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We address the problems of multi-domain and single-domain regression based on distinct and unpaired
labeled training sets for each of the domains and a large unlabeled training set from all domains. We
formulate these problems as a Bayesian estimation with partial knowledge of statistical relations. We
propose a worst-case design strategy and study the resulting estimators. Our analysis explicitly accounts
for the cardinality of the labeled sets and includes the special cases in which one of the labeled sets is
very large or, in the other extreme, completely missing. We demonstrate our estimators in the context
of removing expressions from facial images and in the context of audio-visual word recognition, and
provide comparisons to several recently proposed multi-modal learning algorithms.
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1. Introduction

There are many applications in which one can access data from multiple domains in order to perform
a task. For example, word recognition may greatly benefit from the availability of joint audio-visual
measurements [20]. Person recognition and verification may be performed much more accurately by
fusing information from several modalities such as facial images, iris scans, voice recordings, and hand-
writings.

A major difficulty in fusing multiple sources is that one can often access only distinct labeled training
sets for the different domains and does not have paired labeled examples from all domains. Suppose, for
instance, we wish to perform audio-visual gender recognition. There are numerous existing data-sets
of labeled voice recordings as well as labeled data-sets of facial images. However, there are only a few
jointly labeled audio-visual data-sets, with a limited number of different subjects each. Thus, although it
is straightforward to train a classifier based on audio or image data alone, it is not clear how to best fuse
the two modalities, in particular when they are unpaired. While paired multi-domain labeled examples
are typically scarce, paired unlabeled examples are often abundant. For instance, enormous amounts of
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speaker video sequences (together with audio) can be easily collected. These videos, though, often do
not come with labels. Nonetheless, they can be used to unveil the statistical relations between audio
and video. An important question is how to best fuse audio- and image-based predictors, given these
relations.

An even more interesting and practical question is whether the availability of multiple data sources
can aid a machine learning algorithm during training, even if not all are measured during testing. For
example, suppose we want to predict the age of a person based on an audio recording of him/her. Assume
we have a labeled audio training set, a labeled image training set, and a large amount of unlabeled audio-
visual examples. Can the visual examples help construct a predictor, which is solely based on audio?

In this paper we address the problem of multi-domain as well as single-domain regression based on
distinct (unpaired) labeled training sets for each of the domains and an unlabeled multi-domain training
set. Specifically, focusing on two domains for simplicity, we consider the situation in which we have
at our disposal a very large unlabeled training set {xxxi

1,xxx
i
2}i∈U as well as two labeled sets {xxxi

1,yyy
i}i∈L1

and {xxxi
2,yyy

i}i∈L2 . Using this multi-domain training data, we treat the problems of designing a predictor
of yyy based on (xxx1,xxx2) (multi-domain regression) and a predictor of yyy based on xxx1 alone (single-domain
regression). Our analysis is general in that it explicitly accounts for the cardinality of the labeled sets.
In particular, it includes the special cases in which one or both labeled sets are very large as well as the
cases in which one of the labeled sets is completely missing.

Several problems of similar nature have been treated in the literature. Perhaps the most widely
studied of these is multi-view learning [2] in general and multi-view regression [10] in particular. These
techniques make use of a large training set of data from multiple domains (views), which contains only a
few labeled examples. It has been shown that if the views tend to agree in some sense, then the unlabeled
examples are useful in constructing a single-view estimator [2, 10]. In our setting, however, we do not
observe even a single multi-domain labeled example {xxxi

1,xxx
i
2,yyy

i} and also make no assumptions on the
underlying distribution. A multi-view framework for distinct labeled training sets, recently proposed in
[1], assumes the availability of a mapping function which can generate a good estimate of the unobserved
view from the observed one. In our setting, we do not assume that such a mapping is known or even
exists.

Situations in which labeled samples {xxxi
2,yyy

i} from a source domain are used to construct a predictor
of yyy from a target domain xxx1 fall under the category of transfer learning [21]. In some cases, unlabeled
examples, as well as a few labeled examples {xxxi

1,yyy
i} from the target domain are also available. Situations

in which the domains do not admit a common feature representation may be handled via the multiple-
outlook learning framework [9]. These classes of problems, however, are different than ours in that they
do not assume availability of paired unlabeled examples {xxxi

1,xxx
i
2} from the two domains.

More related to our problem are the cross-modality and shared-representation learning scenarios
recently studied in [20] in the context of multi-modal learning. In both settings, unlabeled training data
{xxxi

1,xxx
i
2} from multiple modalities, such as audio and video, are used to perform a feature learning stage.

In cross-modality learning, one constructs a predictor based on xxx1 alone using a labeled training set
{xxxi

1,yyy
i}. For example, we may want to build a classifier operating on audio features by observing labeled

audio examples in addition to unlabeled audio-visual instances. In shared-representation learning, one
constructs a predictor based on xxx1 alone using a labeled training set {xxxi

2,yyy
i}. For instance, we may want

to train an audio classifier by observing only labeled visual examples in addition to unlabeled audio-
visual instances. In [20], both the cross-modality and the shared representation settings were treated by
learning multi-modal feature representations using deep networks. Shared representation regression was
recently studied from a Bayesian estimation perspective in [16], in which a link to instrumental variable
regression [3] was also highlighted. As we show, both cross-modality and shared-representation learning
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are special cases of our approach, corresponding to the situation in which there are zero examples in one
of the labeled sets.

In this paper we formulate regression from unpaired data sets as a Bayesian estimation problem
with partial knowledge of statistical relations. Specifically, we assume that, for each domain, we can
determine the predictor that minimizes the mean square error (MSE) among some class of estimators.
This can be done using the labeled training examples from the associated domain. Furthermore, we
assume that we can determine the joint probability distribution of the data from the two domains using
the unlabeled examples. Now, every joint distribution of labels and (multi-domain) data which is consis-
tent with this knowledge is considered valid. The performance of any estimator depends, of course, on
the unknown distribution. Thus, our approach in this paper is to seek estimators whose worst-case MSE
over the set of valid distributions is the smallest possible. This strategy matches that used in [16] in the
context of shared-representation regression. The methods we develop here constitute generalizations of
the results of [16] to arbitrary single- and multi-domain regression settings1.

We show that the minimax problems we obtain have simple, yet nontrivial, closed form solutions
which can be easily approximated from the available training examples. These expressions also provide
insight into how data from multiple domains should be taken into account. In particular, we show that,
from a worst-case standpoint, a domain with no labeled examples cannot help if it is not available at
test time. Thus, it is impossible to perform cross-modality regression without making any assumptions
on the underlying distributions. We illustrate our approach in the contexts of face normalization and
audio-visual word recognition. In the former application, we demonstrate how an image of a smiling
face can be converted into one with a neutral expression, without observing paired examples of neutral
and smiling faces. In the latter setting, we show how spoken digits can be recognized from silent video
(lipreading) when only labeled audio examples are available. We also show how they can be recognized
from audio, when there is access only to labeled video examples. The experiments indicate that our
approach is preferable to that of [20].

The remainder of this paper is organized as follows. In Section 2 we present the setting of interest in
detail and discuss several special cases. We provide a mathematical formulation of our regression prob-
lems in Section 3. The minimax multi-domain and single-domain estimators are derived in sections 4
and 5, respectively. Finally, experimental results are provided in Section 6.

2. Problem Formulation

We denote random variables (RVs) by capital letters (e.g., X1,X2,Y ) and the values that they take by bold
lower-case letters (e.g., xxx1,xxx2,yyy). The pseudo-inverse of a matrix AAA is denoted by AAA†. The second-order
moment matrix of an RV X is denoted by Γ XX = E[XXT ], where E[·] is the mathematical expectation
operator. Similarly, the cross second-order moment matrix of two RVs X and Y is denoted by Γ XY =
E[XY T ]. The joint cumulative distribution function of the RVs X and Y is written FXY (xxx,yyy) = P(X 6
xxx,Y 6 yyy), where the inequalities are element-wise. By definition, the marginal distribution of X is
FX (xxx) = FXY (xxx,∞). In our setting, Y is the quantity to be estimated, and X1 and X2 are two sets of
measurements (features). The RVs X1, X2, and Y take values in RM1 , RM2 , and RN , respectively.

Our goal in this paper is to propose an estimation theoretic approach for solving certain regression
problems in which several distinct training sets are available during training. More specifically, we
assume we are given access to three possible data-sets as follows:

1Some of the results in this paper were reported without proof in [17]. This conference version did not include the most general
formulation of the theoretical results as well as some of the experiments we present here.
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FIG. 1: Multi-domain regression. (a),(b) Single-domain training with many/few labeled examples (Sec-
tion 4.1). (c) Multi-domain training with few labeled examples (sections 4.2 and 4.3). (d) Multi-domain
training with many unpaired labeled examples from one domain and few from the other domain (sec-
tions 4.4 and 4.5).

1. labeled examples {(xxxℓ1,yyyℓ)}ℓ∈L1 from domain 1;
2. labeled examples {(xxxℓ2,yyyℓ)}ℓ∈L2 from domain 2;
3. paired unlabeled examples {(xxxu

1,xxx
u
2)}u∈U .

Here the index sets of the labeled and unlabeled examples do not intersect, namely L1 = {1, . . . ,L1},
L2 = {L1 + 1, . . . ,L1 +L2} and U = {L1 +L2 + 1, . . . ,L1 +L2 +U}. These training sets correspond
to independent draws from the distributions FX1Y , FX2Y , and FX1X2 , respectively. Our focus is on sit-
uations in which U is very large, so that the joint distribution FX1X2 can be assumed known (or very
well approximated, for example, by nonparametric methods). The cardinalities L1 and L2 of the labeled
sets are arbitrary. In particular, one of them can be zero. In this case no knowledge whatsoever is
available regarding the statistical relation between Y and the associated domain. At the other extreme,
one (or both) of the labeled sets may be very large, in which case the associated single-domain MMSE
estimator, say E[Y |X1], can be assumed known (or accurately approximated).

