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Convergence Rates of Distributed Average
Consensus With Stochastic Link Failures
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Abstract—We consider a distributed average consensus algo-
rithm over a network in which communication links fail with
independent probability. In such stochastic networks, convergence
is defined in terms of the variance of deviation from average. We
first show how the problem can be recast as a linear system with
multiplicative random inputs which model link failures. We then
use our formulation to derive recursion equations for the second
order statistics of the deviation from average in networks with and
without additive noise. We give expressions for the convergence
behavior in the asymptotic limits of small failure probability
and large networks. We also present simulation-free methods
for computing the second order statistics in each network model
and use these methods to study the behavior of various network
examples as a function of link failure probability.

Index Terms—Distributed systems, gossip protocols, multiplica-
tive noise, packet loss, randomized consensus.

W E study the distributed average consensus problem over
a network with stochastic link failures. Each node has

some initial value and the goal is for all nodes to reach consensus
at the average of all values using only communication between
neighbors in the network graph. Distributed average consensus
is an important problem that has been studied in contexts such as
vehicle formations [1]–[3], aggregation in sensor networks and
peer-to-peer networks [4], load balancing in parallel processors
[5], [6], and gossip algorithms [7], [8].

Distributed consensus algorithms have been widely inves-
tigated in networks with static topologies, where it has been
shown that the convergence rate depends on the second smallest
eigenvalue of the Laplacian of the communication graph [9],
[10]. However, the assumption that a network topology is static,
i.e. that communication links are fixed and reliable throughout
the execution of the algorithm, is not always realistic. In mobile
networks, the network topology changes as the agents change
position, and therefore the set of nodes with which each node
can communicate may be time-varying. In sensor networks and
mobile ad-hoc networks, messages may be lost due to interfer-
ence, and in wired networks, networks may suffer from packet
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loss and buffer overflow. In scenarios such as these, it is desir-
able to quantify the effects that topology changes and commu-
nication failures have upon the performance of the averaging
algorithm.

In this work, we consider a network with an underlying
topology that is an arbitrary, connected, undirected graph
where links fails with independent but not necessarily identical
probability. In such stochastic networks, we define conver-
gence in terms of the variance of deviation from average. We
show that the averaging problem can be formulated as a linear
system with multiplicative noise and use our formulation to
derive a recursion equation for the second order statistics of
the deviation from average. We also give expressions for the
mean square convergence rate in the asymptotic limits of small
failure probability and large networks.

Additionally, we consider the scenario where node values are
perturbed by additive noise. This formulation can be used to
model load balancing algorithms in peer-to-peer networks or
parallel processing systems, where the additive perturbations
represent file insertions and deletions or job creations and com-
pletions, with the goal of equilibrating the load amongst the par-
ticipants. A measure of the performance of the averaging algo-
rithm in this scenario is not how quickly node values converge
to the average, but rather how close the node values remain to
each other, and therefore to the average of all values as this
average changes over time. This problem has been previously
studied in networks without communication failures [10], [11],
however we are unaware of any existing work that addresses
this problem in networks with communication failures. We show
how our formulation for static-valued networks can be extended
to incorporate the additive perturbations and give an expression
for the steady-state deviation from average. Finally, for both
problem formulations, we present simulation-free methods for
computing the second order statistics of the variance of the de-
viation from average, and we use these methods to study the be-
havior of various network examples as a function of link failure
probability.

Although there has been work that gives conditions for con-
vergence with communication failures, to our knowledge, this
is the first work that quantifies the effects of stochastic com-
munication failures on the performance of the distributed av-
erage consensus algorithm. We briefly review some of the re-
lated work below.

Related Work: The distributed consensus problem has been
studied in switching networks, where convergence is defined in
a deterministic sense. The works by Jadbabaie et al. [1] and Xiao
and Boyd [12] show that in undirected, switching communica-
tion networks, convergence is guaranteed if there is an infin-
itely occurring, contiguous sequence of bounded time intervals

0018-9286/$26.00 © 2010 IEEE



PATTERSON et al.: CONVERGENCE RATES OF DISTRIBUTED AVERAGE CONSENSUS 881

in which the network is jointly connected. The same condition
also guarantees convergence in directed networks, as shown by
Olfati-Saber and Murray [2] and Moreau [3]. Cao et al. [13]
identify a similar convergence condition for consensus in di-
rected networks based on an infinitely occurring sequence of
jointly rooted graphs. Recent works have also studied the con-
vergence rates of averaging algorithms in switching networks.
In [14], Olshevsky and Tsitsiklis give upper and lower bounds
on the convergence rate in a directed network in terms of the
length of the bounded time interval of joint connectivity, and in
[13], Cao et al. give bounds on the convergence rate in terms of
length of the interval of connectivity of the rooted graph.

