
Guaranteeing Correctness of Lock-Free Range
Queries over P2P Data!

Stacy Patterson, Divyakant Agrawal, and Amr El Abbadi

Department of Computer Science, University of California Santa Barbara
Santa Barbara, CA 93106, USA

{sep,agrawal,amr}@cs.ucsb.edu

Abstract. As P2P systems evolve into a platform for full-fledged dis-
tributed database management systems, the need arises for sophisticated
query support and guarantees on query correctness. While there has been
recent work addressing range queries in P2P systems, the work on query
correctness is just beginning. Linga et al.[1] provided the first formal
definition of correctness for range queries in P2P systems and described
a lock-based range query technique that is provably correct. A natu-
ral question that arises is whether it is possible to develop a lock-free
protocol that can meet the same guarantee of correctness. In this pa-
per, we demonstrate the feasibility of lock-free correct protocols by first
developing a simple, proof-of-concept query protocol and verifying that
this protocol meets the correctness conditions. We then describe a more
robust extended protocol and prove that for stable systems with only
item insertions, item deletions, and item redistributions, this extension
insures that every range query can be satisfied correctly.

1 Introduction

P2P systems provide the benefits of fault tolerance, load balancing, and scala-
bility, making them a promising platform for distributed storage systems. Initial
work on P2P systems focused on the development of distributed hash tables,
or P2P indexes [2,3,4,5]. These P2P indexes allow for the storage of key/value
pairs and the ability to do exact match search for an item using the item’s
key. In order to realize the full potential of P2P systems for distributed data
management, these systems must provide support for more sophisticated query
predicates. Recent work in the area of P2P range indexes enables efficient single
and multi-dimensional range queries [6,7,8,9,10]. However, these systems do not
provide any guarantees on the correctness of query results. Specifically, they do
not guarantee that the query results include all and exactly those items that sat-
isfy the range query predicate in the presence of item insertions, item deletions,
and range redistributions. Such correctness guarantees are a necessary step in
the evolution of P2P systems into full-fledged distributed database management
systems.
! This research was funded in part by NSF grants IIS 02-23022, CNF 04-23336, and

INT 00-95527.

G. Moro et al. (Eds.): DBISP2P 2005/2006, LNCS 4125, pp. 123–134, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

124 S. Patterson, D. Agrawal, and A. El Abbadi

Linga et al.[1] are the first to address correctness of range queries. This work
provides a formal definition of correctness for range queries and describes a
technique for range queries that is provably correct. The technique relies on
locking to insure that no data items that satisfy the query predicate will be
omitted from the result. A natural question that arises is whether it is possible
to develop a lock-free technique that meets the same definition of correctness.
In this paper, we demonstrate that a lock-free provably correct query protocol is
feasible. We develop a simple, lock-free protocol in the context of P-Ring[7], the
same P2P range index used in the lock-based approach. Our protocol returns
only correct query results and rejects any query that cannot be satisfied correctly
under the current system conditions. We also develop an extended protocol that
greatly decreases the number of queries that will be rejected by the system.
Specifically, in a stable ring where no new peers join and no peers fail or leave,
this extension insures that every range query can be processed correctly without
being rejected.

The remainder of the paper is organized as follows. In Section 2, we present
the system model and provide background on P-Ring. In Section 3, we formalize
the notion of query correctness. In Section 4, we describe a simple, correct range
query protocol, and in Section 5, we describe a more robust extension to that
protocol. Finally, we conclude in Section 6.

2 Background

2.1 System Model

The model we adopt is a generalization of many existing P2P systems. The
system consists of a collection of peers, P , where a peer is a single processor
that contributes some amount of storage space to be used by the system. Each
peer, p ∈ P , has a unique physical identifier, such as an IP address. Each peer
also has a unique logical identifier, denoted p.id, which is a key chosen from a
discrete key space. We assume the existence of an underlying network layer that
allows a peer to communicate with another peer using a direct communication
channel. All messages are delivered within some known, bounded time-delay and
message ordering is preserved within any given channel.

