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ABSTRACT
We investigate the use of large-scale Automated Highway
Systems, also called one-dimensional vehicle platoons, as a
practical traffic mitigation solution. We review recent theo-
retical results related to vehicle platooning and discuss their
implications on the scalability and safety of large-scale pla-
toons. We also quantify the performance of different platoon
control strategies through simulations that use realistic mod-
els of vehicle dynamics and sensor accuracy.

1. INTRODUCTION
Traffic congestion is easily identified as a personal annoy-
ance, however the problem accumulates on a global scale.
In 2005, the United States population alone spent 42 bil-
lion hours in traffic, wasting 2.9 billion gallons of gas and
$78.2 billion (USD) [12]. There are over 600 million cars in
operation in the world today, and by 2030, that number is
projected to double [14]. With this influx of vehicles and the
potential for increase in traffic congestion, it is important to
look to a variety of social and technological solutions to help
mitigate the problem.

One unique solution to traffic management is the Automated
Highway System (AHS). In an AHS, a string, or platoon, of
driverless vehicles moves at high speeds along a dedicated
lane of a highway. Each vehicle operates autonomously, ac-
celerating or decelerating in response to local sensor mea-
surements of velocity and position, as well as inter-vehicle
communication, to maintain the platoon formation. Because
the vehicles are automatically controlled, they can safely
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operate at higher speeds and closer inter-vehicle distances
than human-driven vehicles, thus increasing the capacity
and throughput of the highway.

The AHS was first proposed in 1961 [4], and has been the
subject of studies for decades, for example [7, 6, 11]. In the
late 1990s, this work culminated in several on-road demon-
strations, including the 1997 California PATH project San
Diego demonstration [8]. In this demonstration, a com-
pletely autonomous platoon of 8 Buick LeSabres travelled
along the high occupancy vehicle lane of Interstate 15 at
highways speeds, while maintaining an inter-vehicle distance
of 6.5 meters. If platoons like the one demonstrated in San
Diego were deployed on a large scale, the throughput of the
AHS would be double that of a standard highway. If the
inter-vehicle distance could be reduced to 2.5 meters, the
resulting reduction in drag force would yield a 20% improve-
ment in fuel economy and emission reductions [8].

Despite these small-scale successes, the development of a
large-scale vehicle platoon poses significant challenges, and
the full blown AHS has not yet come to fruition. There
has, however, been a flurry of recent work on the theoretical
aspects of vehicular platoons and on automated formation
control in general. Examples of this work include studies of
necessary and sufficient conditions on the formation struc-
ture [5], theoretical bounds on the “tightness” of formations
[1], and analysis of formation dynamics for different vehi-
cle control strategies [10]. We also note that the problem
of vehicle platooning and automated formation control is
closely related to the distributed consensus problem, which
has been widely studied in the contexts of sensor networks
and parallel computing [13, 3, 2, 9, 15].

Vehicle platoons and the AHS are attractive in terms of both
traffic reduction and environmental benefits. Development
of a large-scale implementation of an AHS will require not
only an understanding of the body of theoretical work, but
also performance analysis using realistic models of vehicle
dynamics and sensor accuracy. In this work, we first briefly
review recent theoretical results related to vehicle platoon-
ing and discuss the implications on the feasibility large-scale
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Figure 1: A vehicle platoon

platoons. We then quantify, through simulations, the scal-
ability and safety of different platoon control strategies de-
scribed in the literature. We aim to demonstrate how these
strategies will perform in an actual physical implementation,
and therefore, our simulations employ real-world values to
model vehicle behavior, and our control strategies take into
account the accuracy of existing sensor technologies.

The remainder of this paper is organized as follows. In Sec-
tion 2, we review the vehicle platooning problem and some
important theoretical results. In Section 3, we describe our
simulation setup, and we give results of platoon simulations
for various platoon control strategies. Finally, we conclude
in Section 4, with a summary of insights for the design of
large-scale platoons and pose topics for future work.

