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Abstract— We consider the problem of leader-based dis-
tributed coordination in networks where agents are subject to
stochastic disturbances, but where certain designated leaders
are immune to those disturbances. Specifically, we address the
effect of leader selection on the coherence of the network,
defined in terms of an H2 norm of the system. This quantity
captures the level of agreement of the nodes in the face of
the external disturbances. We show that network coherence
depends on the eigenvalues of a principal submatrix of the
Laplacian matrix, and we formulate an optimization problem
to select the set of leaders that results in the highest coherence.
As this optimization problem is combinatorial in nature, we
also present several greedy algorithms for leader selection that
rely on more easily computable bounds of the H2 norm and the
eigenvalues of the system. Finally, we illustrate the effectiveness
of these algorithms using several network examples.

I. INTRODUCTION

Distributed consensus is a fundamental problem in the
context of multi-agent systems and distributed formation
control [1], [2], [3]. In this setting, agents must reach
agreement on values like direction, rate of travel, and inter-
agent spacing in a decentralized manner, and they must
maintain this agreement in the face of uncertainties such as
external disturbances, unreliable communication, and agent
failures. Therefore, it is important to consider the robustness
of consensus algorithms as they are applied to this setting.

In this work, we study the robustness of a class of
consensus algorithms that are particularly relevant to forma-
tion control, leader-follower consensus algorithms. In leader-
follower consensus, one or more agents are leaders, and
these agents determine the consensus value (or values) of the
network. The remaining agents are followers that use local
consensus dynamics and are unaware of the consensus value.
For example, leaders can be controlled by sophisticated
machinery, equipped with highly accurate sensors, and have
access to global information and absolute measurements.
In contrast, followers must operate solely based on relative
information such as measurements relative to neighboring
agents. It has been shown that if the consensus value (also
called reference value) is available to a node that is the root
of a spanning tree of the network and there are no external
disturbances, then the system will converge to consensus at
that consensus value [4]. Our interest is in analyzing the
effects of external disturbances on the convergence behavior.

Leader-follower consensus can also be applied to problems
outside the realm of formation control such as opinion
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dynamics in social networks. In this setting, the objective
is to maintain agreement in the network, for example to
maintain support for a cause or political candidate. User
opinions (node states) are influenced by the opinions of
neighbors as well as by externalities. Several nodes can be
selected as leaders who can be trained offline. The leaders
act as experts who all share the same opinion and do not
waiver. In this setting, network coherence is a measure of
how well these leaders “keep the peace” in the network. A
question of interest is how to select the set of leaders that
best maintains agreement among the social network users.

In order to focus on the robustness of the network with
respect to a set of leaders, we consider a simple version of
leader-follower consensus in an undirected network with a
time-invariant communication structure. We assume that the
leaders are not affected by external disturbances and that
they share the same, fixed consensus value. The followers
are subject to external disturbances, and the objective is for
every node’s value to remain as close to the consensus value
as possible. We call the level of agreement in the network
the coherence of the network.

In this work, we present a formal definition of the co-
herence of a leader-follower consensus system in terms of
an H2 norm, and we show that network coherence depends
on the eigenvalues of a principal submatrix of the Laplacian
matrix. Based on this formulation, we give an optimization
problem for finding the set of leaders that maximizes network
coherence. As this optimization problem is combinatorial
in nature, we also propose two more scalable, heuristic-
based algorithms for leader selection. Finally, we compare
these algorithms using several network examples. To our
knowledge, this work is the first to consider the H2 norm as
a measure of robustness for leader-follower consensus and
the first to explore the question of selecting the best leaders
for maintaining coherence.

A. Related Work

Several works have investigated necessary and sufficient
conditions for convergence in leader-follower consensus [4],
[5], [6]. These works consider directed networks with no
external disturbances, and the leader reference value may
be time-varying. Pasqualetti et al. [7] also study directed
networks, and they find the convergence rate of the consensus
algorithm for the case where leaders move with constant
velocity.

The robustness of leader-follower consensus has been
previously studied using different performance measures. In
[8], the authors define and analyze robustness in terms of
the effects that disturbances entering at the leaders have

49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

978-1-4244-7746-3/10/$26.00 ©2010 IEEE 2692



on the other nodes in the network. Wang et al. [9] study
the robustness of leader-follower consensus algorithms to
disturbances on the communication links and quantify this
robustness in terms of the L2 gain.