The system allows nodes to join and leave at any time. We assume a fail-stop
model for peer departures. The system provides a lookup(key) operation which
locates, with high probability, the peer that is the immediate successor of the
key. The system also provides operations for item insertion and item deletion.
Additionally, the system supports single dimensional range queries of the forms
[lb, ub], (lb, ub], [lb, ub), and (lb, ub) where lb is the lower bound and ub is the
upper bound of the range predicate.

2.2 P-Ring

We describe our techniques in the context of P-Ring, a P2P index framework that
supports both range queries and exact match queries. Our techniques can be gen-
eralized to other range indexes that support single dimension range queries [6,8].

Guaranteeing Correctness of Lock-Free Range Queries over P2P Data 125

The P-Ring architecture is divided into several layers, each encapsulating specific
functionality of the system. The foundation of a P-Ring system is a Chord ring
[4] which provides the connectivity in the system. The Data Store layer sits on
top of the Chord ring and is responsible for data item storage and load balancing
operations. P-Ring also provides a Replication Manager that is responsible for
maintaining replicas to improve item availability in the presence of peer failures.
Finally, the P-Ring Content Router provides a routing structure that enables
efficient lookup(key) operations. We encapsulate the functionality needed for
correctness in the lower levels of the system. Our approach is therefore limited
to changes in the Chord ring and Data Store layers.

Chord Ring. In the Chord ring, each peer, p, stores the identity (both phys-
ical and logical) of its predecessor, denoted pred(p), and its successor, denoted
succ(p), in the ring. p also keeps a list of additional successors as a redundancy
measure in case succ(p) fails. Each peer is responsible for a portion of the key
space which is the range (pred(p).id, p.id]. These values are the lower and upper
bounds of the peer’s range, which we also denote by p.lb and p.ub respectively.
In a consistent ring pred(p).ub = p.lb for all peers, p, in the system. We assume
that when a new peer joins the ring, its predecessor and successor are notified
and update their successor and predecessor pointers to reflect the existence of
the new peer as part of the join process.

Data Store. One of the goals of a P2P storage system is to evenly distribute
data items among all of the peers in the system. In many systems, load balancing
is achieved through the use of consistent hashing [11]. For example, in CFS [12],
peer IDs are generated using a hash function that insures with high probability
that the IDs are uniformly distributed across the key space. Item IDs are also
generated using a hash function, and items are stored at the peer whose ID
immediately succeeds the item ID. This approach is effective in insuring that
every peer is responsible for roughly the same number of items. However, a hash
function does not generate IDs that preserve the order of the items.

In P2P range indexes, the item ID assignment policy must preserve item order
so that range queries can be answered efficiently. To maintain item order, P-Ring
uses the search key of the item as the item ID, denoted i.skv where i is an item.
With this policy, a range query of the form [lb, ub] can be answered by first doing
a lookup(lb) to locate the peer responsible for the lower bound of the query and
then traversing along the Chord ring following successor pointers until the peer
responsible for ub is reached.

Since the P-Ring ID assignment scheme does not guarantee uniform item
distribution across peers, it is possible for a peer to become heavily loaded if
a particular range contains too many items. It is also possible for a peer to be
underloaded if its range is less popular. To address this issue, P-Ring provides
three explicit load balancing operations, split, merge, and redistribute. If a peer
becomes overloaded, it invites a new peer to join the ring and divides its range
and the corresponding data items with the new peer through a split operation. If
a peer’s storage space is underutilized, it informs its successor through a merge

126 S. Patterson, D. Agrawal, and A. El Abbadi

operation. The successor, in a redistribute operation, either gives part of its
range and associated items to its predecessor or gives up its entire range to its
predecessor and leaves the ring. With these load-balancing operations, P-Ring
can guarantee that the number of items stored at each peer is between sf and
2sf for some storage factor sf.

3 Query Correctness

We adopt the definition of correct query results given in [1]. This definition
depends on the notion of a history, which describes the operations of the system
and a partial ordering upon them. The partial order, ≤, is a ”happened before”
relationship such that for any two operations o1 and o2, we say that o1 happened
before o2 if o1 completed before o2 began. If it is not the case that o1 happened
before o2, it is possible the operations executed in parallel. The formal definition
of a history is as follows.

Definition 1 (History). History H is a pair (O, ≤) where O is a set of oper-
ations and ≤ is a partial order defined on these operations.