2. VEHICLE PLATOONING PROBLEM
A vehicle platoon is a string of N vehicles. The state of each
vehicle is given by its absolute position xk and its absolute
velocity vk. The objective is for each vehicle to follow the
specified trajectory,

x̄k = vt+ k∆,

where v is the velocity of the platoon and ∆ is the space
between vehicles [1]. In other words, all vehicles in the pla-
toon should move at constant velocity v while maintaining
an inter-vehicle distance of ∆. We assume that ∆ is mea-
sured from the center of one vehicle to the center of the next
vehicle in the platoon, as shown in Fig. 1.

Due to external forces such as wind gusts and irregularities
in engine performance, vehicles cannot follow the trajecto-
ries exactly, but constantly must make adjustments to com-
pensate for these disturbances. These adjustments are based
on (potentially erroneous) sensor measurements of position
and velocity and are applied as a change in vehicle accel-
eration. The vehicle behavior is therefore governed by the
following double integrator dynamics,

ẍk = uk + wk.

uk is the control input, which uses the sensor readings and
the defined control strategy. w is a mutually uncorrelated
white stochastic process that models the effects of the ex-
ternal disturbances.

Control Strategies
We assume that each vehicle uses an identical control strat-
egy that is based on local measurements of position and
velocity. These measurements may be relative or absolute,
and are defined as follows. Relative position is the distance
between two consecutive vehicles in the platoon. To ob-
tain the relative position information, each vehicle measures
the distance between itself and its successor or predecessor
in the platoon. Relative velocity is the difference between

neighboring vehicles in the platoon, and can also be mea-
sured independently by each vehicle. Absolute position is
the position relative to some fixed coordinate system, and
absolute velocity is the road speed. Each measurement has
some inaccuracy due to sensor error. These inaccuracies are
modeled by uncorrelated white noise processes.

We consider the following four control strategies.

1. Relative Position/Relative Velocity : Each vehicle’s con-
trol input is based on measurements of the position and
velocity relative to the vehicles immediately in front
and behind,

uk = α
“

((xk+1 − xk) +mF
k )−∆

”
−“

(xk − xk−1) +mB
k )−∆)

”
+

β
“

((vk+1 − vk) + qF
k )− (vk − vk−1) + qB

k )
”
.

The update due to the position term alone equalizes
the inter-vehicle distance between vehicle and its suc-
cessor and predecessor. mF

k and mB
k represent the er-

ror in measuring the distance to these two vehicles.
Similarly, the velocity term specifies an update to match
the average of the velocity of the vehicles in front and
behind. qF

k and qB
k are the measurement errors for

these relative velocities. α and β specify how heavily
to weight each of the two terms in the update strategy.

We note that the lead vehicle in the platoon does not
use the same strategy as the other vehicles, Instead its
strategy is based only on absolute velocity. It does not
incorporate any position information.

2. Relative Position/Absolute Velocity : Each vehicle’s con-
trol input uses the same relative position update rule
as above, but updates its velocity based on absolute
velocity measurement such as can be obtained from a
speedometer,

uk = α(
“

(xk+1 − xk) +mF
k )−∆)−

((xk − xk−1) +mB
k )−∆)

”
+

β ((vk − v) + rk) .

rk models the inaccuracy in the absolute velocity mea-
surement.

3. Absolute Position/Relative Velocity : In this case, each
vehicle uses absolute position measurements, such as
GPS readings, in addition to relative velocity measure-
ments,

uk = α((xk − x̄k) + sk) +

β
“

((vk − vk) + qF
k )− ((vk − vk−1) + qB

k )
”
.

The position term updates the vehicle position so as to
move the vehicle closer to the position specified by the
trajectory. sk models the absolute position measure-
ment error. As in the first strategy, the lead vehicle
uses absolute velocity instead of relative velocity.

4. Absolute Position/Absolute Velocity : This update strat-
egy relies on absolute measurements of position and



velocity,

uk = α((xk − x̄k) + sk) + β((vk − v) + rk).

We note that, while this is a valid platooning strategy,
it is not considered a conventional strategy for forma-
tion control since there are no interactions between the
vehicles.

The choice of measurements affects both the individual ve-
hicle deviations from the trajectory, which has implications
for safety, and the “tightness” of the formation as a whole,
which can have drastic consequences on the throughput of
automated highways. We summarize some of the theoret-
ical results relating to these local and global properties in
the next section, and we explore this topic in further detail
in the simulations.