Convergence conditions for the distributed averaging algo-
rithm have also been investigated in stochastic networks. In
[15], Hatano and Mesbahi study the Erdős-Rényi random graph
model where each edge fails with identical probability. The
authors use analysis of the expected Laplacian to prove that
nodes converge to consensus with probability 1. The work by
Wu [16] considers a more general directed random graph model
where edge failure probabilities are not necessarily identical
and proves convergence in probability. In [17], Porfiri and
Stilwell study a similar model, a random directed graph where
each edge fails with independent non-uniform probability, but
additionally where edges are weighted. The authors also use
analysis based on the expected Laplacian to show that, in the
case where edge weights are non-negative, if the expected graph
is strongly connected, the system converges asymptotically
to consensus almost surely. For arbitrary weights, the authors
show that asymptotic almost-sure convergence is guaranteed
if the network topology changes “sufficiently fast enough”.
Tahbaz-Salehi and Jadbabaie [18] consider directed networks
where the weight matrices are stochastic i.i.d and give a neces-
sary and sufficient condition for almost sure convergence based
on the second largest eigenvalue of expected weight matrix. In
[19], Kar and Moura give sufficient conditions for mean square
convergence in undirected networks with non-uniform link
failure probabilities based on the second largest eigenvalue of
the expected weight matrix. Additionally, our recent work [20]
also gives sufficient conditions for mean square convergence in
undirected networks where links fail with uniform probability.
The analysis depends on reformulating the problem as a struc-
tured stochastic uncertainty problem and deriving conditions
for convergence based on the nominal component. We also
note that in [21], Kar and Moura study averaging algorithms
over a network with stochastic communication failures where
communication links are also corrupted by additive noise. In
order to achieve consensus in such a model, the weight of each
edge is decreased as the algorithm executes. This problem is
similar to the averaging algorithm with additive noise that is
described in this paper. However, in this work, we consider
additive perturbations at the nodes as opposed to the commu-
nication channels, and we consider algorithms where the edge
weights remain constant.

The remainder of this paper is organized as follows. In Sec-
tion I, we formally define our system model and the distributed
consensus algorithm. Section II gives our convergence results
for systems with no additive noise, and in Section III, we give
an extension of the model and convergence results for networks

with additive noise. In Section IV, we describe our computa-
tional methods, and in Section V, we present computational re-
sults for different network scenarios. Finally, we conclude in
Section VI.

I. PROBLEM FORMULATION

We model the network as a connected, undirected graph
where is the set of nodes, with , and is the

set of communication links between them, with . We
assume that each link has an independent, but not
necessarily identical probability of failing in each round.
If a link fails, no communication takes place across the link in
either direction in that round. A link that does not fail in round

is active. The neighbor set of node , denoted by for
round , is the set of nodes with which node has active com-
munication links in round .

We consider the following simple distributed consensus al-
gorithm. Every node has an initial value . The objec-
tive of the algorithm is to converge to an equilibrium where

for all . In each round, each
node sends a fraction of its current value to each neighbor with
which it has an active communication link. Each node’s value
is updated according to the following rule:

where is the parameter that defines an instance of the algo-
rithm. This algorithm can be implemented without any a priori
knowledge of link failures.

In a network with no communication failures, this algorithm
can be expressed as an matrix, , where

is the Laplacian matrix1 of the graph . The evolution of the
system is described by the following recursion equation:

(1)

It is a well known result that the system converges to consensus
at the average of all node values if and only if the magnitude of
the second largest eigenvalue of , , is strictly less than 1,
and that if the graph is connected, it is always possible to chose
a that guarantees convergence [1], [9], [10], [22], [23]. In this
work, we place no restriction on the choice of other than that
the resulting matrix is such that . The diagonal
entries of may be negative.