The definition of a correct query result also relies on the definition of a truncated
history.

Definition 2 (Truncated History). Given a history H = (OH, ≤H) and an
operation o ∈ OH, Ho = (OHo , ≤Ho) is a truncated history if OHo = {o′ ∈
OH|o′ ≤H o} and ∀o1, o2 ∈ OHo(o1 ≤H o2 ⇒ o1 ≤Ho o2).

In other words, a truncated history is a history that contains all and only those
operations that happened before a particular operation.

3.1 Correct Query Results

Intuitively, a correct query result will contain exactly those items in the P2P
system that satisfy the range predicate. The dynamic nature of the system com-
plicates the definition of what it means for an item to be “in the system”. At
a high level, an item is in the system, or live, if it has been inserted at some
peer and not yet been deleted from any peer. We use the same terminology from
[1] but adopt a slightly different definition of a live item. insertItem(i) denotes
the successful insertion of item i into the system. deleteItem(i) denotes the suc-
cessful deletion of the item i from the system. We use itemsH(p) to denote the
collection of items stored at a peer p.

Definition 3 (Live Item). An item i is live in a history H, denoted liveH(i),
iff (insertItem(i) ∈ H) ∧ (deleteItem(i) /∈ H).

Additionally, in P2P systems, we must address the issue of node failures with
regards to the items stored at a failed node. When a node fails, its successor in
the Chord ring assumes responsibility for the node’s range, but only once the
successor becomes aware of the failure. We consider this detection of failure to

Guaranteeing Correctness of Lock-Free Range Queries over P2P Data 127

be an implicit delete of every item stored at the failed peer. So, it is only after
the failure is detected that these items are no longer live.

We now state the definition of a correct query result from [1]. In the definition,
satisfiesQ(i) denotes whether item i satisfies the range predicate of query Q.

Definition 4 (Correct Query Result). Given a history H, a set R of items
is a correct query result for a query Q initiated with operation os and successfully
completed with operation oe iff the following two conditions hold:

1. ∀i ∈ R (satisfiesQ(i) ∧ ∃o ∈ OH(os ≤H o ≤H oe ∧ liveHo(i)))

2. ∀i (satisfiesQ(i) ∧ ∀o ∈ OH(os ≤H o ≤H oe ∧ liveHo(i)) ⇒ i ∈ R)

The first condition states that if an item i is included in the query result, then it
was live at some time during the query. The second condition states that every
item that was live for the entire duration of the query is included in the result.

The goal of this paper is to explore lock-free techniques for range queries that
produce correct query results according to the above definition.

3.2 Incorrect Query Results: Examples

In [1], the authors present two examples of how a naive approach to range query
execution that consists of simply traversing along the ring will give incorrect
query results. We summarize these examples here. In Section 4.3 we show how
our lock-free implementation disallows these incorrect scenarios.

(10)(5)

(15)

(18)

(20)

p5 p1

p2
p3

p4

Fig. 1. Example P-Ring

(10)(5)

(15)

(18)

(20)

p5 p1

p2
p3

p4

(6)

p

Fig. 2. P-Ring with new node

Inconsistent Successor Pointers. Consider the ring shown in Figure 1 and
suppose each peer maintains a successor list of size 2. The successor list for p4 is
{p5, p1}. p5 is responsible for the range (20, 5] and p1 is responsible for the range
(5, 10]. Suppose that p1 becomes overloaded and splits its range with a new peer
p, as shown in Figure 2. When p joins, it becomes responsible for the range (5, 6]
and p1 becomes responsible for the range (6, 10]. A query with range predicate
(20, 9] arrives at p4, and p4 responds to the query with the data items in the
range (20, 5]. Then, p5 fails. p4 tries to forward the query to p5 and detecting the
failure, forwards the query to p1. Note that p4 has not yet updated its successor
list to reflect the existence of p. p1 will respond to the query with items in the
range (6, 9] and the range (5, 6] will have been omitted from the query result.