In terms of testing, we treat two tasks. The first is multi-domain regression, in which the algorithm is
asked to predict yyy based on an observation of xxx1 and xxx2. The second is single-domain regression, where
prediction should be based solely on xxx1 (including the case where no xxx1 labeled data is available for
training, that is, L1 = 0). Several archetypical situations are depicted in figs. 1 and 2. Here, single- and
double-lined circles correspond, respectively, to RVs that are unobserved and observed during testing.
A continuous line, a dashed line, and lack of a line between circles corresponds, respectively, to many,
few and zero training examples.

3. Estimation Theoretic Formulation

In this paper we adopt and generalize the framework proposed in [16] by posing our problem as one of
estimation with partial knowledge of statistical relations. Before formalizing our multi-domain semi-
supervised problem in estimation theoretic terms, we first recall the common practice for regression
from one domain with a limited number of examples.

3.1 Single-Domain Regression

Suppose we are given a sample {xxxℓ,yyyℓ}L
ℓ=1, xxx ∈ RM , independently drawn from the joint distribution

of X and Y . If L is very large, then nonparametric methods can be used to approximate the conditional
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FIG. 2: Single-domain regression. (a),(b) Cross-modality learning [20] with many/few labeled examples
(Section 5.1). (c),(d) Shared-representation regression [20], also referred to as estimation with partial
knowledge [16], with many/few labeled examples (Section 5.2). (e),(f) Multi-domain training with
many/few labeled examples from the unobserved domain (Section 5.3).

expectation estimator φ(xxx) = E[Y |X = xxx] with great accuracy at any xxx. For example, one may use the
Nadaraya-Watson nonparametric estimator [19, 25]

φ̂(xxx) =
∑L
ℓ=1 yyyℓK

(
xxx−xxxℓ

h

)
∑L
ℓ=1 K

(
xxx−xxxℓ

h

) , (3.1)

where K(xxx) is some density function with mean 0, called kernel, and h > 0 is a scalar called the band-
width. For example, the Gaussian kernel K(xxx) = (2π)−1/2 exp{−∥x∥2/2} is in common use. Under
mild conditions on K(xxx), various converges properties of φ̂(xxx) to E[Y |X = xxx] are known when L → ∞
and h → 0 at an appropriate rate. Such estimates, however, are often far from accurate when L is small.
Common practice in such situations is to use parametric or semi-parametric methods that impose some
structure on the sought predictor. In other words, rather than trying to approximate the regression func-
tion φ(xxx) = E[Y |X = xxx], which minimizes the mean square error among all functions of X , we settle for
approximating the optimal predictor among some family A of functions:

φA = argmin
φ∈A

E
[
∥Y −φ(X)∥2] . (3.2)

The less rich the class A is, the more accurate we can typically approximate φA (X) from the training
data. This comes, of course, at the cost that the (theoretical) MSE that φA (X) achieves is higher.
This is the well known bias-variance tradeoff. In the sequel, we term the function φA (X) of (3.2) the
A -optimal estimator of Y from X .

Problem (3.2) can be given the following geometric interpretation. Let the RVs X and Y be defined
over the probability triplet (Ω ,F ,P) and let L2(Ω ,F ,P) denote the Hilbert space of RVs that take
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values in RN and satisfy E[∥U∥2] < ∞, equipped with the inner product ⟨U,V ⟩L2 = E[V TU ]. Then
problem (3.2) is equivalent to

Ŷ ˜A = argmin
Ŷ∈ ˜A

∥Y − Ŷ∥2
L2 . (3.3)

Here, ˜A denotes the set of all RVs in L2, which can be expressed as φ(X), for some function φ : RM →
RN in A and Ŷ ˜A = φA (X) is the RV in ˜A which is closest to Y . This shows that the RV ŶA is the
orthogonal projection Π ˜A Y of the RV Y onto the set ˜A . If ˜A is closed, then a solution is guaranteed to
exist and if, in addition, ˜A is convex (or, in particular, a linear subspace), then the solution is unique.

One of the simplest structural restrictions corresponds to linear estimation, so that A is the set of all
linear functions from RM to RN . In this case,

φA (X) = Γ Y XΓ †
XX X . (3.4)

The second-order moment matrices Γ Y X ,Γ XX can be estimated from the training set, for example, by
using sample moments. A more general model corresponds to functions of the form

φ(X) =
K

∑
k=1

akφk(X), (3.5)

where {φk}K
k=1 is a predefined set of functions and the coefficients {ak}K

k=1 are arbitrary. The optimal
set of coefficients aaa =

(
a1 · · ·aK

)T is given in this case by

aaa = Γ †
ΦΦΓ ΦY , (3.6)

where Γ ΦΦ denotes the K×K matrix whose (i, j)-th entry is E[φT
i (X)φ j(X)] and Γ ΦY is a K×1 vector

whose ith component is E[φT
i (X)Y ]. These quantities can be estimated from the training data similar to

the linear setting.
In both examples above, the set A of functions is linear in the sense that for every φ1,φ2 ∈ A

and α ,β ∈ R, the function αφ1 + βφ2 also belongs to A . For future reference, we note that this
claim is also trivially true when A is taken to be the set of all (Borel-measurable) functions, in which
case φA (X) = E[Y |X ], and when A contains only the zero function, in which case φA (X) = 0. From
a geometric standpoint, the linearity of A implies that the set of RVs ˜A of (3.3), onto which Y is
projected, is a linear subspace of L2(Ω ,F ,P).

3.2 Statistical Knowledge Deduced from Separate Training Sets

In our setting we have access to two separate unpaired sets of labeled examples, one for each domain.
Consequently, besides the standard uncertainty in statistics, which has to do with the fact that the under-
lying distributions are not known but rather only samples are observed, here there is another degree of
uncertainty. Specifically, even if the number of training examples is taken to infinity in all three sets, we
can only hope to be able to determine the joint distributions FX1Y , FX2Y and FX1X2 . These do not suffice in
general for computing the MMSE estimate E[Y |X1,X2]. To focus only on the second type of uncertainty,
we assume that we are able to perform single domain regression from each of the training sets with very
small variance (at the expense of possible bias). Specifically, we assume that we can determine the
A -optimal predictor of Y given X1 as well as the B-optimal predictor of Y from X2, where A and B
are classes of functions chosen in accordance with the cardinality of the two sets. Note that each of the
single-domain predictors may be very poor. In particular, if there are no labeled training examples from
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ϕA(X1)
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FIG. 3: Known statistical relationships. Each of the single-domain predictors may perform arbitrarily
poorly (in particular, it is possible that φA (X1) = 0 or ψB(X2) = 0).

one of the domains then we choose the corresponding class of valid predictors to contain only the zero
function. Therefore, if, for instance, we have L1 = 0 labeled examples from domain X1, then we set
A = {0} so that the A -optimal predictor of Y given X1 is simply φA (X1) = 0.

We further assume that the existence of many unlabeled examples (X1,X2) allows accurately deter-
mining the joint distribution of X1 and X2, for example, using nonparametric methods. Finally, we
assume that there are enough labeled examples from at least one of the domains such that the second-
order moment of Y can be accurately estimated2. The statistical relationships assumed known are
depicted in Fig. 3.

In a more mathematical language, assume we are given two functions φA : RM1 → RN and ψB :
RM2 → RN , a cumulative probability function FX1X2 over RM1×M2 and a scalar c > 0. Then, what we
know regarding the RVs X1, X2 and Y is that their distribution FX1X2Y belongs to the set D of distributions
satisfying

φA = argmin
φ∈A

E[∥Y −ϕ(X1)∥2], ψB = argmin
ψ∈B

E[∥Y −ψ(X2)∥2],

FX1X2Y (xxx1,xxx2,∞) = FX1X2(xxx1,xxx2), E[∥Y∥2] = c. (3.7)

We assume throughout the paper that A and B form linear sets of functions, as discussed in Section 3.1,
so that the associated sets of RVs ˜A and B̃ form linear subspaces of L2. We also assume that A and B
are such that the subspaces ˜A and B̃ are closed in L2. This is always the case for subspaces spanned
by a finite number of functions, as in the parametric examples presented in Section 3.1, or for subspaces
generated by all (Borel-measurable) functions of some RV.

As an illustrative example, suppose that X1, X2 and Y are scalar RVs, and that A and B are the sets
of all linear functions from R to R. Assume further that we know that the best linear estimator of Y
from X1 is φA (X1) = 0.1X1, the best linear estimator of Y from X2 is ψB(X2) = 0.2X2, the probability
density function (pdf) of (X1,X2) is fX1X2(x1,x2) ∝ exp{−(x2

1 + x2
2)/2}, and that E[Y 2] = 1. Then the

2The predictors we derive turn out to be independent of the actual value of the second order moment of Y , so that, in practice,
it does not actually have to be estimated. Nevertheless, our solutions are optimal only under the assumption that the quadratic
moment is known and finite.
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normal density

fX1X2Y (x1,x2,y) ∝ exp

−1
2
(
x1 x2 y

) 1 0 0.1
0 1 0.2

0.1 0.2 1

−1x1
x2
y


 (3.8)

is consistent with all these restrictions and is thus valid. In fact, there is an infinite number (a continuum)
of other feasible densities. For instance, it can be easily verified that the Gaussian mixture pdf

fX1X2Y (x1,x2,y) ∝ exp

−1
2
(
x1 x2 y

) 1 0 0.2
0 1 0

0.2 0 1

−1x1
x2
y




+ exp

−1
2
(
x1 x2 y

)1 0 0
0 1 0.4
0 0.4 1

−1x1
x2
y


 (3.9)

is also consistent with all the constraints, making it a valid candidate as well. On the other hand, the
density

fX1X2Y (x1,x2,y) ∝ exp

−1
2
(
x1 x2 y

) 2 0 0.2
0 1 0.2

0.2 0.2 1

−1x1
x2
y


 (3.10)

satisfies all requirements except for the demand that it be consistent with the given marginal distribution
fX1X2(x1,x2). Therefore, it is not feasible.