We also note that the H2 norm has been used as a
robustness measure in networks with leaderless consensus
dynamics. In the case of undirected networks, Xiao et al.
[10] propose an optimization algorithm to select the edge
weights that minimize the H2 norm. The work by Bamieh
et al. [11] considers the platooning problem and presents
asymptotic scalings of the H2 norm for formations of differ-
ent dimensions. Finally, the work by Young et al. [12] studies
the H2 norm in directed networks with noisy consensus
dynamics and gives analytical results for several types of
directed graphs.

B. Outline

This paper is organized as follows. In Section II, we
describe our leader-follower consensus model and give the
definition of network coherence. Section III gives analysis of
the stability of the consensus algorithm and the performance
with respect to the number of leaders. In Section IV, we
present an optimization algorithm for selecting the leaders
that maintain the best network coherence, and we propose
several more scalable heuristic-based algorithms for leader
selection. In Section V, we illustrate the performance of
the optimization algorithm and the scalable alternatives for
various network examples. We conclude in Section VI with
a discussion of topics for future investigation.

II. PRELIMINARIES

We consider a connected, undirected network of n iden-
tical agents, with a time-invariant communication structure.
The network is modeled by an undirected graph G = (V,E)
where V is the set of nodes (with |V | = n) and E is the set
of edges (with |E| = m). The Laplacian matrix of G is

L = D −A

where D is the diagonal matrix of node degrees and A is
the adjacency matrix of G.

In the leader-follower consensus problem, the objective is
for all nodes to follow an identical, constant trajectory x ∈ R.
A subset of k nodes are the leaders of the system. We assume
that these leaders follow the trajectory exactly. The remaining
n − k nodes are followers. Each follower updates its state
based only on its own state and that of its neighbors using
a local consensus algorithm and is also subject to stochastic
disturbances. Let h be an n-vector with hi = 1 if i is a
leader and equal to 0 otherwise. The dynamics of the entire
system are given by

ẋ(t) = −(I − diag(h)) L x(t) + (I − diag(h))w(t) (1)

where w(t) is a vector of zero-mean white noise processes.
Let x̃(t) be the vector of deviations from the desired trajec-
tory,

x̃(t) := x(t)− x1.

Here 1 denotes the vector of all ones. We note that the system
dynamics for x̃ are identical to the dynamics for x,

d

dt
(x̃+ x1) = −(I − diag(h)) L(x̃(t) + x1)

+ (I − diag(h))w(t)
d

dt
x̃ = −(I − diag(h))Lx̃(t)

+ (I − diag(h))w(t).

Therefore, without loss of generality, we assume that x = 0.
The expression (1) is equivalent, up to a permutation in

state, to the following,[
ẋl

ẋf

]
= −

[
0 0
∗ L[h]

] [
xl

xf

]
+
[

0
wf

]
where L[h] denotes the (n−k)×(n−k) principal submatrix
of L obtained by removing the columns and rows of L that
correspond to the leaders, i.e. the components of h that are
equal to 1. xl and xf are the states of the leader and follower
nodes respectively, and wf is an n− k vector of zero mean
white noise processes. Clearly, for each leader node i, if
xi(0) = 0, then xi(t) = 0 for t > 0. The dynamics of the
follower nodes are

ẋf = −L[h]xf + wf . (2)

In this work, we study the relationship between the choice
of leader nodes and the coherence of the network. By
coherence, we mean how closely each node follows the
specified trajectory x. Formally, we define the steady-state
variance of the deviation from consensus of the system by

V := lim
t→∞

∑
i∈V

E
{

(xi(t)− x)2
}
. (3)

The smaller this variance, the higher the network coherence.
The objective of this work is two-fold.
1) Characterize the coherence of the network as a function

of the set nodes that are acting as leaders.
2) Determine a method to identify the optimal leaders, i.e.

the set of nodes that minimize the steady-state variance
(3).

We address the first goal in Section III, where we present
analysis of the variance of the deviation from consensus of a
leader-follower system in terms of the eigenvalues of the L[h]
matrix. The second goal is addressed in Section IV, which
gives a formulation for selecting the optimal leader set as
well as several more efficient heuristics for leader selection.

III. NETWORK COHERENCE ANALYSIS

The variance of the deviation from consensus is the square
of the H2 norm of the system (2) and is given by

V = tr
(∫ ∞

0

e−L[h]∗te−L[h]tdt

)
. (4)

We first show that for any leader set of size k, where k > 0,
this variance is bounded. We do this by proving that the
operator L[h] is positive definite.
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Lemma 3.1: If L is the Laplacian of an undirected, con-
nected graph and L[h] is the principal submatrix of L
specified by h ∈ {0, 1}n, L[h] is positive definite.