128 S. Patterson, D. Agrawal, and A. El Abbadi

Concurrent Redistribution. In the second scenario, we see that it is possible
for a query to produce incorrect results even if the successor pointers are com-
pletely consistent. Consider again the ring in Figure 1. Suppose a query (10, 18]
arrives at p2. p2 returns the items in the range (10, 15] and forwards the query to
its successor, p3. Suppose, at the same time, p3 is in the process of redistributing
part of its range with p2 and has transferred the range (15, 16] to p2. When the
query arrives at p3, p3 will return items in the range (16, 18] and the items in
(15, 16] will be missing from the query result.

In both cases, the incorrect query results stem from the fact that there is
some degree of uncertainty about the range for which a peer is responsible. If we
can eliminate this uncertainty by clearly defining the range for which a peer can
safely answer queries, then we can use this to produce a correct query protocol.

4 A Simple Protocol

First we examine how to remove any uncertainty in range responsibility that may
be introduced through the split, merge, and redistribute operations. Then, we
present a correct, lock-free range query protocol.

4.1 Range Ownership

When a peer performs a split, merge, or redistribute operation, its range changes.
It is this change that is problematic for range queries. The first step to query
correctness is to clarify range responsibility when these operations are performed.
To do this, certain steps of each operation must be performed atomically. We
outline these atomic steps for the merge operation. The atomicity requirements
for split and redistribute are defined similarly.

When peer p experiences underflow, it invokes the merge operation to request
that its successor relinquish some or all of its range to p. The result is that p
increases the range it is responsible for and receives the data items associated
with the range addition. The merge operation is given in Algorithm 1. In line
2, p alerts its successor of the underflow and waits for the successor’s response.
In line 4, p updates its set of items to include the items that were given up
by its successor. In line 5, p updates its range to include the range relinquished

Algorithm 1. p.merge()

1. // send message to successor and wait for result
2. (newRange, newItemList) = succ(p).initiateMerge(p, |p.range|);
3. // execute next two steps atomically
4. p.list.add(newItemList);
5. p.range.add(newRange);

Guaranteeing Correctness of Lock-Free Range Queries over P2P Data 129

by its successor. By executing steps 4 and 5 atomically, p insures that it will only
process operations (item insertions, item deletions, lookups, and range queries)
for the new range once it has incorporated all live items in the range into its
Data Store.

4.2 Correct Range Queries

The simple query protocol is shown in Algorithm 2 and Algorithm 3. This is
a slight modification of the original P-Ring protocol[1] without locking. The
query begins with a lookup(lb) operation. rangeQuery is then invoked at the
peer responsible for lb. processQuery is invoked at each subsequent peer that
participates in the query ending at the peer responsible for ub. We assume for
simplicity that processQuery and rangeQuery are each executed atomically.
Rather than passing the same lower bound to its successor when forwarding
the query along the ring, each peer p sends p.ub as the lower bound. By doing
so, p informs its successor of what part of the range query remains to be an-
swered. The successor accepts the query only if it is able to exactly satisfy this
lower bound, thus eliminating the possibility of gaps or duplicates in the query
results.

We assume that during any query execution there are only a finite number of
new peers entering the system. Therefore, every query terminates at some time.

Theorem 1. Using the simple protocol, every query that is accepted (terminates
with no peer rejecting it) produces a correct query result.

Proof. Consider a query Q = [lb, ub] that begins with operation os and ends
successfully with operation oe. The operations rangeQuery and processQuery
insure that, if the query terminates without rejection, the intervals r satisfied at
each of the peers that participate in the query are non-overlapping. The union
of these intervals is exactly equal to [lb, ub].

Since the union of the intervals satisfied at each peer equals [lb, ub], ∀i ∈
R satisfiesQ(i) holds. Let i be any item such that i ∈ R and satisfiesQ(i) holds.
It must be the case that i was returned by some peer in line 6 of processQuery
or rangeQuery. If we call this invocation of processQuery (or rangeQuery)
operation o, then we have insertItem(i) ≤H o, and if i was deleted in this history,
o ≤H deleteItem(i). So, there exists an operation o such that, os ≤ o ≤ oe and
also such that liveHo(i). Therefore, Condition 1 of the the Correct Query Result
definition holds.