From a geometric standpoint, the lack of training samples drawn from FX1X2Y prevents us from
being able to determine the position of the RV Y with respect to the subspace H̃X1X2 of all RVs that
are functions of X1 and X2 or with respect to the subspace H̃X1 of all RVs that are functions of X1
alone. Our knowledge of the A -optimal estimate of Y from X1 and the B-optimal estimate of Y from
X2 corresponds to knowledge of the projections Π ˜A Y and ΠB̃ of Y onto the subspaces ˜A and B̃,
respectively. Additionally, knowledge of the joint distribution FX1X2 can be interpreted as knowledge
regarding how the spaces ˜A and B̃ are situated with respect to one another. Finally, the fact that
E[∥Y∥2] = c corresponds to the knowledge that Y lies on a sphere of radius c. This set of constraints
defines a set D̃ of RVs to which Y must belong. A schematic illustration of this interpretation is depicted
in Fig. 4.

3.3 Goals

The first problem we address in this paper is multi-domain regression. In this context, we would like to
construct a predictor of Y from the two domains X1 and X2, where the only knowledge we have is that
FX1X2Y ∈ D . The second problem we tackle is single-domain regression. Here, the goal is to construct
an estimator of Y given X1 alone based, again, only on the knowledge that FX1X2Y ∈ D . The special case
of shared-representation learning, in which no labeled examples from the first domain are available (see
Fig. 2(c),(d)), corresponds to setting A = {0}. The setting of cross modality learning, in which there is
no access to training examples from the second domain (see Fig. 2(a),(b)), can be addressed by setting
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FIG. 4: Geometric interpretation of multi-domain and single-domain estimation. We seek an estimate
Ŷ lying in the gray plane, which is as close as possible to Y . All we know is the norm of Y and its
projections onto ˜A and B̃. (a) Multi-domain prediction. Here, the best possible estimate is E[Y |X1,X2].
(b) Single-domain prediction. Here the best possible estimate is E[Y |X1].

B = {0}. The general case we treat here can account for a wide spectrum of possibilities, including
these two extremes.

Any predictor of Y , whether a function of X1 and X2 or of X1 alone, may perform well under certain
distributions FX1X2Y ∈ D and worse under others. Our goal is therefore to uniformly minimize the MSE
over D . As we will see, this minimax approach leads to simple closed form solutions, which can be
easily applied to the various settings discussed in Section 2.

4. Multi-Domain Regression

Assume that the joint distribution of the triplet (X1,X2,Y ) is known to belong to the family D of (3.7),
where A and B are linear sets of prediction functions. For any distribution FX1X2Y , the MSE attained
by an estimator Ŷ = ρ(X1,X2) is defined as

MSE(FX1X2Y ,ρ) = E
[
∥Y −ρ(X1,X2)∥2] , (4.1)

where the expectation is with respect to FX1X2Y . Since the MSE depends on FX1X2Y , which is unknown,
our approach is to seek the estimator whose worst-case MSE over D is minimal. This minimax con-
cept is widely practiced in deterministic parameter estimation [5, 6] as well as in random parameter
estimation [7, 8]. More concretely, we are interested in3

ρM = argmin
ρ

sup
FX1X2Y∈D

MSE(FX1X2Y ,ρ). (4.2)

Geometrically speaking, we saw that the knowledge we have does not suffice to determine the posi-
tion of the RV Y with respect to the subspace H̃X1X2 of RVs that are functions of X1 and X2. Rather, it

3The subscript ‘M’ stands for ‘multi-domain.’
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only suffices for determining a set D̃ of RVs, to which Y must belong. Problem (4.2) can be interpreted
as the search of an RV Ŷ in H̃X1X2 , whose distance to the farthest point in D̃ is minimal. Note that
the subspace H̃X1X2 clearly contains the subspaces ˜A and B̃, onto which the projection of Y is known.
However, H̃X1X2 is generally much larger than ˜A or B̃ or, even, larger than ˜A +B̃ (not every function
ρ(X1,X2) can be written as φ(X1)+ψ(X2) with φ ∈A and ψ ∈B). Thus, the projection E[Y |X1,X2] of
Y onto H̃X1X2 , which is the best possible multi-domain predictor, cannot generally be determined from
mere knowledge of the projections of Y onto ˜A and onto B̃.

The next theorem, whose proof can be found in Appendix A, provides a means for solving (4.2).

THEOREM 4.1 (Multi-domain minimax-MSE prediction) Choose any distribution FX1X2Y ∈ D and con-
sider the estimator4

ρC = argmin
ρ∈C

MSE(FX1X2Y ,ρ), (4.3)

where C = A +B, namely

C = {ρ : ρ(xxx1,xxx2) = φ(xxx1)+ψ(xxx2), φ ∈ A , ψ ∈ B} . (4.4)

Then

1. the function ρC does not depend on the choice of FX1X2Y ∈ D ;

2. the value MSE(FX1X2Y ,ρC ) does not depend on the choice of FX1X2Y ∈ D ;

3. the estimator ρC of (4.3) is also the solution ρM to (4.2).

Theorem 4.1 shows that instead of solving the minimax problem (4.2), we can equivalently solve
the minimization problem (4.3). Namely, all we need to do is determine the MMSE estimator of Y
among all functions of the form ϕ(X1)+ψ(X2) with ϕ ∈ A and ψ ∈ B. In other words, the minimax
multi-domain estimate ŶM is the projection of Y onto C̃ = ˜A + B̃, which can be determined from the
individual projections of Y onto ˜A and onto B̃. The importance of this observation follows from the fact
that, as we show below, for many practical cases, ρC (X1,X2) possesses a simple closed form solution.

Before demonstrating the utility of the minimax MSE approach, we note that optimizing the worst-
case performance of an estimator is very conservative and may sometimes lead to over-pessimistic
solutions. As an alternative, researchers in many application areas have proposed minimizing the worst-
case regret [6, 7, 15, 16]. The regret of an estimator ρ(X1,X2) is defined as the difference between the
MSE it achieves and the MSE of the MMSE solution, namely

REG(FX1X2Y ,ρ) = E
[
∥Y −ρ(X1,X2)∥2]−E

[
∥Y −E[Y |X1,X2]∥2] . (4.5)

In this expression, both terms depend on FX1X2Y , so that minimization of the worst-case regret is gen-
erally not equivalent to minimization of the worst-case MSE. Additional insight into the regret can
be obtained from its equivalent characterization [16] as the MSE between ρ(X1,X2) and E[Y |X1,X2],
namely

REG(FX1X2Y ,ρ) = E
[
∥ρ(X1,X2)−E[Y |X1,X2]∥2] . (4.6)

As we show in the following theorem, however, in the multi-domain prediction setting, the minimax-
regret estimator coincides with the minimax-MSE solution. The proof of the theorem is provided in
Appendix B.

4The minimum exists since the set of RVs C̃ corresponding to the set of predictors C equals ˜A + B̃ and is thus a closed
subspace in L2(Ω ,F ,P).
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THEOREM 4.2 (Multi-domain minimax-regret prediction) Consider the problem

ρR = argmin
ρ

sup
FX1X2Y∈D

REG(FX1X2Y ,ρ), (4.7)

where minimization is performed over all functions ρ of X1 and X2. Then its solution ρR coincides with
ρM of (4.2).

We now apply Theorem 4.1 in several scenarios.

4.1 Single-Domain Training

Consider the situation of figs. 1(a) and 1(b), where we have at our disposal only labeled examples from
one domain, say X1. In this case B = {0} so that C = A . Consequently, the solution to (4.3) is simply

ρC (X1,X2) = φA (X1). (4.8)

This shows that in coming to label unseen examples, there is no gain in basing the prediction on the
domain X2 for which we have no labeled training examples. Furthermore, at least from a worst-case
perspective, there is no better strategy than using our initial predictor based on X1 alone. More con-
cretely, for any estimator that differs from φA (X1) (and in particular one that is a function of X2),
there exist distributions FX1X2Y ∈ D (one maybe being the true underlying distribution) under which the
predictor φA (X1) performs better.

This result does not stand in contrast to the basic observation in multi-view learning that unlabeled
data helps [2]. This is because in our setting, we do not assume that the two views are “coherent” or
tend to agree in any sense, as done, for instance, in [10] in the context of multi-view regression.

4.2 Multi-Domain Linear Regression

Suppose, as in Fig. 1(c), that we have a limited amount of labeled examples from both domains, which
only suffice for identifying (with very high precision) the optimal linear predictor from each view. In
this case A and B correspond to the collection of all linear functions from RM1 to RN and from RM2 to
RN , respectively. Consequently, C is the set of all linear functions from RM1 ×RM2 to RN . This implies
that the solution to (4.3) is simply the best linear predictor of Y based on X1 and X2, namely

ρC (X1,X2) =
(
Γ Y X1 Γ Y X2

)(Γ X1X1 Γ X1X2
Γ X2X1 Γ X2X2

)†(X1
X2

)
. (4.9)

The second-order moments Γ XiX j , i, j ∈ {1,2}, can be estimated from the unlabeled training set. Simi-
larly, the matrices Γ YX j , j ∈ {1,2}, can be determined from the labeled sets.