Theoretical Results
We are interested in studying performance of the control
strategies on both the microscopic (inter-vehicle) and macro-
scopic level, and therefore we consider two different perfor-
mance measures. The first is the variance of the inter-vehicle
spacing, defined as

Vsp := var(xk+1 − xk −∆)

Vsp is directly related to the safety of vehicles, as a smaller
variance enables us to choose a ∆ for which the vehicles will
not collide

The second performance measure we consider is the vari-
ance of the difference between the actual and desired platoon
length.

Vlen := var(xN − x1 −∆(N − 1)).

A small variance in the platoon length indicates that the
formation is tight and occupies the expected amount of space
on the road. A large variance indicates that the platoon may
grow to lengths beyond those anticipated, thus reducing the
capacity and the throughput of the AHS.

To provide insight into the perfomance of large-scale pla-
toons, we outline some analytical results for these perfor-
mance measures under the various control strategies.

Formation Guarantees: It has been shown that, for appro-
priate choices of α and β, all four control strategies yield
inter-vehicle distances that have finite variances [1, 10], i.e.
Vsp is finite. These results imply that the control strategies
can each be used to implement a vehicle platoon for some
choice of ∆. However, it is important to note that these
results do not give any indication as to the size of Vsp. In
fact, the magnitude of ∆ necessary to avoid collisions varies
greatly depending on the control strategy.

Microscopic Error : In [1], Bamieh et al. give analytical
bounds for Vsp for various strategies. The authors show
that, in a ring formation using a strategy that relies only on
relative information, Vsp grows linearly with the number of
vehicles N . Therefore, in practice, increasing the number of
vehicles in the platoon necessitates an increase in ∆ to pre-
vent vehicle collisions. For the remaining three strategies,
Vsp is bounded in N . With these strategies, it is possible

Table 1: Simulation model parameters.
Parameter Value

Vehicle Length 5 m
Platoon Size 100 vehicles

Platoon Velocity 100 km/hr
Inter-vehicle distance 6.5 m

Table 2: Measurement error parameters.
Parameter Physical Device Accuracy

Rel. Position Laser Range Finder1 ± 0.04m
Rel. Velocity Laser Range Finder ± 0.89 m/s

Abs. Position Augmented GPS2 ±3 m

Abs. Velocity Speedometer3 ±3% of true velocity

to compute an a priori bound on the size of Vsp indepen-
dent of the number of vehicles in the platoon and choose ∆
accordingly.

Macroscopic Error : Bamieh at al. also give analytical bounds
for the macroscopic error Vlen in a ring formation [1]. They
show that with a strategy that relies only on relative mea-
surements, Vlen grows as N3, where N is the number of vehi-
cles. This result suggests that the Relative Position/Relative
Velocity strategy cannot be used to implement a tight, large-
scale formation. However, for the Relative Position/Absolute
Velocity and Absolute Velocity/Relative Position strategies,
Vlen grows as N , which will result in tighter formations.

The above performance bounds apply specifically to ring
formations. In the next section, we explore how these results
translate to vehicle platoons through realistic simulations of
the four different control strategies.

3. SIMULATIONS
We begin with an explanation of the simulation setup and
then present our simulation results.

Simulation Model
We analyze the performance of each strategy by simulating
the dynamics of the deviations from the specified trajectory,

x̃k := xk − x̄k, ṽk := ẋk − v.

Each strategy defined in the previous section is linear in x̃
and ṽ, and therefore, the control input u can be written as
a linear system of equations, u := Ax̃ + Bṽ + n. A is an
N × N matrix that depends on the type of position infor-
mation (absolute or relative) and the choice of α, and B is
an N ×N matrix that depends on the type of velocity infor-
mation and the choice of β. n is vector of random variables
that model the errors in the sensor measurements. In order
to model absolute position and velocity measurements, we
use a fictitious lead vehicle that is not subject to external
disturbances. Absolute measurements can be computed as

1See http://www.ascscientific.com/impulse.html.
2See http://www8.garmin.com/aboutGPS/waas.html.
3According to United States regulations, a speedometer
must be accurate to within ± 5 % of actual velocity. We
assume the speedometer is accurate to within ± 3 % of the
trajectory-specified velocity of 28 m/s.



relative measurements to this vehicle. The evolution of x̃
and ṽ is then given by

d

dt
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For each control strategy, we simulate a 100 vehicle platoon
using this continuous time model. We set α = β = 1 for
all strategies. All simulations were implemented and run in
Matlab and Simulink, using a sample time of 0.1 seconds.