Consider i such that satisfiesQ(i) is true and ∀o ∈ OH(os ≤H o ≤H oe ∧
liveHo(i)) holds. We claim that there must be some peer p such that i ∈ p.range
for the operation p.processQuery (or p.rangeQuery). Suppose this is not the
case. Then, for some peers p1 and p2 where p2 is the successor of p1, we have
i.skv > p1.ub during the invocation of p1.processQuery (or p1.rangeQuery)
and i.skv < p2.lb during the invocation of p2.processQuery. In this situation,

130 S. Patterson, D. Agrawal, and A. El Abbadi

p2 would detect the discontinuity in the range satisfied by p1 and its own range
and would reject the query at line 2 of processQuery. Since the query terminates
successfully, it must be the case that there exists a peer p such that i ∈ p.range
for the operation p.processQuery. Therefore i ∈ R. This proves Condition 2 of
the Correct Query Result definition. '(

Algorithm 2. p.rangeQuery(lb, ub, initiator)

1. if lb /∈ p.range then
2. Reject query
3. else
4. r := (lb, ub] ∩ p.range 1

5. items := items in p.items that are in range r
6. Send items to initiator
7. if ub /∈ p.range then
8. Invoke succ(p).processQuery(p.ub,ub, initiator) asynchronously
9. end if
10. end if

Algorithm 3. p.processQuery(lb, ub, initiator)

1. if lb #= p.lb then
2. Reject query
3. else
4. r := (lb, ub] ∩ p.range 1

5. items := items in p.items that are in range r
6. Send items to initiator
7. if ub /∈ p.range then
8. Invoke succ(p).processQuery(p.ub,ub, initiator) asynchronously
9. end if
10. end if

4.3 Incorrect Query Results Revisited

For both examples of incorrect range query results given in Section 3, if the
simple protocol is used, some peer will reject the query. In the case of the incon-
sistent successor pointers, p4 will forward the query with range [5, 10] to p1. p1
will then reject the query because the lower bound of the range query, 5, does
not equal p1.lb, which is 6. For the case of concurrent range redistribution, p2
will forward the query [15, 18] to p3. p3 will reject the query because the lower
bound of the query, 15, does not equal its lower bound, 16.

1 The items may be returned in parallel with the forwarding of the query to succ(p).

Guaranteeing Correctness of Lock-Free Range Queries over P2P Data 131

5 Extension to Simple Protocol

One drawback of the scheme described above is that the system cannot satisfy a
range query if that range encompasses a portion of the index that is concurrently
in transit from one peer to another as a result of a redistribution. This issue exists
even if there are no topology changes in the system. In this section, we describe
an extension to the simple technique that overcomes this drawback. We show
that in a system with no topology changes, the extended protocol can satisfy all
queries correctly.

Suppose that peer p2 relinquishes part of its range to its predecessor p1 as
a result of a redistribute operation. Instead of deleting the items that p2 has
given up to p1, p2 marks the items as relinquished and keeps them for some
period of time. What can p2 safely do with the relinquished part of its range?
It cannot accept any inserts or deletes for this range because it is no longer the
owner of the range and cannot guarantee that the future owner of the range, p1,
can consistently incorporate these insert and delete operations. p2 also cannot
accept lookup(key) operations for the relinquished range because it may report
that no item exists for a given key even if an insert for this key has been suc-
cessfully completed at p1. Similarly, p2 may return an item in response to a
lookup after that item has been successfully deleted from p1. p2 can, however,
use this relinquished range to satisfy range queries that have been forwarded
from p1. If p1 forwards a query to p2 with a lower bound equal to the lower
bound of the relinquished range, then p1 has not yet assumed responsibility for
this range, and therefore no new items have been inserted into nor have any
items been removed from the range. So, p2 can return items in the relinquished
range with no risk of omitting any live items and no risk of returning any deleted
items.

The extended query protocol that uses this approach is given below. As in
the simple protocol, the query begins with a lookup(lb) operation. rangeQuery
in Algorithm 2 is invoked at the peer responsible for lb. The processQuery algo-
rithm given in Algorithm 4 is invoked by each subsequent peer that participates
in the query. The relinquished range is denoted by p.range∗ = (p.lb∗, p.ub∗]. The
set of items in p.range∗ is denoted p.items∗.