The dependence of the multi-domain predictor ρC on the single-domain estimators ϕA and ψB is not
apparent at first sight. However, recall that the orthogonality principle states that E[(Y −ϕA (X1))XT

1 ] =
0 and E[(Y − ψB(X2))XT

2 ] = 0. Therefore, the terms Γ Y X1 and Γ Y X2 in (4.9) can be replaced by
E[ϕA (X1)XT

1 ] and E[ψB(X2)XT
2 ], respectively. As these expectations are with respect to FX1 and FX2 ,

their computation can be carried out based only on the knowledge of FX1X2 , ϕA and ψB , which is
available according to our problem formulation.
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4.3 Multi-Domain Parametric Regression

The above observation naturally extends to the case in which the training sets suffice for identifying the
optimal parametric predictors of the forms

φ(X1) =
K1

∑
k=1

a1
kφk(X1), ψ(X2) =

K2

∑
k=1

a2
kψk(X2), (4.10)

where {φk}K1
k=1 and {ψk}K2

k=1 are given functions and {a1
k}

K1
k=1 and {a2

k}
K2
k=1 are arbitrary parameters. In

this situation, C corresponds to the family of functions having the form

ρ(X1,X2) =
K1

∑
k=1

a1
kφk(X1)+

K2

∑
k=1

a2
kψk(X2). (4.11)

Thus, the optimal set of parameters aaa =
(
a1

1 · · · a1
K1

a2
1 · · · a2

K2

)T
is given by

aaa∗ =
(

Γ ΦΦ Γ ΦΨ
ΓΨΦ ΓΨΨ

)†(Γ ΦY
ΓΨY

)
, (4.12)

with Γ ΦΦ , ΓΨΨ , Γ ΦY and ΓΨY being as in (3.6) and Γ ΦΨ being a K1 ×K2 matrix whose (i, j)-th entry
is E[φi(Y )T ψ j(Z)]. Similar to linear regression, the vectors Γ ΦY and ΓΨY can be replaced, due to the
orthogonality principle, by vectors whose j-th entries are E[φT

j (X1)φA (X1)] and E[ψT
j (X1)ψB(X2)],

respectively.

4.4 Multi-Domain Partially Linear Regression

Suppose, as in Fig. 1(d), that we have numerous labeled examples from the first domain, allowing us to
determine E[Y |X1], and only a limited amount of examples from the second domain, so that we can only
determine the best linear predictor of Y from X2. In this setting, Theorem 4.1 implies that the minimax-
optimal predictor based on X1 and X2 is the estimator minimizing the MSE among all functions of the
form

ρ(X1,X2) = aaa(X1)+BBBX2, (4.13)

where aaa : RM1 → RN is an arbitrary function and BBB ∈ RN×M2 is some matrix. It was shown in [18] that
the solution to this particular case is given by

ρM(X1,X2) = E[Y |X1]+Γ YW Γ †
WWW, (4.14)

where W = X2 −E[X2|X1].
The intuition here is that we need to make sure we do not account for variations in Y twice when

fusing information from X1 and X2. Thus, we start with the estimate φA (X1) = E[Y |X1], and then
update it with the LMMSE estimate of Y based on the error W = X2 −E[X2|X1] predicting X2 from
X1. A similar interpretation arises in the Kalman filter [11] (the measurement update stage) and in
Kolmogorov’s theory of prediction of wide-sense stationary sequences [23]. The main difference is that
here we treat nonlinear estimation, so that W is a nonlinear function of X1. Nevertheless, borrowing the
terminology of recursive filtering and prediction, we refer here to the RV W as the innovation of domain
X2 with respect to the estimate φA (X1) of Y from domain X1.
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In practice, the term E[Y |X1] can be approximated from the labeled training examples of the first
domain, e.g., using nonparametric methods. The second term in (4.14) can be obtained via a three-stage
procedure. Specifically, we first employ a nonparametric technique to approximate ξ (xxx1) = E[X2|X1 =
xxx1] from the unlabeled set. Next, we use the unlabeled samples to form the set {ξ (xxxu

1),xxx
u
2}u∈U , from

which we approximate the covariance matrix Γ WW of W = X2−E[X2|X1]. Lastly, we approximate Γ Y X2
from the labeled examples {xxxℓ2,yyy

ℓ}ℓ∈L2 and Γ Y ξ (X1) from the labeled examples {ξ (xxxℓ1),yyyℓ}ℓ∈L1 in order
to compute Γ YW = Γ Y X2 −Γ Y ξ (X1).

4.5 Multi-Domain Semi-Parametric Regression

Suppose as above, that we know E[Y |X1], however we can also determine the best estimator of Y from
X2 among the parametric family

ψ(X2) =
K

∑
k=1

akψk(X2). (4.15)

In this case, according to Theorem 4.1, the minimax-optimal estimator of Y based on X1 and X2 is the
one minimizing the MSE among all functions of the form

ρ(X1,X2) = aaa(X1)+
K

∑
k=1

akψk(X2). (4.16)

The solution to this problem can be deduced by relying on the concept of (A ,B)-innovation, as we
now define.

DEFINITION 4.3 The (A ,B) innovation of X2 with respect to X1 in predicting Y , which we denote by
ρB|A (X2|X1), is the MMSE estimator of Y among all functions of the form

ψ(X2)−ηψ(X1), (4.17)

with ψ being some function in B and ηψ(X1) denoting the A -optimal estimator of ψ(X2) from X1.

Note that ρB|A (X2|X1) is a function of both X1 and X2 (not to be confused with expressions such
as E[X2|X1], which are only functions of X1). Using this definition, we make the following observation
regarding the structure of the minimax estimator, the proof of which is given in Appendix C.

THEOREM 4.4 The solution to problem (4.3) can be expressed as

ρC (X1,X2) = φA (X1)+ρB|A (X2|X1), (4.18)

where ρB|A (X2|X1) is the (A ,B)-innovation of X2 with respect to X1.

From a geometric perspective, the (A ,B) innovation of X2 with respect to X1 is the projection of
Y onto the subspace Ẽ = Π ˜A ⊥B̃. Every RV in Ẽ is the projection of some RV in B̃ onto ˜A ⊥. Thus,
what Theorem 4.4 actually shows is that if a subspace C̃ equals the sum of subspaces ˜A + B̃ then the
projection operator ΠC̃ can be expressed as Π ˜A +ΠẼ with Ẽ denoting the projection of B̃ onto ˜A ⊥.

In our setting, A corresponds to the set of all functions from RM1 to RN so that φA (X1) = E[Y |X1].
Furthermore, B is the family of functions from RM2 to RN having the form (4.15). Therefore, for any
ψ ∈ B, the A -optimal estimator of ψ(X2) based on X1 is given by

ηψ(X1) = E[ψ(X2)|X1] = E

[
K

∑
k=1

akψk(X2)

∣∣∣∣∣X1

]
=

K

∑
k=1

akE[ψk(X2)|X1]. (4.19)
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Consequently, ρB|A (X2|X1) in (4.18) is of the form

ψ(X2)−ηψ(X1) =
K

∑
k=1

akψk(X2)−
K

∑
k=1

akE[ψk(X2)|X1] =
K

∑
k=1

akρk(X1,X2), (4.20)

where we denoted ρk(X1,X2) = ψk(X2)−E[ψk(X2)|X1]. The optimal set of coefficients is given by

aaa∗ = Γ †
ρρΓ ρY (4.21)

where Γ ρρ and Γ ρY are as in (3.6) with φi(X1) replaced by ρi(X1,X2).
To conclude, the optimal estimator of the form (4.16) is

ρM(X1,X2) = E[Y |X1]+
K

∑
k=1

ak (ψk(X2)−E[ψk(X2)|X1]) , (4.22)

with coefficients {ak} given by (4.21). The first term in this expression can be approximated via non-
parametric regression techniques from the labeled training examples of the first domain. The second
term can be computed in two stages. First, each of the functions {ψk(X2)}K

k=1 is regressed on X1 using
the unlabeled data set, to obtain an approximation of E[ψk(X2)|X1]. Then, Y is linearly regressed against
{ψk(X2)−E[ψk(X2)|X1]}K

k=1, using the two labeled sets, as discussed in Section 4.4.

5. Single-Domain Prediction with Multi-Domain Training

Next, we address the setting in which at the testing stage our predictor is only supplied with one type of
features, say X1. The interesting question in this context is how to take into account the training sets of
both domains in order to design an improved estimator of Y based on X1 alone.

Since our estimator operates on X1 and is judged by the proximity of its output to Y , its performance
is only affected by the joint distribution of Y and X1. It may thus seem at first that the second set of
features X2 cannot be of help in improving estimation accuracy. However, note that FX1Y is not fully
known in our setting. Thus, being told the statistical relations between Y and X2 and between X1 and
X2, might help to narrow down the set of candidate distributions FX1Y for which we need to design an
estimator.

The statistical relations known to us are the same as in Section 4. Namely, we know that FX1X2Y
belongs to the class D of (3.7). Therefore, as in Section 4, our goal is to optimize the worst case
performance of our estimator over D . As it turns out, in contrast with the multi-domain problem, in
the single-domain setting the minimax MSE and minimax regret solutions no longer coincide. A simple
example demonstrating this phenomenon is discussed in Appendix D. Here, we focus on minimizing the
worst-case regret. As will be clear from the proof provided in Appendix B, determining the minimax-
MSE estimator in the single-domain setting is generally much harder than minimizing the worst-case
regret. The former remains an open problem.

In single domain regression, whatever we do, our estimator will not achieve lower MSE than the
conditional expectation E[Y |X1]. Therefore, the regret of interest is now

REG(FX1X2Y ,ρ) = E
[
∥Y −ρ(X1)∥2]−E

[
∥Y −E[Y |X1]∥2] . (5.1)

As in the multi-domain setting, this regret can be written as [16]

REG(FX1X2Y ,ρ) = E
[
∥ρ(X1)−E[Y |X1]∥2] . (5.2)



SEMI-SUPERVISED MULTI-DOMAIN REGRESSION 15 of 31

Table 1: Single domain prediction scenarios.