We now demonstrate how (1) can be extended to include sto-
chastic communication failures. We note that a similar model
for communication failures in directed graphs is given in [24].
Let be the -vector with the ’th entry equal to 1, the ’th
entry equal to 1 and all other entries equal to 0. is de-
fined as

(2)

1Let � be the adjacency matrix of � and � be the diagonal matrix with the
diagonal entry in row � equal to the degree of node � . Then the Laplacian of a
graph � is defined as � �� � � � .
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The system can then be described by the following recursion
equation

(3)

where is a Bernoulli random variable with

with probability
with probability .

When , the edge has failed. One can interpret
(3) as first performing the algorithm on the full underlying net-
work graph and then simulating the failed edges by undoing
the effects of communication over those edges. In essence, each

matrix returns the values sent across edge , yielding
the state in which edge was not active.

We rewrite (3) in a form that is more convenient for our
analysis using zero-mean random variables. Let

and observe that they are zero mean. The dy-
namics can now be rewritten as

(4)

where .
We measure how far the current state of the system is from

the average of all states using the deviation from average vector
whose components are

The entire vector can be written as the projection

with , where is the -vector with all
entries equal to 1.

We are primarily interested in characterizing the convergence
rate of to zero. Since the dynamics of and are stochastic,
we use the decay rate of the worst-case variance of deviation
from average of each node , , as an indicator of the
rate of convergence.

Problem Statement 1: Consider a distributed consensus algo-
rithm over a connected, undirected graph where each link fails
with independent probability as modeled by the system with
multiplicative noise (3). For a given set of link failure probabil-
ities, determine the worst-case rate (over all initial conditions,
over all nodes) at which the deviation from average ,

, converges to 0 as .
The key to addressing this problem is to study the equations

governing the second order statistics of the states of (4). To this
end, we define the autocorrelation matrices of and by

and note that they are related by the projection

The variance of the deviation from average of each node ,
, is given by the diagonal entry of the row of ,

and the total deviation from average is given by the trace of ,
.

It is well known that the autocorrelation matrix of a system in
the form of (4) with zero-mean multiplicative noise [25] obeys
the following recursion equation:

(5)

where . This is a discrete-time Lya-
punov-like matrix difference equation. However, the additional
terms multiplying make this a nonstandard Lyapunov re-

cursion. The matrix satisfies a similar recursion relation
which we derive in the next section and then study its conver-
gence properties.

II. CHARACTERIZING CONVERGENCE

In this section, we first derive a recursion equation for ,
the autocorrelation of , which has the variance of
deviation from average of each node as its diagonal entries. We
then characterize the decay rate of these variances in terms of
the eigenvalues of a Lyapunov-like matrix-valued operator. An
exact computational procedure for these eigenvalues is given in
Section IV, while in this section, we give expressions for the
asymptotic cases of small, uniform link failure probability and
large network size .

Lemma 2.1: The matrices satisfy the recursion

(6)

Proof: First, we note that the following equalities hold for
the action of on any of the matrices

where the second equality follows from for any
edge . Similarly, . We also note that t ,
and consequently and , commute with the projection . This
follows from the fact that is both a left and a right eigenvector
of . Using these facts and noting that , (6) follows
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from multiplying both sides of (5) by as follows:

If all edges have an equal probability of failure in each
round, we can derive a simpler form of the recursion equation
for .

Corollary 2.2: If each edge fails with uniform probability ,
the matrices satisfy the recursion

(7)

where .
Proof: Note that from the definitions of the matrices

, their sum is proportional to the graph’s Laplacian, i.e.
. is then simply

Additionally, note that for all .
Therefore, for uniform failure probability , (6) simplifies as

follows:

A. The Decay Rate

To study the decay or growth properties of the matrix se-
quence , we define the Lyapunov-like operator

(8)
The linear matrix recursion (7) can now be written as

(9)

Since this is a linear matrix equation, the condition for asymp-
totic decay of each entry of is , where is
the spectral radius of , which we call the decay factor of the
algorithm instance. Since each entry of has the asymp-
totic bound of a constant times , then so does its trace and
consequently . And, in fact, it can be shown that this
upper bound on the decay rate is tight.

We summarize these results in the following theorem.
Theorem 2.3: Consider a distributed consensus algorithm

where links fail with independent probability as modeled
by the system with multiplicative noise

where are Bernoulli random variables with

with probability
with probability .