The question arises as to how long p2 needs to keep the relinquished range
and items. p2 can delete the relinquished range and items once it knows that
p1 has received them. This confirmation can come in the form of an explicit
acknowledgment message from p1. Additionally, if p2 receives a query forwarded
by p1 with the lower bound equal to p2.lb and not p2.lb∗, p2 no longer needs to
store the relinquished range. Finally, since p2 is storing the relinquished range to
answer queries on behalf of p1, if p2 detects that p1 has failed or if p2 is notified
that it has a new predecessor, it no longer has any use for the relinquished range.
Note that p2 can delete the relinquished items at any time, and after the deletion,
query processing becomes identical to the simple protocol.

We now prove the correctness of the extended protocol.

132 S. Patterson, D. Agrawal, and A. El Abbadi

Algorithm 4. p.processQuery(lb, ub, initiator)

1. if lb #= p.lb and lb #= p.lb∗ then
2. Reject query
3. else
4. if lb = p.lb∗ then
5. r∗ := (lb, ub] ∩ p.range∗

6. items := items in p.items∗ that lie in range r∗

7. lb := p.ub∗

8. end if
9. if ub > p.lb then
10. r := (lb, ub] ∩ p.range
11. items := items∪ items in p.items that lie in range r
12. end if
13. Send items to initiator2

14. if ub ≥ p.ub then
15. Invoke succ(p).processQuery(p.ub,ub, initiator) asynchronously
16. end if
17. end if

Theorem 2. Using the extended protocol, every query that terminates success-
fully without being rejected produces a correct query result.

Proof Sketch. The extended protocol is identical to the simple protocol except for
the case where a range redistribution between a peer p and its predecessor pred(p)
takes place concurrent with the processing of a range query at pred(p) and p.

Consider a query Q = [lb, ub] that begins with operation os and ends success-
fully with operation oe. As in the simple protocol, the operations rangeQuery
and processQuery insure that, if the query terminates without rejection, the
intervals r ∪ r∗ satisfied at each of the peers that participate in the query are
non-overlapping. The union of these intervals is exactly equal to [lb, ub]. There-
fore, ∀i ∈ R satisfiesQ(i) is true.

Let i be any item returned by peer p (i.e. i ∈ R and satisfiesQ(i) holds).
i was either in p.range or in p.range∗ during the execution of p.processQuery
(or p.rangeQuery). If i ∈ p.range, then Condition 1 for a Correct Query Result
holds by the same argument given in the proof of Theorem 1. If i ∈ p.range∗ then
insertItem(i) happened before p sent i to pred(p) in a redistribute operation.
And pred(p).processQuery happened before pred(p) received items from the
redistribute (otherwise, pred(p) would have forwarded the query with lb equal
to p.lb). So, pred(p).processQuery ≤H redistribute ≤H p.processQuery. If i
was deleted, then pred(p) must have received p’s relinquished range before the
deleteItem(i) operation so insertItem(i) ≤H redistribute ≤H deleteItem(i).

2 As in the simple protocol, the items may be returned in parallel with the forwarding
of the query to succ(p).

Guaranteeing Correctness of Lock-Free Range Queries over P2P Data 133

Taking o′ = redistribute, liveHo′ (i) is true, and therefore Condition 1 for a
Correct Query Result holds.

The proof of Condition 2 is similar to that given in the proof of the simple
protocol. '(

This extended protocol greatly increases the system’s ability to satisfy queries.
In fact, in a system with no topology changes, the extended protocol can satisfy
all queries correctly. We prove this by first showing that in a stable ring every
lookup(key) will eventually complete successfully . Therefore, for a range query
Q = [lb, ub], it is always possible to locate the peer responsible for lb. We then
show that if a peer keeps the relinquished range until it receives confirmation that
the range has been assumed by its predecessor, no query will ever be rejected.

Lemma 1. In a stable ring with consistent successor pointers having only item
insertions, item deletions, and range redistributions every lookup(key) will even-
tually terminate successfully.