Training Testing
Unlabeled Labeled

Cross domain regression X1 +X2 X1 X1
Shared representation regression X1 +X2 X2 X1
Regression with side information X1 +X2 X1,X2 X1

Our goal is to determine the minimax-regret estimator5

ρS = argmin
ρ

sup
FX1X2Y∈D

REG(FX1X2Y ,ρ), (5.3)

where now minimization is performed only over functions ρ of X1.
The next theorem, whose proof may be found in Appendix B, describes the single-domain minimax-

regret estimator in terms of the multi-domain minimax-MSE solution.

THEOREM 5.1 (Single-domain minimax-regret prediction) The solution to problem (5.3) is given by

ρS(X1) = E[ρM(X1,X2)|X1], (5.4)

where ρM(X1,X2) is the multi-domain minimax estimator (4.2).

This result has a very simple and intuitive explanation. We know that FX1X2Y belongs to the set D ,
and therefore ρM(X1,X2) is the optimal estimate of Y in a minimax-MSE sense. However, we cannot
use this estimate as it is a function of X2, which is not measured in our setting. What Theorem 5.1 shows
is that the optimal strategy is to estimate ρM(X1,X2) based on the available measurements, which are
X1 alone. Computation of the conditional expectation E[ρM(X1,X2)|X1] only requires knowledge of the
marginal distribution FX1X2 , which is available in our setting.

In geometric terms, the single-domain minimax regret estimate ŶS is simply the projection ΠH̃X1
ŶM

of the multi-domain minimax estimate ŶM onto the subspace H̃X1 of RVs that are functions of X1.
We now apply this result to three interesting special cases, as shown in Table 1.

5.1 Cross Domain Regression

In cross-modality learning (coined in [20]), we only have labeled examples from domain X1 and not
from X2, as illustrated in figs. 2(a) and 2(b) and in the first row of Table 1. The basic intuition here, as
presented in [20], is that the unlabeled data may be used to boost the performance of the best single-
domain estimator φA (X1) that can be designed based solely on labeled examples from the domain
X1. This is supposedly possible by learning better single modality feature representations given the
unlabeled data from the multiple modalities, thus the term cross-modality.

This setting can be treated within our framework by setting ψB(X2) = 0. As we have seen in Sec-
tion 4.1, in this situation ρM(X1,X2) = φA (X1). Therefore, the single-domain minimax-regret predictor
of Y from X1 is given by

ρS(X1) = E[φA (X1)|X1] = φA (X1). (5.5)

5The subscript ‘S’ stands for ‘single-domain.’
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We see that despite the fact that we know FX1X2 , there is no better strategy than using the estimator
φA (X1) here. This implies that cross-modality learning is not useful unless additional knowledge on the
underlying distributions is available.

The authors of [20] used cross-modality learning to classify isolated words from either audio or
video (lipreading). It was reported that unlabeled audio-visual examples helped improve visual recog-
nition but failed to boost the performance of an audio classifier. This empirical result aligns with our
theoretical analysis, which states that, in the worst-case scenario, there is nothing better to do than
disregarding the modality for which no labeled examples are available.

5.2 Shared Representation Regression

In shared-representation learning (coined in [20]), also referred to as estimation with partial knowledge
[16], we have no labeled examples from domain X1 but rather only from X2. This is illustrated in
figs. 2(c) and 2(d) and in the second row of Table 1. The mechanism used in [20] to construct a predictor
(classifier) was based on learning multi-modal features from the unlabeled data, thus the term shared
representation. More specifically, the deep architectures proposed in [20] were designed to learn to
reconstruct both modalities (audio and video, in the case of [20]) given only one modality as the input.

Since we can learn a predictor ψB(X2) from the second domain, and only measure an instance X1
from the first domain, a naive approach would be to feed the predictor ψB with an estimate of X2, which
is based on X1, rather than with X2 itself. For example, we can use the predictor ψB(E[X2|X1]), where
the MMSE estimate E[X2|X1] is approximated by nonparametric methods from the unlabeled training
set. However, as we now show, this strategy is generally not minimax-optimal.

Recall from Section 4.1 that the multi-domain predictor corresponding to the setting in which A =
{0} is ρM(X1,X2) = ψB(X2). Therefore, the single-domain minimax-regret predictor of Y from X1 is
given by

ρS(X1) = E[ψB(X2)|X1] (5.6)

in this case. This solution generalizes the estimator of [16, Thm. 8], which was developed for the
case in which B is the set of all functions. In the latter scenario ψB(X2) = E[Y |X2] so that ρS(X1) =
E[E[Y |X2]|X1], and the two methods coincide.

Geometrically, in the shared-representation setting, we seek an RV in H̃X1 that best approximates
Y while all we know is the projection ΠB̃Y of Y onto B̃. The minimax strategy dictates that we
should project ΠB̃Y onto H̃X1 , so that the minimax single-domain predictor is ŶS = ΠH̃X1

ΠB̃Y . This
interpretation is illustrated in Fig. 5.

As an example, consider the setting in which we have a limited number of labeled examples from
domain X2, which only allows to determine the best linear predictor of Y from X2. In this case, ψB(X2)=

Γ Y X2Γ †
X2X2

X2, implying that ρS(X1) = E[Γ Y X2Γ †
X2X2

X2|X1] = Γ Y X2Γ †
X2X2

E[X2|X1]. Namely, minimax-
regret estimation does boil down, in this setting, to the naive strategy of applying ψB on E[X2|X1].
This, however, is not always the case. Suppose, for instance, that we have numerous examples from
domain X2, so that B is the set of all functions from RM2 to RN . In this situation, ψB(X2) = E[Y |X2],
so that ρS(X1) = E[E[Y |X2]|X1]. This solution does not generally coincide with the naive estimator
E[Y |E[X2|X1]].

The estimator (5.6) can be approximated from the available training data by first determining the
function ψB(xxx2) from the labeled set of the second domain and then using nonparametric regression on
the set {xxxu

1,ψB(xxxu
2)}u∈U .
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B̃
Y

ψB(X2)

H̃X1
E[Y |X1]E[ψB(X2)|X1]

FIG. 5: Geometric interpretation of shared representation estimation. Among all RVs in H̃X1 , the best
possible estimate is E[Y |X1], the projection of Y onto H̃X1 . We only know, however, ΨB(X2), the
projection of Y onto B̃. The minimax regret estimator is the projection of ΨB(X2) onto H̃X1 .

5.3 Regression with Side Information

The general setting in which we have training data from both domains can be treated by employing
Theorem 4.4. Specifically, when A and B are two arbitrary spaces of prediction functions, ρM(X1,X2)
is given by (4.18), and therefore

ρS(X1) = φA (X1)+E[ρB|A (X2|X1)|X1], (5.7)

where ρB,A (X2|X1) is the (A ,B) innovation of X2 with respect to X1. This representation highlights
the fact that the second labeled set and the unlabeled set come into play in the term E[ρB,A (X2|X1)|X1].

To understand when training data from an unobserved domain cannot help, we recall from Defini-
tion 4.3 that ρB,A (X2|X1) is of the form ψ(X2)−ηψ(X1), with ψ ∈B and ηψ(X1) being the A -optimal
estimate of ψ(X2) from X1. Therefore, the second term in (5.7) vanishes if, for example,

E[ψ(X2)|X1] = ηψ(X1) (5.8)

for every ψ ∈ B. Intuitively, this can happen if the class A of functions is very rich and/or the class
B is not. As an example, if A is the set of all functions from RM1 to RN then ηψ(X1) = E[ψ(X2)|X1],
so that (5.8) is satisfied, indicating that the training set from the second domain is not needed. Indeed,
in this situation φA (X1) = E[Y |X1], meaning that we can already determine the MMSE predictor of Y
from X1 using the first training set so that no potential improvement can be obtained using the second
set.

As a more interesting example, suppose that the RVs X1 and X2 are jointly Gaussian, that B is the
set of all linear functions from RM2 to RN , and that A contains the set of all linear functions from RM1

to RN . In this case, every ψ ∈ B corresponds to some matrix AAA such that ψ(X2) = AAAX2. Consequently,
using the fact that the MMSE estimate is linear in the Gaussian setting,

E[ψ(X2)|X1] = E[AAAX2|X1] = AAAE[X2|X1] = AAAΓ X2X1Γ †
X1X1

X1. (5.9)
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Moreover, X1 and ψ(X2) are jointly Gaussian, implying that

ηψ(X1) = Γ ψ(X2)X1Γ †
X1X1

X1 = AAAΓ X2X1Γ †
X1X1

X1. (5.10)

Thus, (5.9) and (5.10) coincide and (5.8) is satisfied, indicating that the second training set is not required
here as well.

Another interesting viewpoint can be obtained by switching the roles of X1 and X2 in the represen-
tation (4.18) of ρM(X1,X2). This leads to the expression

ρS(X1) = E[ψB(X2)|X1]+E[ρA |B(X1,X2)|X1]. (5.11)

Here, we recognize the first term as being the shared-representation estimator (5.6) of Y from X1,
which does not use labeled examples from the domain X1. Therefore, we see that the training set
from the first (observed) domain is not needed if the second term in (5.11) vanishes. Using the fact that
ρA |B(X1|X2) = φ(X1)−ηφ(X2) with φ ∈ A and ηφ(X2) being the B-optimal estimate of φ(X1) from
X2, we conclude that this happens if, for example,

φ(X1) = E[ηφ(X2)|X1] (5.12)

for every φ ∈ A . As a concrete example, consider again the setting in which the RVs X1 and X2 are
jointly Gaussian and A and B are classes of linear functions. In this situation, φ(X1) = AAAX1 for some
matrix AAA, so that ηφ(X2) = Γ φ(X1)X2Γ †

X2X2
X2 = AAAΓ X1X2Γ †

X2X2
X2 and, consequently,

E[ηφ(X2)|X1] = AAAΓ X1X2Γ †
X2X2

E[X2|X1] = AAAΓ X1X2Γ †
X2X2

Γ X2X1Γ †
X1X1

X1. (5.13)

Therefore, (5.12) is satisfied if Γ X1X2Γ †
X2X2

Γ X2X1Γ †
X1X1

= III, or, equivalently if Γ X1X1 −Γ X1X2Γ †
X2X2

Γ X2X1 =
0. The latter expression is no other than the error covariance of the MMSE estimate of X1 from X2.
Therefore, condition (5.12) is satisfied in this setting if X1 can be estimated from X2 with no error.
Indeed, in this scenario, we do not need to observe training examples from the domain X1, as these can
be synthetically generated from the examples of the second domain.