To make our results as relevant as possible, we utilize real-
world values for the simulation parameters. These values
are given in Table 1. We have chosen the same inter-vehicle
distance used in the California PATH project demonstra-
tion, 6.5 meters. With a vehicle length of 5 meters, ∆ then
equals 11.5 meters, and therefore, for a platoon of 100 ve-
hicles, the target platoon length is 1150 meters. We use a
target velocity of 100 km/hr.

Additionally, we model the position and velocity sensors
using the accuracy of existing and emerging technologies.
These technologies and their associated accuracies are de-
scribed in Table 2. For relative position and velocity infor-
mation, we model measurements from a laser range finder.
For absolute position information, we use the accuracy of
GPS, specifically augmented GPS2. Conventional GPS has
an accuracy of approximately 12 meters, which would be
too large for vehicle platoons, however higher accuracy can
be achieved if the GPS service is augmented with correc-
tion information from ground base stations. We note that
augmented GPS is only available in North America, and has
not yet been widely adopted. For absolute velocity measure-
ment, we anticipate that this information will be provided
by the vehicle’s speedometer, and therefore model this mea-
surement accuracy using the specification for speedometer
performance3. In order to model the external disturbances,
we compute the change in acceleration of a 1500 kg vehicle
mid-size vehicle that is caused by a wind gust of 15 km/hr,
and we use this value as the variance to the white noise
process w.

For all strategies, we weigh the position and velocity update
equally, setting α = β = 1. Each vehicle’s state is initialized
using the specified trajectory. We run the simulation un-
til 25,000 samples are collected, and then analyze the data
using the last 15,000 samples taken to allow the system to
achieve a steady state before computing the statistics. The
results of the simulations are given in the next section.

Simulation Results
Performance results for each control strategy are shown in
Table 3. For the microscopic error Vsp, we use the variance
of the distance between the 49th and 50th vehicles as a rep-
resentative value. We note that there will be some variation
in this value depending on which position in the platoon is
selected, as illustrated in a later figure. In addition to the
microscopic and macroscopic errors, we show the minimum
inter-vehicle distance, which is an indicator of the smallest
∆ that ensures that vehicles will not collide. We also show
the maximum platoon length, which defines the maximum
capacity of the AHS that can be achieved with the given
control strategy.

On a high level, it is evident that the strategy that relies
only on relative information performs significantly worse on
both the microscopic and macroscopic levels than strategies
that make use of any type of absolute information. In the
Relative Position/Relative Velocity strategy, Vn is approxi-
mately an order of magnitude larger than that of the other
strategies, and this difference is consistent with the theo-
retical results. The minimum inter-vehicle distance is actu-
ally negative, which means that the strategy would result in
collisions for an inter-vehicle spacing of 6.5 meters. Addi-
tionally, the platoon length exhibits variation significantly
larger than that of the other strategies. This result is also
consistent with the theoretical bounds for ring formations.
The maximum platoon length is over 1300 meters, meaning
that, at some time during the simulation, the platoon ex-
panded to nearly 200 meters longer than the goal platoon
size of 1150 meters.

While all three strategies that use absolute measurements
have good performance, absolute position information ap-
pears to contribute more to macroscopic error than abso-
lute velocity information. However, the maximum platoon
length is similar for the three strategies, and very close to the
specified platoon length. Therefore, one can expect similar
throughput for these strategies. At the microscopic level, the
Relative Position/Absolute Velocity strategy and the Abso-
lute Position/Relative Velocity strategy both perform better
than a pure absolute information strategy, as indicated by
a larger minimum inter-vehicle distance and a smaller inter-
vehicle distance variance. Based on these results, it seems
beneficial from a safety standpoint to use a strategy that
incorporates at least some type of relative measurement.