Proof. Suppose that due to outdated routing information, a lookup(key) message
is forwarded to a node p after p has transferred the range containing key to
its predecessor. When p receives the lookup request, it detects that it is not
the owner of key and forwards the request either to its successor or to some
other peer in its routing structure. It can be shown that eventually some peer
will be permanently responsible for the range containing key. At that time, the
lookup must terminate successfully. In any redistribution, a node p with range
(p.lb, p.ub] transfers some portion of that range, (lb, new lb], to its predecessor,
and p becomes responsible for the range (new lb, ub]. Since the key space is
discrete, eventually there is some node that is responsible for the range (ub−δ, ub]
with key ∈ (ub − δ] such that no further subdivision of the range (ub − δ, ub] is
possible. In this case, the only way for the peer to give up responsibility for this
range is to leave the system. This is impossible under the assumption that the
system topology is stable. '(

Theorem 3. In a stable ring with consistent successor pointers having only item
insertions, item deletions, and range redistributions, every query can be answered
correctly using the extended protocol.

Proof. Theorem 2 shows that any query that is not rejected produces a correct
query result. Here we show that in a stable ring, no query will ever be rejected.
By Lemma 1, every lookup(lb) eventually arrives at the peer responsible for the
lb. The first step in a range query with range predicate [lb, ub] is a lookup(lb)
operation and therefore in p.rangeQuery the Reject statement at line 2 will
never be invoked. A query will be rejected at line 2 in p.processQuery if lb is
not equal to either the lower bound of p.range or the lower bound of p.range∗.
In the case that there is a concurrent redistribution for which pred(p) has not
yet received the new range and items, lb will be equal to p.lb∗. In all other cases,
any query forwarded by pred(p) will be equal to p.lb. So, if a query is rejected at
line 2, then it must have been forwarded to p by some peer other than pred(p).

134 S. Patterson, D. Agrawal, and A. El Abbadi

This can only occur if that peer has an inconsistent successor pointer, which is
impossible under the assumption of the theorem. '(

6 Conclusion

In this paper, we have presented two lock-free techniques for range queries in P2P
systems that provably guarantee correct query results, a simple protocol and a
more robust extension. Both techniques have the benefit of simplicity in analysis
and implementation. Additionally, in a system with no topology changes, the
extended technique can satisfy every range query correctly. This work represents
an initial step towards better formalization and understanding of P2P systems.

References

1. Linga, P., Crainiceanu, A., Gehrke, J., Shanmugasundaram, J.: Guaranteeing cor-
rectness and availability in p2p range indicies. In: SIGMOD. (2005) 323–334

2. Ratnasamy, S., Francis, P., Handley, M., Karp, R.M., Shenker, S.: A scalable
content-addressable network. In: SIGCOMM. (2001) 161–172

3. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Middleware. (2001) 329–350

4. Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Balakrishnan, H.: Chord:
A scalable peer-to-peer lookup service for internet applications. In: SIGCOMM.
(2001) 149–160

5. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.:
Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal on
Selected Areas in Communications Vol. 22, No. 1 (2004) 41–53

6. Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: supporting scalable multi-
attribute range queries. In: SIGCOMM. (2004) 353–366

7. Crainiceanu, A., Linga, P., Machanavajjhala, A., Gehrke, J., Shanmugasundaram,
J.: P-ring: An index structure for peer-to-peer systems. Cornell University Tech-
nical Report (2004)

8. Ganesan, P., Bawa, M., Garcia-Molina, H.: Online balancing of range-partitioned
data with applications to peer-to-peer systems. In: VLDB. (2004) 444–455

9. Gupta, A., Agrawal, D., El Abbadi, A.: Approximate range selection queries in
peer-to-peer systems. In: CIDR. (2003) 141–151

10. Sahin, O.D., Gupta, A., Agrawal, D., El Abbadi, A.: A peer-to-peer framework for
caching range queries. In: ICDE. (2004) 165–176

11. Karger, D., Lehman, E., Leighton, T., Levine, M., Lewin, D., Panigrahy, R.: Con-
sistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the world wide web. In: ACM Symposium on Theory of Computing.
(1997) 654–663

12. Dabek, F., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Wide-area cooper-
ative storage with CFS. In: SOSP ’01. (2001) 202–215

	Introduction
	Background
	System Model
	P-Ring

	Query Correctness
	Correct Query Results
	Incorrect Query Results: Examples

	A Simple Protocol
	Range Ownership
	Correct Range Queries
	Incorrect Query Results Revisited

	Extension to Simple Protocol
	Conclusion