1) The total deviation from average converges to
0 as if and only if

where is the matrix-valued operator defined in (8).
2) The worst-case asymptotic growth (over all initial condi-

tions) of any , is given by

where is a constant. This upper bound is tight.
Proof: As is a matrix-valued linear recursion, it is well

known that the decay rate of each entry of is proportional
to the spectral radius of , and this is true for all initial condi-
tions . What remains to be shown is that this worst-case
decay rate holds when is restricted to be a covariance ma-
trix, or equivalently, when is positive semidefinite. The
proof of this is given in the Appendix.

Note that in the case that links do not fail, when
for all , we have

and is precisely , the square of the eigenvalue
of with the second largest modulus, as is well known. How-
ever, when failures occur with non-zero probability, the addi-
tional terms in the operator play a role. The operator is no
longer a pure Lyapunov operator of the form but
rather a sum of such terms. Thus, one does not expect a simple
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relationship between the eigenvalues of and those of the con-
stitutive matrices as in the pure Lyapunov operator case.

B. Perturbation Analysis

One important asymptotic case is that of small, uniform link
failure probability . We can analyze this case by doing a first
order eigenvalue perturbation analysis of the operator in (8)
as a function of the parameter . We first recall the basic setup
from analytic perturbation theory for eigenvalues of symmetric
operators [26].

Consider a symmetric, matrix-valued function of a
real parameter and matrix of the form

Let and be an eigenvalue-eigenmatrix pair of
as varies, i.e.

It is a standard result of spectral perturbation theory that for
isolated eigenvalues of , the functions and are well
defined and analytic in some neighborhood . The
power series expansion of is

where is an eigenvalue of . The calculation of the coeffi-
cient involves the corresponding eigenmatrix of and is
given by

(10)

Note that we are dealing with matrix-valued operators on ma-
trices, and the inner product on matrices is given by

.
In order to apply this procedure to the operator in (8), we

first note that, when all links have uniform failure probability ,
for all . can then be written as

where

To investigate the first order behavior of the largest eigenvalue,
we observe that the eigenmatrix corresponding to the largest
eigenvalue of is where is an eigenvector, with

, corresponding to the second smallest eigenvalue
of the Laplacian , also called the Fiedler vector. is also an
eigenvector corresponding to the largest eigenvalue of (equiv-
alently, the second largest eigenvalue of ).

Applying formula (10) to this expression for yields the first
order term in the expansion of the largest eigenvalue of to be

The denominator can be simplified as follows:

and therefore is equivalent to

(11)

Since is an eigenvector of , the following equality holds

(12)

where denotes the largest eigenvalue of . is also an
eigenvector of . Therefore the following equality also holds

(13)

where denotes the second smallest eigenvalue of .
Noting that , it follows that [27], [28] for

, where is the maximum node degree of the graph, we
have the following relationship between and

This equality allows us to rewrite (13) as

(14)

Using (12) and (14), (11) can be further simplified as follows:

(15)
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Applying this identity and noting that , we
arrive at following expression for which is valid up to first
order in :

(16)

In the special case of a torus network, can be computed
analytically [27], [28]. For completeness, we state this result
here.

Theorem 2.4: In a -dimensional torus or -lattice with
nodes, the asymptotic expression for the second largest eigen-
value of the weight matrix (equivalently ) is given by

Proof: The proof is given in the Appendix.
With this result, we are able to derive an analytic form for the

decay factor in tori networks.
Theorem 2.5: For a -dimensional torus with nodes, the

first order expansion (in ) of the decay factor is given by

(17)

Proof: We first note that, by substituting the value for
given by Theorem 2.4 into (16), we arrive at the following ex-
pression for

(18)

We now prove the theorem by showing that the term containing
the summation of matrices is of order .

Recall that each matrix is of the form
where is a vector of all zeros, excepting the and

components which are equal to 1 and 1 respectively.
Therefore, the following equivalence holds for the summation:

(19)

where and are the and components of . is the
eigenvector corresponding to the second largest eigenvalue of

, or equivalently, the eigenvector corresponding to the largest
eigenvalue of . In the case of a -dimensional torus, there is
an analytical expression for the eigenvectors . Let be such
that .

Each eigenvector of is associated with a multi-dimensional
index , for . The components
of such an eigenvector are given by

for .

