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Introduction. We present a simple, deterministic gossip protocol for solving the
distributed averaging problem. Each node has an initial value and the objective
is for all nodes to reach consensus on the average of these values using only
communication between neighbors in the network. We first give an analysis of the
protocol in structured networks, namely d-dimensional discrete tori and lattices,
and show that in an n node network, the number of rounds required for the
protocol to converge to within ε of the average is O(| log(ε)| n2/d). We then
extend our results to derive upper and lower bounds on convergence for arbitrary
graphs based on the dimensions of spanning supergraphs and subgraphs.

Analyzing Convergence. The network is represented by an undirected graph
G = (V, E) where V is the set of nodes in the network, with |V | = n, and
E is the set of communication channels between them. The neighbor set of a
node i, denoted Ni, is the set of nodes j ∈ V such that (i, j) ∈ E. Every
node i has an initial value xi(0), and the average of all values in the system
is xave = 1

n

∑n
i=1 xi(0). In each round k, every node sends an equal fraction β

of its current value to each of its neighbors and sends the remaining fraction,
α = 1− |Ni|β, to itself. Each node updates its current value xi(k + 1) to be the
sum of all values received in round k. The desired goal of the protocol is for the
system to converge to an equilibrium where xi(k) = xave for all i ∈ V .

We measure how far the current state of the system is from the average state
using the “deviation from average” vector, with each component defined by

x̃i(k) := xi(k) − 1
n

(x1(k) + . . . + xn(k)) .

When the vector x̃ equals 0, the vector of all 0’s, the vector x equals xave1,
where 1 is the vector of all 1’s. The rate at which ||x̃|| approaches 0 determines
the rate at which the nodes reach consensus at xave. We define the ε-consensus
time to be the number of rounds required for ||x̃(k)||

||x̃(0)|| ≤ ε for a given ε.
If x(k) denotes the vector of current values in round k, the distributed aver-

aging protocol can be represented as an n × n matrix A = [aij ] that transforms
x(k) to x(k + 1), where x(k + 1) is the vector of values in round k + 1. aij is the
fraction of j’s current value that j sends to node i in each round. The evolution
of the vector x is given by following recursion equation.

S. Dolev (Ed.): DISC 2006, LNCS 4167, pp. 540–542, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Brief Announcement: Convergence Analysis of Scalable Gossip Protocols 541

x(k + 1) = A x(k)

It can be shown that the evolution of the vector x depends on the second largest
eigenvalue of A, λ2. More specifically, an upper bound on the number of rounds
required for ε-consensus is given by

k ≥ log(ε)
log(|λ2|)

. (1)

Therefore, the ε-consensus time depends upon the inverse of |λ2|. In general, it is
not possible to determine λ2 analytically. However, for certain graph structures,
we can derive λ2 and thus derive an asymptotic bound for the protocol.

In particular, we consider the protocol matrix for a d-dimensional discrete
torus Zd

s . In each round, every node sends an equal fraction β < 1
2d of its current

value to each of its 2d neighbors. In the 1-dimensional case, the protocol matrix
A is a circulant matrix. In the general d-dimensional case, A is known as a
circulant operator. The eigenvalues of A can be explicitly obtained using the
multi-dimensional Discrete Fourier Transform [1]. Using this and Equation (1),
we can determine the ε-consensus time of the protocol in any d-dimensional
discrete torus. For large n, the asymptotic convergence of the protocol in a d-
lattice is the same as for a d-dimensional torus, so the same analysis applies.

Theorem 1. The ε-consensus time of the distributed averaging protocol in a
discrete d-dimensional torus or d-lattice with n nodes is O(| log(ε)| n2/d).

This result shows that the dimensionality of the torus determines the convergence
rate of the averaging protocol. In tori, the dimension is closely related to the
connectivity of the graph; a higher dimensional torus has greater connectivity
and a faster convergence rate than a lower dimensional torus. If β is chosen
carefully, a similar relationship between connectivity and convergence can be
derived for arbitrary graphs.

Theorem 2. Let G1 = (V1, E1) be an undirected, connected graph. Let G2 =
(V2, E2) be a spanning subgraph of G1. For β ≤ 1

2∆(G1) , where ∆(G1) is the
maximum degree of G1, the convergence rate of the protocol on G1 is greater
than or equal to that on G2.

According to the Theorem 2, if we start with a d-dimensional torus and add
edges, the convergence rate of the protocol on the new graph will be at least as
fast as that on the original graph. Similarly, if we take an arbitrary graph and
add edges to form a d-dimensional torus, the convergence rate of the protocol
on the original graph will be less than or equal to that of the protocol on the
torus. This result is stated precisely in the following corollary.

Corollary 1. Let G = (V, E) be an arbitrary graph with |V | = n.

1. If D is the dimension of the largest dimensional torus that is a spanning
subgraph of G, the consensus protocol reaches ε-consensus on G in
O

(
| log(ε)| n2/D

)
rounds.
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2. If d is the dimension of the smallest dimensional torus for which G is
a spanning subgraph, the consensus protocol reaches ε-consensus on G in
Ω

(
| log(ε)| n2/d

)
rounds.

This corollary is a direct result of Theorems 1 and 2.
Details on the above results can be found in [2].

Related Work. Stochastic gossip protocols for solving the distributed aver-
aging problem have been proposed [3,4]. In these protocols, each node selects a
neighbor at random in each round and averages its own value with the neighbor’s
value. Bounds derived for convergence rates of these protocols are probabilistic.
A deterministic protocol in which a node can send a different fraction of its
current value to each of its neighbors in each round have also been studied [5].
The authors use offline analysis based on global information to determine the
optimal fraction to send along each edge and give localized online heuristics.
However, the selection of fractions does not affect the asymptotic convergence
rate of the protocol. Distributed averaging has also been studied in the context
of anonymous networks [6]. In this work, each node must know the size and
topology of the network. The role of dimensionality in optimal error bounds in
sensor networks was studied in [7]. Our work characterizes the relationship be-
tween network dimensionality and the convergence rate of a deterministic gossip
protocol for distributed averaging that requires only local information, making
it well-suited for large scale P2P systems, sensor networks, and mobile ad-hoc
networks.
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