To approximate the resulting estimators from sets of points, it is often more convenient to use the
form (5.11) rather than (5.7). As a concrete example, consider linear regression with nonlinear side
information, namely where A is the set of all linear functions and B is the family of all (not necessarily
linear) functions. Then, from Theorem 5.1 and (4.14) we conclude that

ρS(X1) = E[E[Y |X2]|X1]+Γ YW Γ †
WW (X1 −E[E[X1|X2]|X1]), (5.14)

where here W = X1−E[X1|X2]. The terms E[E[Y |X2]|X1] and E[E[X1|X2]|X1] can be approximated using
nonparametric methods, similar to the discussion in Section 5.2, and the covariance matrices Γ YW and
Γ WW can be approximated as in Section 4.4.

6. Experimental Results

We now demonstrate our regression approach, that derives from the theoretical results just presented, in
a toy example and two illustrative applications.
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6.1 Toy Example

To gain intuition into the difficulties associated with learning from distinct training sets, we begin with a
toy example incorporating scalar RVs. For the simplicity of visualization, we concentrate on the shared
representation learning setting described in Section 5.2 (figs. 2(c) and 2(d), second row of Table 1),
which, on one hand, is simple, and, on the other hand, has a nontrivial solution.

Figures 6(a) and 6(b) depict two joint distributions of X1, X2 and Y , as point clouds. Recall that
in the shared-representation setting, the data sets available to us correspond to independent draws from
FX1X2 (unlabeled multi-domain examples) and from FX2Y (labeled examples from the second domain).
These data sets are plotted on the X1 −X2 plane and on the X2 −Y plane, respectively. From the labeled
examples, we can determine an estimator ψB(X2) of Y based on X2. This estimator is plotted on the
X2 −Y plane. Here, we used a large number of training examples, which allowed us to approximate
ψB(X2) = E[Y |X2] using the Nadaraya-Watson nonparametric regression method (see (3.1)). Based on
knowledge of the estimator ψB(X2) and on the distribution FX1X2 , our method constructs an estimator
ρS(X1) of Y based on X1.

Figures 6(c) and 6(d) depict the marginal distribution FX1Y as well as the MMSE estimate E[Y |X1]
and our minimax-regret solution, ρS(X1) = E[E[Y |X2]|X1], corresponding to the settings of figs. 6(a)
and 6(b), respectively. As apparent from these plots, although the distributions of figs. 6(a) and 6(b)
are different, the marginal FX1Y and consequently also the MMSE estimator E[Y |X1] are the same in
both situations. Nevertheless, the solution ρS(X1), which does not have access to draws from FX1Y is
completely different in the two scenarios. Indeed, in Fig. 6(c), ρS(X1) is close to the MMSE solution
while in Fig. 6(d) it is not. This is rooted in the fact that FX2Y in the latter case is such that it is
hard to estimate Y from X2 (the performance of ψB(X2) = E[Y |X2] is poor). Therefore, as the shared
representation estimator relies only on the knowledge of ψB(X2) and of the statistical relation between
X1 and X2, it performs worse in the situation of Fig. 6(b).

6.2 Face Normalization

Many facial recognition methods rely on a preprocessing stage, coined normalization, which is aimed at
removing variations that were not observed in the training database. These may include variations due
to illumination, pose, facial expressions, and more. To demonstrate the utility of our approach, we now
focus on the problem of producing a neutral expression face from a smiling one.

A straightforward way of tackling this problem is to learn a regression function from pairs of training
images. This requires a database in which each subject appears at least twice, one time with a neutral
expression and one time with a smile. Unfortunately, large data sets of this sort are hard to collect. In
many practical situations one only has access to a database in which each subject appears only once.
While different subjects may be wearing different expressions, direct inference of the statistical relation
between a smiling and a neutral face is virtually impossible in such scenarios. To bypass this obstacle,
we can use a second domain, or view, for which it is easy to obtain examples that are paired with
the images in the database. This can be done, for example, by manually marking a set of points in
several predefined locations on all images in the database. Thus, denoting by (X1,X2,Y ) a triplet of a
smiling face, its point annotations, and the corresponding neutral expression image, we may construct an
unlabeled set of annotated smiling faces {xxxu

1,xxx
u
2} and a set of annotated neutral expression faces {xxxℓ2,yyy

ℓ}.
This allows employing our shared-representation regression technique for designing a predictor of Y
based on X1. If, in addition, several subjects were photographed more than once, then we may construct
a third set {xxxℓ1,yyy

ℓ}, containing pairs of images of smiling and neutral-expression faces. In this case, we
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FIG. 6: Visualization of shared representation regression. (a),(b) Two examples of distributions FX1X2Y
(dark point clouds) together with their corresponding marginal distributions FX1X2 and FX2Y (gray point
clouds) and the corresponding estimator E[Y |X2] (curve on the X2 −Y plane). (c),(d) The marginal
distribution FX1Y (point cloud), the MMSE estimate E[Y |X1] (solid line) and the minimax-regret solution
ρS(X1) (dashed line) corresponding to the settings of figs. 6(a) and (b), respectively.
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FIG. 7: Annotated images from the AR database.

FIG. 8: Neutral expression synthesis from smiling images. From left to right: query, ground truth, direct
nonlinear regression, shared-representation nonlinear regression (Section 5.2), linear regression with
nonlinear side information (Section 5.3).

can apply regression with side information, as discussed in Section 5.3.
Figure 7 depicts several manually annotated neutral and smiling facial images taken from the AR

database [13]. The point annotations were taken from http://www-prima.inrialpes.fr/
FGnet/data/05-ARFace/tarfd_markup.html. The images were scaled, rotated and cropped
into an ellipsoidal template such that the eyes appear at predefined locations. In practice, this can be
performed automatically [14, 24]. To apply our methods, we normalized the images to be of zero mean
and unity norm and reduced them to 86 dimensions using PCA. The nonlinear regression scheme we
used as a building block in our methods was first-order polynomial regression with a Gaussian kernel.
The bandwidth of the kernel was adaptively tuned to be a constant times the average squared distance
between the query (test) and the training data points6.

Figure 8 demonstrates the results obtained with our approach in several settings. These results
correspond to a leave-one-out experiment. Namely, each time we use one subject for testing and the
rest for training. The results are averaged over all subjects. The two leftmost columns correspond to
the query smiling face and the corresponding desired (unobserved) neutral expression image. The third
column shows the result of directly performing regression using 118 pairs of smile/neutral images. The
fourth column is the result of performing shared representation regression via (5.6), using a training
set of 38 annotated smiling faces and a set of 40 annotated neutral images (of different subjects). The
rightmost column uses, in addition to these two sets, a training set comprising 40 pairs of images of
neutral and smiling expressions to perform linear regression with nonlinear side information (equation
(5.14)).

Table 2 shows the root MSE (RMSE), (E[∥Y −Ŷ∥2])
1
2 , attained in each of the settings. As expected,

6More specifically, for a labeled training set {xxxℓ,yyyℓ}L
ℓ=1 and a query (test) point xxx, we chose h = 0.2× 1

L ∑L
ℓ=1 ∥xxx− xxxℓ∥2.
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Table 2: Performance of neutral expression synthesis methods.

Setting RMSE
Direct nonlinear regression with 118 examples 0.187

Direct linear regression with 40 examples 0.200
Shared-representation nonlinear regression 0.263

Linear regression with nonlinear side information 0.247

using direct training with 118 examples yields the best results (lowest RMSE). Interestingly, in this
situation, using direct linear regression with 40 examples results in only slightly inferior results. It can
be seen that employing two sets with roughly 40 examples each, instead of direct training, leads to an
increase in the RMSE of 41%. This gap is reduced to 32% with the aid of an additional set of 40 direct
training pairs.

A somewhat counterintuitive phenomenon is that the method of linear regression with nonlinear
side information, which employs 40 labeled smiling faces, performs worse than direct linear regression,
which is based on the same 40 labeled examples in addition to 40 examples of annotated neutral faces.
This suggests that the addition of information (labeled examples from domain X2 in this case) may
deteriorate the performance of our estimators. Indeed, this results from the fact that our methods are
only optimal in a worst-case regret sense. Thus, it is only the worst-case regret that is assured to improve
when adding information, not the MSE in a specific situation.

Perceptually, the images produced by the indirect methods do not seem to be much worse than those
obtained with direct training. Note that the spatial smoothing apparent in all methods is due to the fact
that any regression methods boils down at the end to some sort of averaging of many images from the
training set. It is also important to note that the vague traces of glasses in the last two columns are
no coincidence. Specifically, when there are no (or very few) joint examples of smile/neutral faces,
no method can ever be able to determine whether the person wears glasses or not. This is because we
only know how the smiling images (pixel values) relate to the geometry (point annotations) and how the
geometry relates to the neutral images. Now, for every possible geometry, roughly half the people in the
neutral database wear glasses and half do not.

6.3 Audio-Visual Word Recognition

Although the entire discussion in this paper has focused on regression, we believe that similar methods
can be developed for classification tasks. Such developments would surely require an entirely different
arsenal of mathematical techniques. However, to support our claim, we now illustrate that shared repre-
sentation classification can even be achieved by using the naive approach of performing regression and
then quantizing the output in order to obtain a classification rule.