The eigenvector corresponding to the largest eigenvalue of
occurs when . The second largest
eigenvalue has multiplicity with independent eigenvectors;
each has one equal to 1 and all other ’s equal to 0. We
compute the asymptotic expression for (19) for the eigenvector
with and . The computation for
the other eigenvectors is similar.

Let be the eigenvector with multi-index ; its
components are given by

for . Substituting this expression for the
and components of in (19), we obtain

Since is an edge in the torus, we know that if nodes
and share an edge in the first dimension then .
Otherwise . Therefore, for all , we have

Applying this bound to (19) and using the fact that in -dimen-
sional torus with nodes, there are edges in each dimension,
we get the following bound on the summation term:

Therefore the summation term of matrices is of order
which gives the result in (17).

It is interesting to note that for large , the leading order
behavior of the decay factor is

Recall that is the fraction that is sent across each link. There-
fore for large , the failure of links with probability has the
same effect on the convergence rate as decreasing by a factor
of .

C. Simulations

In this section, we demonstrate through simulations that the
relationship between network size and dimensionality and link
failure probability in tori networks stated in Theorem 2.4 ap-
pears to hold even for smaller networks and a larger probability
of link failure. Specifically, we demonstrate that, for a fixed
failure probability, the leading order of the decay factor is re-
lated to the network size and dimension as follows:

(20)

In order to evaluate whether this relationship holds for dif-
ferent network sizes, we simulate the algorithm in one-dimen-
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sional tori (ring) networks with sizes ranging from 10 to 1000
nodes and in two-dimensional tori networks with sizes ranging
from 36 to 1764 nodes. For all simulations we let links fail with
a uniform probability of 0.1. In tori networks, the variance of
deviation from average is the same at each node, and therefore,
by Property 1 of Theorem 2.3

or equivalently

To estimate the decay factor, , for each network size, we
run the algorithm and record the of the per node variance
as a function of time. In order to guarantee that the simulations
exhibit the worst case decay behavior, the initial matrix
must be such that it is not orthogonal to the eigenmatrix as-
sociated with the largest eigenvalue of , or equivalently we
must have . Since is positive semidefinite
and (see the proof of Theorem 2.3), any covariance ma-
trix will satisfy this property so long as for
all . We achieve this by choosing each uniformly at
random from the interval [0,100].

We run each simulation until the plot of is
linear, indicating that largest eigenvalue of the operator dom-
inates the decay rate. We then find of the slope of this linear plot
which gives us an estimate of . If the relationship be-
tween the decay rate, the network dimension, and the number of
nodes as described in (20) holds, then a plot of
as a function of should have a slope of 2 for the ring
networks and 1 for the 2-dimensional torus networks. Fig. 1
shows versus using estimates of
generated by the procedure described above. For each type of
network, the slope of the linear fit is very close to what is pre-
dicted by (20), 1.9792 for the 1-dimensional networks and

1.0011 for the 2-D networks. These results indicate that the
relationship in (20) holds even for smaller network sizes.

III. INCORPORATING ADDITIVE NOISE

In this section, we extend our analysis to a network model
where node values are perturbed by a zero-mean additive noise
in each round. Let be a zero-mean stochastic process with
the autocorrelation matrix defined by

We assume that the additive noise processes are not correlated
with the state nor with the stochastic processes governing com-
munication failures. This type of noise can be used to model
random insertions and deletions from the participating nodes in
a distributed file system or data center.

The dynamics of this system are governed by an extension of
the recursion equation in (3) that includes both multiplicative

Fig. 1. ������ ����� as function of the logarithm of the network size.

and additive noise

(21)

As in the first problem formulation, we are interested in
the second order statistics of the deviation from average,

. However in a system with additive noise, the
average of all node values at time , ,
drifts in a random walk about the average of the initial values

. Additionally, since node values are per-
turbed in each round, one can no longer expect the nodes to
converge to consensus at the current average, or equivalently,
each does not converge to 0. In this extended model with
additive noise, we do not measure the algorithm performance
in terms of the convergence rate. Instead, performance is
measured using the steady-state total variance of the deviation
from average

which is the sum of the variances of the deviation from the cur-
rent average at each node. We are interested in the network con-
ditions under which is bounded as well as in quantifying
that bound.