Proof: This is a proof by induction.
Base Case: It is well known that for an undirected connected
graph,

0 = λ1(L) < λ2(L) ≤ λ3(L) . . . ≤ λn(L).

Let L1 be a principal submatrix of L formed by the removal
of any one row and column. By the Cauchy Interlacing
Theorem (see A.1), it holds that λi(L1) ≥ λi(L) for i =
1 . . . n−1. Also, by the Kirchoff Matrix Tree Theorem [13],

det(L1) = κ,

where κ is the number of spanning trees of the graph G.
Since G is connected, κ must be greater than 0. Therefore,
L1 is non-singular. Combing these two facts, it must be the
case that λi(L1) > 0 for i = 1 . . . n− 1.
Inductive step: Let Lj be a principal submatrix of L formed
by the removal of j rows and j columns. If λi(Lj) > 0
for i = 1 . . . n − j, then again, by the Cauchy Interlacing
Theorem, for any Lj+1 formed by the removal of a row
and column from Lj , λi(Lj+1) ≥ λi(Lj) > 0 for j =
1 . . . n− (j + 1).

This lemma leads to the following theorem on the value
of the variance of the deviation from consensus.

Theorem 3.2: The steady-state variance of the deviation
from consensus for a network with leaders specified by h ∈
{0, 1}n is

V =
1
2

tr
(
L[h]−1

)
=

1
2

n−k∑
i=1

1
λi(L[h])

. (5)

where L[h] is the principal submatrix of the Laplacian matrix
corresponding to h.

Proof: This result follows from Lemma 3.1 and the
fact that each L[h] is normal. We refer the reader to [11] for
details.

The Effect of Adding Leaders

The result in Theorem 3.2 is similar to the results pre-
sented for the robustness of distributed average consensus
algorithms in systems with random additive noise [12], [11].
In such systems, there is no leader, and every node is subject
to random external disturbances. The dynamics are given by

ẋ(t) = −Lx(t) + w(t),

where, as in our formulation, L is the Laplacian matrix
of an undirected, connected graph. The mean of the node
values drifts in a random walk around the origin, and unlike
in the leader-follower consensus case, the variance of the
deviation from x = 0 is unbounded. However, the variance
of the deviation from the average of the current values,
1
n

∑n
i=1 xi(t), is bounded, this variance is given by

Vdav =
1
2

n∑
i=2

1
λi(L)

. (6)

Both V and Vdav are measures of deviation from consen-
sus. In a system with a leader, the consensus value is fixed
and equal to the state of the leaders, while, in leaderless
systems, the value changes over time. An interesting question
is how the variance of the deviation from consensus in a
leaderless system compares to the variance in a system with
a leader. Using equations (5) and (6), it is possible to analyze
the relationship between these two variances.

Let G be an undirected, connected graph. Let L be the
Laplacian matrix of G and let let L1 be a principal submatrix
of L formed by the removal of one row and column (L1 is the
L[h] matrix in Eq. (2) ). By the Cauchy Interlacing Theorem,
we obtain the following inequality,

1
λi+1(L)

≤ 1
λi(L1)

.

Therefore, the variance of the deviation from consensus in
the system with one leader relates to the variance in the
leaderless system as follows

Vdav =
1
2

n−1∑
i=1

1
λi+1(L)

≤ 1
2

n−1∑
i=1

1
λi(L1)

= V.

This inequality shows that the coherence, in terms of the
deviation from consensus, of a network with one leader is
worse than the coherence of that same network when no
leader is present.

Another interesting question is what is the effect of adding
additional leaders to a leader-follower consensus system.
Let Lj denote a principal submatrix of L formed by the
removal of j rows and columns; Lj corresponds to a system
with j leaders. Let Vj denote the variance of the deviation
from consensus for this system. The Cauchy Interlacing
Theorem establishes the following relationship between the
eigenvalues of Lj and Lj+1, where Lj+1 is a principal
submatrix of Lj obtained by the removal of a single row
and column.

1
λi(Lj)

≥ 1
λi(Lj+1)

.

Therefore,

Vj =
1
2

n−j∑
i=1

1
λi(Lj)

≥ 1
2

n−(j+1)∑
i=1

1
λi(Lj+1)

= Vj+1.