Specifically, we now consider the tasks of spoken digit classification from audio-only and video-
only measurements. These are 10-class classification problems, with the classes corresponding to the
digits 0, . . . ,9. To study this setting, we used the Grid Corpus [4], which consists of speakers saying
simple-structured sentences. Every sentence contains one digit, which we isolated using the supplied
transcriptions. For every digit, there are 100 examples per speaker. We constructed three distinct training
sets: one of labeled audio examples (4 males, 4 females), one of visual examples (4 males, 4 females),
and one of unlabeled audio-visual examples (6 males, 4 females). Six speakers were used for testing
(3 males, 3 females). After manual removal of examples in which our automatic lip detection failed
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FIG. 9: Processing of the video and audio of a speaker saying the word ‘nine’. From left to right: lip
detection, spectogram, extracted lip region.

(see description below), we ended up with 7793 labeled audio examples (with between 772 and 791
examples per digit), 7585 labeled video examples (with between 746 and 765 examples per digit), 9897
unlabeled audio-visual examples (with between 983 and 991 examples per digit) and 5611 test examples
(with between 540 and 575 examples per digit).

To process the video, we converted the images to gray scale, used the face detection method of
[12], and then applied several mean-shift iterations on the gradient image map in order to extract the lip
region in the first image of each frame-bunch. Segments of duration 320msec were used for recognition.
This corresponded to 8 consecutive video frames (at a rate of 25 frames per second) and 1600 audio
samples (at a sampling rate of 5KHz). The image frames were reduced to 10 dimensions using PCA,
resulting in an 80-dimensional video feature-vector. The processing of the audio was performed by
computing spectograms with windows of duration 10msec and an overlap of 2.5msec. The dimension
of the spectogram was reduced to 180 to constitute the audio features. In all experiments Y was a 10-
dimensional vector with 1 at the location corresponding to the spoken digit and 0 elsewhere. Figure 9
visualizes the basic audio-visual preprocessing.

As mentioned above, our approach is designed for regression, so that the predicted Ŷ is a continuous
variable. To perform classification, we chose the maximal element in Ŷ . For simplicity, A and B were
taken as the sets of all linear functions (linear regression). This choice yields rather poor classification
results based solely on audio or solely on video. Our goal, though, is to demonstrate that even with such
naive single-domain predictors, we can attain good recognition accuracy by using our approach, which
cleverly fuses the two domains.

Table 3 shows the accuracy of our approach and, for reference, also presents the results obtained
with the deep restricted Boltzmann machine (RBM) of [20] on the CUAVE dataset [22]. The Grid
corpus used here is more challenging in that the digits appear within sentences, rather than individually.
We note that Table 3 does not serve to draw conclusions regarding the benefit, in terms of absolute
performance, of our solutions with respect to those of [20], as the datasets are different. Rather, it is
brought here only to highlight the differences between the methods in terms of the relative performance
deterioration when different modalities are available at training and test times.

As can be seen, the single-domain predictors we start with perform relatively poorly (rows 1 and
2). Nevertheless, in the shared-representation settings (rows 3 and 4), our predictors’ accuracy drops by
only 7% to 20% with respect to the corresponding single domain estimators (rows 1 and 2, respectively).
By contrast, the difference in success rates for the RBM predictor is between 30% and 70%.
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Table 3: Audio-visual digit classification performance.

Features Accuracy

Training Testing Minimax Deep RBM
(Grid corpus) (CUAVE)

Audio Audio 69.3% 95.8%
Video Video 52.0% 69.7%
Video Audio 50.1% 27.5%
Audio Video 44.6% 29.4%

7. Conclusion

In this paper, we analyzed the problems of multi-domain and single-domain regression in settings involv-
ing distinct unpaired labeled training sets for the different domains and a large unlabeled set of paired
examples from all domains. We derived minimax-optimal results and obtained closed form solutions for
many practical scenarios. We used the resulting expressions to study when training data from a domain,
which is not available during testing, can help. In particular, we showed that in the setting of cross-
modality learning, originally presented in [20], there is no advantage in using the training data from
the unobserved domain, at least from a worst-case perspective. We demonstrated our methods in the
context of synthesis of a neutral expression face from an image of a smiling subject and in the context
of audio-visual spoken digit recognition. In the latter setting, we demonstrated that our approach may
be more effective than that proposed in [20]. This is despite the fact that our method is designed for
regression rather than classification and even though we applied it on a more challenging audio-visual
sentence corpus.

A. Proof of Theorem 4.1

We begin by proving claim 1. Since A is a linear subspace, the orthogonality principle implies that
φA (X1) is the unique estimator satisfying

E
[
(Y −φA (X1))

T φ(X1)
]
= 0 (A.1)

for every φ ∈ A . Consequently, for every φ ∈ A we have that

E
[
Y T φ(X1)

]
= E

[
φA (X1)

T φ(X1)
]
. (A.2)

Similarly, for every ψ ∈ B we have that

E
[
Y T ψ(X2)

]
= E

[
ψB(X2)

T ψ(X2)
]
. (A.3)

Finally, as C = A +B, the set C is a subspace as well. Therefore, ρC of (4.3) is the unique estimator
satisfying

E
[
Y T (φ(X1)+ψ(X2))

]
= E

[
ρC (X1,X2)

T (φ(X1)+ψ(X2))
]

(A.4)

for every φ ∈ A and ψ ∈ B. Substituting (A.2) and (A.3), condition (A.4) reduces to the requirement
that

E
[
φA (X1)

T φ(X1)
]
+E

[
ψB(X2)

T ψ(X2)
]
= E

[
ρC (X1,X2)

T (φ(X1)+ψ(X2))
]

(A.5)
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for every φ ∈ A and ψ ∈ B. Now, the A - and B-optimal estimators of Y from X1 and X2 are fixed
over D (given by φA and ψB , respectively). Furthermore, all expectations in (A.5) are with respect to
FX1X2 , which is also fixed over D . This implies that the function ρC does not depend on the choice of
FX1X2Y ∈ D , completing the proof of claim 1.

To prove claim 2, we note that from the orthogonality principle (A.4) follows the Pythagorean rela-
tion

E
[
∥Y −ρC (X1,X2)∥2]= E

[
∥Y∥2]−E

[
∥ρC (X1,X2)∥2] . (A.6)

The first term on the right-hand side equals c for every FX1X2Y ∈D . We have also seen that ρC (X1,X2) is
fixed over D . Moreover, the expectation in the second term is with respect to FX1X2 , which is fixed over
D . Therefore, the second term, as well, does not depend on the choice of FX1X2Y ∈ D . This completes
the proof of claim 2.

Lastly, we prove claim 3. To do so, we first note that φA (X1) and ψB(X2) are not only the A -
and B-optimal estimators of Y based on X1 and X2, respectively; they are also the A - and B-optimal
estimators of ρC (X1,X2). To see this, note that both A and B are contained in C . Consequently, the
orthogonality principle implies that for every φ ∈ A (which is also in C ), we have

E[∥Y −φ(X1)∥2] = E[∥Y −ρC (X1,X2)∥2]+E[∥ρC (X1,X2)−φ(X1)∥2]. (A.7)

As the first term does not depend on φ , we see that minimization of the MSE over φ ∈ A is equivalent
to minimization of the second term alone. Thus, φA (X1) is the A -optimal estimate of ρC (X1,X2) given
X1. The same argument can be invoked to deduce that ψB(X2) is the B-optimal estimate of ρC (X1,X2)
from X2.

A second observation we need for proving claim 3 follows from the fact that A and B are linear sets.
Specifically, this implies that if φ∗

1 (V ) and φ∗
2 (V ) are the A -optimal estimates of the two RVs W1 and

W2, respectively, based on the RV V , then the A -optimal estimate of W1 +W2 is φ∗
1 (V )+φ∗

2 (V ). This
can be seen by noting that the estimator φ∗

1 (V )+φ∗
2 (V ) satisfies the orthogonality principle, namely for

any φ ∈ A we have that

E[(W1 +W2 −φ∗
1 (W1)−φ∗

2 (W1))
T φ(W1)] = E[(W1 −φ∗

1 (W1))
T φ(W1)]+E[(W2 −φ∗

2 (W1))
T φ(W1)]

= 0. (A.8)

The statement also holds, of course, with respect to B-optimal estimates.
Following these two observations, for any FX1X2Y ∈ D , setting Ỹ = 2ρC (X1,X2)−Y results in a

distribution FX1X2Ỹ that also belongs to D . This is because the A -optimal estimate of Ỹ from X1 equals
twice the A -optimal estimate of ρC (X1,X2) from X1 (which is φA (X1)) minus the A -optimal estimate
of Y from X1 (which is also φA (X1)). Namely, the A -optimal estimate of Ỹ from X1 is φA (X1).
Similarly, the B-optimal estimate of Ỹ from X2 is ψB(X2). Finally, due to the orthogonality principle,
the second-order moment of Ỹ is given by

E[∥Ỹ∥2] = E[∥ρC (X1,X2)∥2]+E[∥Y −ρC (X1,X2)∥2]

= E[∥ρC (X1,X2)∥2]+E[∥Y∥2]−E[ρC (X1,X2)∥2]

= c. (A.9)

We now use this fact to prove claim 3. The orthogonality principle (A.4) implies that the MSE
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attained by any estimator ρ satisfies

E
[
∥Y −ρ(X1,X2)∥2]= E

[
∥Y −ρC (X1,X2)∥2]+E

[
∥ρC (X1,X2)−ρ(X1,X2)∥2]

+2E
[
(Y −ρC (X1,X2))

T (ρC (X1,X2)−ρ(X1,X2))
]

= E
[
∥Y −ρC (X1,X2)∥2]+E

[
∥ρC (X1,X2)−ρ(X1,X2)∥2]

+2E
[
(ρC (X1,X2)−Y )T ρ(X1,X2)

]
. (A.10)

The first term in this expression is not a function of ρ and, as we have seen in (A.6), is constant as a
function of FX1X2Y over D . The second term is a function of ρ , but since the expectation is with respect
to FX1X2 , it is constant as a function of FX1X2Y over D . Therefore,

min
ρ

sup
FX1X2Y∈D

MSE(FX1X2Y ,ρ) = E
[
∥Y −ρC (X1,X2)∥2]+min

ρ

{
E
[
∥ρC (X1,X2)−ρ(X1,X2)∥2]

+ sup
FX1X2Y∈D

2E
[
(ρC (X1,X2)−Y )T ρ(X1,X2)

]}
.