Problem Statement 2: Consider a distributed consensus algo-
rithm on a network where each link fails with inde-
pendent probability and where node values are perturbed
by a zero-mean stochastic process, as modeled by the system
with additive and multiplicative noise (21). For a given input
noise covariance , determine the steady-state total variance of
the deviation from average, .

Again, we study by analyzing the recursion equa-
tion for the matrices , noting that
is related to as follows:
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Using the same approach by which we derived the recursion (7),
we can derive a recursion equation for the system with additive
noise.

Lemma 3.1: The matrices for the system (21) satisfy
the recursion

where is the matrix-valued operator defined in (8).
If the operator is asymptotically stable, this recursion has

a limit

and the limit satisfies the following Lyapunov-like equation

These facts lead to the following theorem relating to the second
order statistics of the system (21).

Theorem 3.2: Consider the distributed consensus algorithm
with random link failures as modeled by the system with multi-
plicative and additive noise (21).

1) The total variance of the deviation from average
has a steady-state limit if and only if

2) This limit is equal to the trace of , ,
where satisfies the equation

This theorem implies that if the consensus algorithm results
in convergence to the average in a network with random link
failures, the same algorithm executed on the same network with
link failures and additive noise has a finite steady-state limit for
the total deviation from average.

IV. COMPUTATIONAL PROCEDURES

We present computational methods for calculating the exact
second order statistics of the deviation from average for sys-
tems with random communication failures. For the static-valued
system model, the procedure involves computing the largest
eigenvalue of a matrix-valued operator. For systems with ad-
ditive noise, one must compute the trace of a solution of a Lya-
punov-like equation.

A. Computing the Decay Factor

The decay factor of the static-valued system (3) is the spectral
radius of the linear operator defined in (8). Therefore, it is not
necessary to perform Monte Carlo simulations of the original
system (4) to compute decay factors. However, is not in a
form to which standard eigenvalue computation routines can be
immediately applied. We present a simple procedure to obtain
a matrix representation of which can then be readily used in
eigenvalue computation routines.

Recall that the Kronecker product of any two and
matrices and respectively is the matrix

...
. . .

...

Let denote the “vectorization” of any matrix
constructed by stacking the matrix columns on top of one

another to form an vector. It then follows that a matrix
equation of the form can rewritten using matrix-
vector products as

Thus, using Kronecker products, in (8) has a matrix repre-
sentation of the form

For a graph with nodes, is an matrix. This ma-
trix representation can be used to find via readily avail-
able eigenvalue routines in MATLAB. Due to the structure of

, it is also possible to compute the eigenvalues in a more effi-
cient manner. We briefly outline this procedure here. For large
values of , one can use an Arnoldi eigensolver to determine
the eigenvalues of in a constant number of matrix-vector mul-
tiplications that depends on the structure of . Since is the
sum of terms, this matrix-vector multiplication can also
be computed by multiplying each of the terms by the vector
and summing the result. The product of and
an -vector can be computed in . Each
contains exactly 16 non-zero elements, and thus the product of
each times an -vector can be computed in

. Therefore, it is possible to find the eigenvalues of in
.

B. Computing the Steady-State Total Variance

Recall that the steady-state total variance of the deviation
from average is the trace of where satisfies the
Lyapunov-like equation

where is the covariance matrix of the additive noise process
.

We again use Kronecker products to find an expression for
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Using this expression, can be computed directly for
any given algorithm instance and covariance matrix . One can
then reassemble from and find its trace.

In the next section, we use our computational procedures to
calculate the decay factor and steady-state total deviation from
average for various network examples.

V. EXAMPLES

We examine the second order statistics of the deviation from
average for the consensus algorithm as a function of uniform
link failure probability. For static-valued networks, we give
computational results for different network topologies and
values of to illustrate the relationship between the probability
of failure, the structure of the network, and the choice of .
For networks with additive noise, we give results that consider
all three of these factors, and we also explore the effects of
the size of the variance of the additive noise process on the
variance of the deviation from average. For each class of prob-
lems, MATLAB was used to produce results according to the
computational procedures described in the previous section.

A. Decay Factors

We first investigate the behavior of the decay factor in
systems with no additive noise. For each network topology, we
compute the decay factor for several values of including the
value that is optimal for each graph when there are no commu-
nication failures. This optimal is the edge weight that yields
the smallest decay factor in networks with reliable communica-
tion links. The value is given by the following [10]

where and are the second smallest and the largest
eigenvalues of the Laplacian matrix of the graph, respectively.