In Fig. 2, we show the platoon length for each strategy
as it varies over time. We display results for the first 1600
seconds of each simulation. The Relative Position/Relative
Velocity strategy exhibits large variations in platoon length,
consistently fluctuating between short and long lengths. In-
teresting observations can be made about the platoon that
uses the Relative Position/Absolute Velocity strategy. The
platoon appears to maintain a length that is actually smaller
than the specified length. In addition, the platoon length
does not change rapidly, as opposed to the Absolute Posi-
tion/Relative Velocity strategy, which exhibits rapid, small
fluctuations in platoon size.

Finally, in Fig. 3, we show the microscopic error Vsp for each
pair of neighboring vehicles xk+1 and xk in the platoon. The
values along the horizontal axis indicate the position of the
first vehicle in the pair. The results for the strategies that
use relative position are somewhat counterintuitive. The
variance of the inter-vehicle distance is largest near the front
of the platoon. In the case of Relative Position/Relative Ve-
locity strategy, the variance is very large near the front and
steadily decreases as the position increases. We conjecture
that this effect is due in part to the strategy used by the
lead vehicle, which includes only absolute velocity, and no
relative information. The fact that the lead vehicle uses
a different strategy than the other vehicles may cause the
lead vehicle to be “out of sync” with the rest of the platoon,
and the performance effects of this difference may propagate
backwards. For the Relative Position/Absolute Velocity and
Absolute Position/Relative Velocity strategies, the lead ve-



Table 3: Errors for different strategies for a 100 vehicle platoon.

Strategy
Relative Position, Relative Position, Absolute Position, Absolute Position,
Relative Velocity Absolute Velocity Relative Velocity Absolute Velocity

Microscopic Error (Vsp
4) 2.1149 0.1200 0.35489 0.5568

Min. Inter-vehicle Distance (in meters) -1.3900 2.0869 2.3859 1.68160
Macroscopic Error (Vlen) 4255.98 57.65 7.5715 0.5669
Max. Platoon Length (in meters) 1333.18 1152.11 1157.22 1152.18

hicle also uses a different strategy than the other vehicles
in the platoon. With the Relative Position/Absolute Veloc-
ity strategy, this difference may be the cause of the slightly
higher variances near the front of the platoon. However,
we do not observe such differences in the Absolute Posi-
tion/Relative Velocity or Absolute Position/Absolute Veloc-
ity strategies.

Our performance results indicate that the strategy that uses
relative position and absolute velocity is competitive with
those that use absolute position in terms of throughput, and
may offer benefits over a pure absolute information strategy
in terms of safety. Therefore, the performance illustrated by
these results can be obtained using existing, widely available
sensor technologies.

4. CONCLUSION
From our review of theoretical results and our performance
studies, we can glean several insights into the development
of control strategies for large-scale Automated Highway Sys-
tems. First, we assert that some kind of absolute measure-
ment is needed to implement safe and scalable platoons.
This assertion is substantiated by the theoretical results on
the macroscopic errors as well as simulations that demon-
strate high microscopic and macroscopic errors for the strat-
egy that uses only relative information. The second insight
is that including at least some kind of relative information in
the control strategy results in a decreased microscopic error,
and therefore improves these safety of the platoon. We be-
lieve that it may be advantageous to design a strategy that
utilizes all four types of measurements in order to obtain the
benefits of each of the four strategies we studied.

Finally, we note that the control strategies presented in this
work consider only one aspect of a successful AHS, main-
taining platoon formation while traveling at highway speeds.
There are many other issues that must be addressed to de-
velop a complete AHS solution, including emergency actions
such as obstacle avoidance and accommodation for vehicles
that merge with and exit from the platoon. The investiga-
tion of strategies for these events is the subject of future
work.
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(a) Relative Position and Relative Velocity (b) Relative Position and Absolute Velocity

(c) Absolute Position and Relative Velocity (d) Absolute Position and Absolute Velocity

Figure 2: Variation in platoon length over time for different control strategies.

Figure 3: Variance in inter-vehicle distance for different vehicle positions.