(A.11)

We saw that for every FX1X2Y ∈ D setting Ỹ = 2ρC (X1,X2)−Y results in a distribution FX1X2Ỹ that also
belongs to D . Now, with FX1X2Ỹ , the expression 2E[(ρC (X1,X2)−Ỹ )T ρ(X1,X2)] equals −2E[(ρC (X1,X2)−
Y )T ρ(X1,X2)]. Consequently, the maximum of this term over FX1X2Y ∈ D is necessarily nonnegative.
We thus have that

min
ρ

sup
FX1X2Y∈D

MSE(FX1X2Y ,ρ)> E
[
∥Y −ρC (X1,X2)∥2]+min

ρ
E
[
∥ρC (X1,X2)−ρ(X1,X2)∥2]

= E
[
∥Y −ρC (X1,X2)∥2] , (A.12)

where we used the fact that the minimal value of 0 is attained with ρ(X1,X2) = ρC (X1,X2).
We have established a lower bound on the worst-case MSE of any estimator. Next, we show that the

estimator ρ(X1,X2) = ρC (X1,X2) attains this bound, which proves that it is minimax-optimal. Indeed,
substituting this solution into (A.10), we find that

sup
FX1X2Y∈D

MSE(FX1X2Y ,ρC ) = E
[
∥Y −ρC (X1,X2)∥2] , (A.13)

completing the proof.

B. Proof of Theorems 4.2 and 5.1

We simultaneously prove Theorems 4.2 and 5.1 by using an auxiliary RV Z, which can be any (fixed)
function of X1 and X2. Therewith, we will study the solution to

argmin
ρ

sup
FX1X2Y∈D

REG(FX1X2Y ,ρ), (B.1)

where minimization is performed over all functions ρ of Z and the regret is with respect to E[Y |Z].
Specifically, we will show that the solution to this problem is given by E[ρM(X1,X2)|Z]. Setting, Z =
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(XT
1 ,XT

2 )T , we get E[ρM(X1,X2)|Z] = ρM(X1,X2), proving Theorem 4.2. Setting Z = X1, the solution
becomes E[ρM(X1,X2)|X1], proving Theorem 5.1.

Expressing Y = ρM(X1,X2)+(Y −ρM(X1,X2)), the regret of any estimator ρ(Z) can be written as

E
[
∥E[Y |Z]−ρ(Z)∥2]= E

[
∥E[ρM(X1,X2)|Z]−ρ(Z)∥2]+E

[
∥E[Y −ρM(X1,X2)|Z]∥2]

+2E
[
E[Y −ρM(X1,X2)|Z]T (E[ρM(X1,X2)|Z]−ρ(Z))

]
. (B.2)

Since the marginal distribution FX1X2 is fixed over D , the first term in the above expression does not
depend on the choice of FX1X2Y ∈ D . Consequently,

sup
FX1X2Y∈D

REG(FX1X2Y ,ρ) = E[∥E[ρM(X1,X2)|Z]−ρ(Z)∥2]+ sup
FX1X2Y∈D

{
E[∥E[Y −ρM(X1,X2)|Z]∥2]

+2E
[
E[Y −ρM(X1,X2)|Z]T (E[ρM(X1,X2)|Z]−ρ(Z))

]}
.

(B.3)

As we have seen in Appendix A, for every FX1X2Y ∈D setting Ỹ = 2ρM(X1,X2)−Y results in a distribu-
tion FX1X2Ỹ that also belongs to D . Now, Ỹ −ρM(X1,X2) =−(Y −ρM(X1,X2)), implying that if FX1X2Y
maximizes the first term within the braces, then either FX1X2Y or FX1X2Ỹ yields at least the same value for
the objective comprising both terms. Therefore,

min
ρ

sup
FX1X2Y∈D

REG(FX1X2Y ,ρ)> min
ρ

E
[
∥E[ρM(X1,X2)|Z]−ρ(Z)∥2]

+ sup
FX1X2Y∈D

E
[
∥E[Y −ρM(X1,X2)|Z]∥2]

= sup
FX1X2Y∈D

E
[
∥E[Y −ρM(X1,X2)|Z]∥2] , (B.4)

where the last equality is due to the fact that ρ(Z) = E[ρM(X1,X2)|Z] achieves the minimal value of 0
in the first term.

We established a lower bound on the worst-case regret of any estimator. Next, we show that the
estimator ρ∗(Z) = E[ρM(X1,X2)|Z] attains this bound, which proves that it is minimax-optimal. Indeed,
substituting this solution into (B.3), we find that

sup
FX1X2Y∈D

REG(FX1X2Y ,ρM) = sup
FX1X2Y∈D

E
[
∥E[Y −ρM(X1,X2)|Z]∥2] , (B.5)

completing the proof.

C. Proof of Theorem 4.4

To prove the claim, we show that the estimation error corresponding to ρC (X1,X2) of (4.18) is uncorre-
lated with every RV of the form φ(X1)+ψ(X2) with φ ∈ A and ψ ∈ B. Indeed, for every φ ∈ A , the
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estimator ρC (X1,X2) of (4.18) satisfies

E
[
(Y −ρC (X1,X2))

T φ(X1)
]
= E

[
(Y −φA (X1))

T φ(X1)
]
−E

[
ρT

B|A (X2|X1)φ(X1)
]

= E
[(

ψ(X2)−ηψ(X1)
)T φ(X1)

]
= 0, (C.1)

where we used the orthogonality principle. To prove orthogonality with respect to RVs of the form
ψ(X2), with ψ ∈B, we write ψ(X2) = ψ(X2)−ηψ(X1)+ηψ(X1), where ηψ(X1) is the A -optimal esti-
mate of ψ(X2) based on X1. By the orthogonality principle, the errors Y −φA (X1) and ρB|A (X2|X1) =
ψ(X2)−ηψ(X1) are uncorrelated with any RV η(X1), where η ∈A , and thus in particular with the term
ηψ(X1). Therefore, we have that

E
[
(Y − Ŷ )T ψ(X2)

]
= E

[(
Y −φA (X1)−ρB|A (X2|X1)

)T (ψ(X2)−ηψ(X1)
)]

= E
[(

Y −ρB|A (X2|X1)
)T (ψ(X2)−ηψ(X1)

)]
= 0. (C.2)

Here, the second equality results from the fact that the term ψ(X2)−ηψ(X1) is orthogonal to every
RV φ(X1), where φ ∈ A and, in particular, to φA (X1). The third equality follows from the fact that
ρB|A (X2|X1) is the MMSE estimate of Y among all functions of the form ψ(X2)−ηψ(X1), with ψ
being some function in B and ηψ(X1) being the A -optimal estimator of ψ(X2) from X1. Consequently,
the error Y −ρA ,B(X1,X2) is orthogonal to every RV of the form ψ(X2)−ηψ(X1), and, in particular, to
ψ(X2)−ηψ(X1).

D. An Example of a Trivial Single-Domain Minimax MSE Solution

The MSE of a single-domain estimator ρ(X1) is defined as

MSE(FX1X2Y ,ρ) = E
[
∥Y −ρ(X1)∥2] . (D.1)

Consider the single-domain minimax MSE problem

argmin
ρ

sup
FX1X2Y∈D

MSE(FX1X2Y ,ρ), (D.2)

where D is the set of all joint distribution FX1X2Y such that

E[∥Y∥2] = 1, E[Y |X2] =

√
2

2
X2,

(
X1
X2

)
∼ N

((
0
0

)
,

(
1

√
2

2√
2

2 1

))
. (D.3)

We will show that the minimax MSE estimator in this case is given by ρMM(X1) = 0. Note that the
worst-case MSE of this estimator is

sup
FX1X2Y∈D

MSE(FX1X2Y ,ρMM) = sup
FX1X2Y∈D

E
[
∥Y∥2]= 1. (D.4)
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To demonstrate the minimax-optimality of ρMM, we note that one of the feasible distributions FX1X2Y

in this setting corresponds to the case Y =
√

2X2 −X1. Indeed, it can be easily verified that E[(
√

2X2 −
X1)

2] = 1 and E[
√

2X2 −X1|X2] =
√

2X2/2. Let us denote this distribution by F ∗
X1X2Y . Now, the worst-

case MSE of any estimator ρ can be lower bounded by the MSE attained by ρ under the distribution
F ∗

X1X2Y :

sup
FX1X2Y∈D

MSE(FX1X2Y ,ρ)> MSE(F∗
X1X2Y ,ρ) = E

[(√
2X2 −X1 −ρ(X1)

)2
]
. (D.5)

This value can be further lower bounded by the MSE attained by the MMSE estimator under F ∗
X1X2Y ,

which is ρ(X1) = E[
√

2X2 −X1|X1] = 0, leading to

sup
FX1X2Y∈D

MSE(FX1X2Y ,ρ)> E
[(√

2X2 −X1

)2
]
= 1. (D.6)

We have thus established that the worst-case MSE of any estimator is lower bounded by 1, whereas the
worst-case MSE of the estimator ρMM(X1) = 0 is exactly 1, demonstrating that ρMM is minimax-optimal
in an MSE sense.

As we show in Section 5.2, the minimax regret estimator in this setting is given by

ρMR = E[E[Y |X2]|X1] =
1
2

X1. (D.7)

Therefore, we see that the minimax regret and minimax MSE strategies generally lead to two different
solutions in the single-domain estimation situation.
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