Figs. 2 and 3 give the decay factors for a ring network with
9 nodes and a 2-dimensional discrete torus with 25 nodes. For
each topology, we show the decay factors for the optimal , a
that is larger than optimal, , where is the degree of
each node in the network, and a that is smaller than optimal,

. For the ring network, the larger is 0.5, the op-
timal is approximately 0.4601, and the smaller is 0.25. For
the 2-dimensional torus, the larger is 0.25, the optimal is
approximately 0.2321 and the smaller is 0.125.

As expected, in both networks, when there are no link fail-
ures, the decay factor is smallest for the optimal . Surprisingly,
for the maximum , the decay factors decrease for small proba-
bilities of failure, and this edge weight yields better performance
than the optimal weight. The decay factor continues to decrease
until the failure probability reaches approximately 0.1 and then
steadily increases. For the case where , the decay
factor is consistently larger than that for the optimal . Sim-
ilar trends can be observed in the decay factors larger networks,
however the difference for the various choices of is not as pro-
nounced.

We also compute the decay factors for an Erdős-Rényi (ER)
random graph [29] of 50 nodes where each pair of nodes is con-
nected with probability 0.25. The graph has 319 edges and a

Fig. 2. Decay factor for various link failure probabilities in a 9 node ring net-
work.

Fig. 3. Decay factor for various link failure probabilities in a 25 node 2-D torus.

maximum node degree of 20. The decay factors are given in
Fig. 4. The optimal is approximately 0.071. We also show
decay factors for values of that are larger and smaller than op-
timal, and , respectively. As in the results
for the torus networks, the optimal yields the smallest decay
factor when there is zero probability of edge failure. When fail-
ures are introduced, the decay factor initially decreases for the
larger value of , where it actually results in faster convergence
than the optimal .

We conjecture that link failures reduce the effective weight
of the values that are sent across each edge over a large number
of rounds. In the case where is larger than the optimal choice,
the introduction of failures decreases the effective weight to ap-
proach the optimal , and thus the algorithm performance ac-
tually improves. These results demonstrate that there is a rela-
tionship between the failure probability and the choice of , and
therefore it seems possible to select a that optimizes perfor-
mance for a given failure probability.
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Fig. 4. Decay factor for various link failure probabilities in a 50 node ER
random graph.

Fig. 5. Steady-state total variance of the deviation from average in 64 node
torus networks of dimensions 1, 2, and 3.

B. Steady-State Total Variance

We next examine the steady-state total variance for systems
with communications failures where the state values are per-
turbed by additive noise. While we do not know of any analyt-
ical result for the optimal choice of for these systems when
there are no communication failures, it has been shown that
the optimal edge weight can be bounded above and below as

[30].
Fig. 5 shows the results for 64 node tori networks of dimen-

sion 1, , 2 , and 3 . For all networks, the
variance of the additive noise is 10. For each network, we select

to be the lower bound of the optimal value, . In
a torus, this value corresponds to where is the degree
of each node in the graph. So, for , we have , for

we have , and for , we have .
While the magnitude of is different for each of the three

networks, the effect of increasing the probability of communi-
cation failure is appears to be same regardless of the dimension
of the torus. In fact, for all three networks, the seems to grow as

, which is also shown in the figure.
In Fig. 6, we show the steady-state total variance for a 9

node ring network. The node values are perturbed by a zero-
mean additive noise with a variance of 10. We use both the
upper bound on the optimal value of , , which is approxi-
mately 0.2578, and the lower bound on the optimal value, ,
which is approximately 0.5155. We observe that for , intro-
ducing a small probability of communication failure decreases
the steady-state total variance. Just as the introduction of com-
munication failures can decrease the decay factor in systems
with no additive noise, this result demonstrates that commu-
nication failures can also improve performance by decreasing
variance in systems with additive noise.