The above inequality shows that once a network has a leader,
adding additional leaders can only improve coherence (or
maintain the current level of coherence).

We note that the above result does not imply that the
coherence of a given network with j+ 1 leaders will always
be better than (or at least the same as) the coherence of the
same network with j leaders. In fact, the variance of the
deviation from consensus depends not only on the number
of leaders but also on the particular choice of leader nodes.
In the next section, we explore the problem of selecting
the leaders for a given network that will yield the smallest
variance.
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IV. OPTIMIZING LEADER SELECTION

In the leader selection problem, we are given a network
G = (V,E) and a budget k, and the goal is to select the k
leaders that will maximize the coherence of the network. The
leader selection problem can be formulated as the following
optimization problem,

minimize
1
2

tr
(
L[h]−1

)
subject to hj ∈ {0, 1} j = 1 . . . n

‖h‖1 = k.

where h is the {0, 1} vector that indicates the leader nodes
(as defined in the previous section).

The optimal solution can be obtained through an exhaus-
tive search of the

(
n
k

)
candidate leader sets to find the set

that minimizes V . This approach is combinatorial in n and
k, and so for large networks, it may be infeasible to find the
optimal solution even if k is small. Therefore, we explore
several alternatives that are more computationally attractive.

Algorithm 1 Greedy Leader Selection Algorithm.
1: h← [0 0 · · · 0]∗

2: Vmin ←∞
3: for i = 1 to k do
4: for j ∈ V – {nodes already selected as leaders} do
5: g ← h
6: gj ← 1
7: V ← 1

2
tr

`
L[g]−1

´
8: if V ≤ Vmin then
9: Vmin ← V

10: min id← j
11: end if
12: end for
13: hmin ← 1
14: end for

The first alternative is to use a greedy approach, choosing
the leaders one at a time, each time selecting the node
that gives the smallest variance. The greedy leader selection
algorithm is shown in Algorithm 1. The algorithm produces
the vector h where the selected leaders correspond to the
components of h that are equal to 1. The inner loop of this
algorithm, beginning on line 4, checks what the variance
would be if each node were added to the current leader set.
The node that results in the smallest variance is then added to
the leader set, and the process repeats until all k leaders have
been identified. This algorithm is more efficient than solving
the original optimization problem. However, in order to select
each leader, it is necessary to compute the trace of the inverse
of an O(n)×O(n) matrix (line 7) for each iteration of the
inner loop.

The greedy algorithm may still be too computationally
intensive for very large networks. This motivates the devel-
opment of algorithms that use bounds on V that are easier
to compute. For the selection of leaders 2 through k, we can
use an approximation of V based on a result on eigenvalues
of inverses of principal submatrices (see A.2). Let L̄ be an
(n − j) × (n − j) principal submatrix of L, with j > 0,

Algorithm 2 Greedy Leader Selection Algorithm with
Approximated Variances.

1: h← [0 0 · · · 0]∗

2: min id← id of node corresponding to smallest
3: diagonal entry of ((L + J)−1 − J)
4: hmin ← 1
5: for i = 2 to k do {Find leaders 2 to k.}
6: min id← id of node corresponding to largest
7: diagonal entry of L[h]−1

8: hmin ← 1
9: end for

and let L̄[g] be an (n − (j + 1)) × (n − (j + 1)) principal
submatrix of L formed by removing a column and row from
L̄. The following inequality provides a upper bound on the
eigenvalues of L̄[g]−1

λi

(
L̄−1[g]

)
≥ λi

(
L̄[g]−1

)
, (7)

for i = 1 . . . n− (j + 1). It follows that

tr
(
L̄−1[g]

)
≥ tr

(
L̄[g]−1

)
.

Therefore, given L̄, where j leaders have already been
chosen, to choose the (j + 1)th leader, we select the node
that corresponds to the maximum diagonal entry of L̄−1.
This choice give the g that minimizes λi

(
L̄−1[g]

)
for i =

1 . . . n− (j + 1).
The inequality (7) holds only when L̄ is positive definite.

When selecting the first leader, L̄ = L, and L has an
eigenvalue of 0. So, a different approximation is needed to
select the first leader. A natural choice is to consider the
pseudoinverse of L,

L† := (L+ J)−1 − J.

