΔrÞ ¼ hhðrÞ;hðrþΔrÞi; ðA1Þ

where Δr is a horizontal displacement vector on the
surface. The roughness spectrum of the surface is the
spatial Fourier transform of ξðΔrÞ:

ΓðkÞ ¼ FfξðΔrÞg: ðA2Þ

Here k ¼ ðk;ϕÞ in polar coordinates, where k is
the surface wave number, and ϕ is the propagation
direction of the surface wave mode.

The spatial spectrum is a product of an omnidirec-
tional spectral distribution and an angular spread

Γðk;ϕÞ ¼ k−1νðkÞΦðk;ϕÞ; ðA3Þ

as described in [37,38]. The functions νðkÞ and angu-
lar spreading Φðk;ϕÞ depend on wind speed,
direction and water depth [38,50]. Surface waves pro-
pagate in a dispersive manner. The temporal fre-
quency ωk of a surface wave with wave-number k
is given [37] by

ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk tanhðkDÞ þ TWζ−1W k3

q
: ðA4Þ

Here D is the water depth, while TW ¼ 0:0728 ½N=m�
and ζW ¼ 997 ½kg=m3� are the water surface tension
and density, respectively, and g is the gravitational
acceleration.

We would like to produce a random amplitude,
based on the roughness spectrum. Therefore, for each
k, a random amplitude μk and phase κk are drawn.
These random variables are uniformly distributed
in ½0; 1� and ½0; 2π�, respectively. The sea surface at
each moment τ is defined in the Fourier plane as a
dispersive sum of waves propagating in opposite
directions [37],

~Hðk; τÞ ¼ ~H0ðkÞ expðiωkτÞ þ ~H�
0ð−kÞ expð−iωkτÞ;

ðA5Þ
where

~H0ðkÞ ¼
ffiffiffi
2

p −1μk expðiκkÞ
ffiffiffiffiffiffiffiffi
Γðk

p
Þ: ðA6Þ

Finally, the sea surface height hðr; τÞ at each moment
is calculated by an inverse Fourier transform of
~Hðk; τÞ

hðr; τÞ ¼ F−1f ~Hðk; τÞg: ðA7Þ
Once random initialization is done in Eq. (A6), the
surface wave propagates deterministically.
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