Finally, in Fig. 7, we show the steady-state total variance for
an ER random graph with 30 nodes, where an edge exists be-
tween each pair of nodes with probability 0.25. The graph has
132 edges and a maximum node degree of 15. We use both the
upper and lower bounds on the optimal , and

. We show results for systems with zero-mean
additive noise with variance of 1, 10, and 100. As in the pre-
vious scenario, a small probability of communication failure de-
creases the total variance for in all cases. An interesting ob-
servation is that the variance of the additive noise process does
not affect the relationship between the probability of commu-
nication failure and the steady-state total variance. For all three
additive noise processes, the behavior of the steady-state total
variance is the same with respect to the probability of failure.
Additionally, after the initial decrease, the variance appears to
grow as for all network instances.

VI. CONCLUSION

We have presented an analysis of the distributed average con-
sensus algorithm in networks with stochastic communication
failures and shown that the problem can be formulated as a
linear system with multiplicative noise. For systems with no ad-
ditive noise, we have shown that the convergence rate of the con-
sensus algorithm can be characterized by the spectral radius of a
Lyapunov-like matrix recursion, and we have developed expres-
sions for the multiplicative decay factor in the asymptotic limits
of small failure probability and large networks. For systems with
additive noise, we have shown that the steady-state total devi-
ation from average is given by the solution of a Lyapunov-like
equation. For both models, we have presented simulation-free
methods for computing the second order statistics of the devi-
ation from average. Using these methods, we have computed
these second order statistics for various network topologies as
a function of link failure probability. These computations indi-
cate that there is a relationship between the network topology,
the algorithm parameter , and the probability of failure that is
more complex than intuition would suggest. In particular, we
show that for certain choices of , communication failures can
actually improve algorithm performance.

As the subject of current work, we are investigating the ex-
tension of our model and analysis to incorporate communication
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Fig. 6. Steady-state total variance of the deviation from average for various
link failure probabilities in a nine-node ring network.

Fig. 7. Steady-state total variance of the deviation from average for various
link failure probabilities in a 30 node ER random graph.

failures that are spatially and temporally correlated. Such exten-
sions will enable the study of other network conditions such as
network partitions and node failures.

APPENDIX A
PROOF OF THEOREM 2.3

Proof: In order to prove the existence of a covariance ma-
trix for which the decay factor of the linear recursion (6)
is precisely , we show that every eigenvalue of has an
associated positive semidefinite eigenmatrix. By setting
to be the eigenmatrix associated with the largest eigenvalue of

, the worst case decay rate is achieved.

We first show that every for every eigenvalue-eigenmatrix
pair of , there exists a symmetric matrix such that

is also an eigenvalue-eigenmatrix pair of . Let be the
symmetric matrix . Then, we have

Since is self-adjoint, all of its eigenvalues are real, and so
, giving

Let be the largest eigenvalue of , and let be the corre-
sponding symmetric eigenmatrix. Then the decay factor of the

operator acting on an initial state of is precisely . We note
that as is symmetric, it can be decomposed as ,
where and are positive and negative semidefinite respec-
tively. By the linearly of , we have

Therefore the decay rate of with the initial conditions is
equivalent to the maximum of the decay rates of with the
initial condition . and with the initial condition . This
implies that there exists a covariance (positive semi-definite)
matrix such that the decay factor of the operator acting
on the initial is the spectral radius of .

APPENDIX B
PROOF OF THEOREM 2.4

Proof: We consider an node tori network of dimension
as a -dimensional -array where . The distributed

average consensus algorithm is given by the following recursion
equation:

where each ranges from 0 to .
Each node communicates with its two neighbors along each

of the axes in each round. The numbers and then must
satisfy . The sum in the equation above can be
written as a multidimensional convolution by defining the array

,
, and for ,

otherwise.
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We can then express the averaging operation defined above as

where is the circulant operator associated with the array
. The eigenvalues of can be determined using

the Discrete Fourier Transform, with , for

The largest eigenvalue occurs when all ’s are zero, and this
eigenvalue is 1. The next largest eigenvalue occurs when all but
one of the ’s are zero and the non-zero is 1. This eigen-
value corresponds to

(22)

When and consequently are large, can be
expressed as

Substituting this equivalence into (22) and using the fact that
, we obtain the following expression for the second

largest eigenvalue of

In the case of a lattice network, the matrix is Toeplitz rather
than circulant. However, the spectrum of the matrix for a

-lattice and -dimensional torus are equivalent in the limit of
large [31], [32]. Therefore, the convergence results can be
applied to lattice networks as well as tori.
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