Here, J = 1
n11∗. L† is such that its trace is equal to the

total variance of the deviation from average of the leaderless
system. However, in experiments, we observed that choosing
the node that corresponds to the maximal diagonal entry
of L† actually produces the worst leader rather than the
best. This indicates a complicated relationship between the
variance of the deviation from average and the variance of
the deviation from x. We note that in a system with one
leader, the two variances are related as follows

Vdav = V − n+ 1
n2

1∗X1

= V − n+ 1
n2

n−1∑
i=1

n−1∑
j=1

cov(xi, xj),

where X is the covariance matrix of xf . The details of
this derivation have been omitted due to space constraints.
This expression shows that the variance of the deviation
from average is maximized when the sum of covariances of
the node states is maximized. We conjecture that the best
leader is actually the one that will minimize the sum of
these covariances and thus maximize the total variance of
the deviation from average. Therefore, in the approximation-
based greedy leader selection algorithm, we choose the
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Fig. 1. Undirected graph with 25 nodes and 24 edges, used to generate
the results in Fig. 2 and Table I.

TABLE I
LEADER SETS SELECTED BY DIFFERENT LEADER SELECTION

ALGORITHMS FOR GRAPH IN FIG. 1

k Optimal Greedy Approx. Greedy Max. Degree
1 b b b a
2 a,i b,i b,h a,b
3 a,i,j b,f,i b,g,h a,b,e
4 e,f,i,j b,f,i,j b,g,h,k,l a,b,e,i
5 d,e,f,i,j b,f,e,i,j b,g,h,k,l a,b,c,e,i

first leader to be the node that corresponds to the smallest
diagonal entry of L†. This heuristic has been shown to
perform well in our experiments, as demonstrated in the next
section.

The leader selection algorithm that relies on these two
approximations of the variance of the deviation from consen-
sus is given in Algorithm 2. The performance improvement
comes from the fact that selecting each leader requires
computing the inverse of only one O(n) × O(n) matrix as
opposed to the n matrices required by Algorithm 1.

V. EXAMPLES

In this section, we present results of the various leader
selection algorithms for several example networks. We first
give the results for the graph shown in Fig. 1. The graph
has 25 nodes and 24 edges. For k = 1 . . . 7, we use
each algorithm to find the “best” leader set of size k.
Figure 2 shows the variance of the network that results
from each leader set. Since this is a small graph, we are
able to compute the optimal leader set and variance. We
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Fig. 2. Variance of deviation from consensus in the graph shown in Fig.
1 for leader sets selected by different leader selection algorithms.
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Fig. 3. Variance of deviation from consensus for leader sets selected by
different leader selection algorithms in a 250 node Erdös-Rényi random
graph where nodes are connected with probability 0.02.
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Fig. 4. Variance of deviation from consensus in a 250 node geometric
graph for leader sets selected by different leader selection algorithms.

also show the variance of the leader sets generated by
the greedy algorithm (Algorithm 1), the greedy algorithm
with approximate variances (Algorithm 2), and a nı̈ve leader
selection scheme, Max Degree. In this scheme, the leaders
are simply the k nodes with maximal vertex degree. We
note that our three schemes perform well in this network,
selecting the opitimal leader for k = 1, while the maximum
degree scheme performs erratically. The leader nodes chosen
by each algorithm are given in Table I. An interesting point
to note is that for k = 1, the optimal leader is node b, but for
k = 2, b is no longer in the optimal set. This demonstrates
a shortcoming of the greedy schemes, since when leaders
are chosen incrementally, b will also be in the leader set.
However, even with this shortcoming, the greedy schemes
both outperform the nı̈ve approach.

Figure 3 shows results for a 250 node Erdös-Rényi random
graph, where an edge connects each pair of vertices with
probability 0.02. The mean vertex degree of the graph is 5,
and the graph has 1,259 edges. We compare the variance of
the network for the leaders selected by the greedy algorithm
and the greedy algorithm with approximate variances to the
variance when leaders are generated using the max degree
heuristic and when leaders are selected at random. Although
a single random trial does not give an indication of the
expected performance of a random selection, it provides
some indication of the low coherence that may result from a
random leader set. We note that, in this example, the greedy
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algorithm, the approximate variance greedy algorithm, and
the max degree algorithm all select the same first leader.
The max degree heuristic performs well when the number of
leaders is small, and it is outperformed by the approximate
variance greedy algorithm for larger leader set sizes. This
graph exhibits high degree skew, which may be a reason for
the good performance of the max degree scheme. However,
the results for larger leader sets indicate a complex relation-
ship between the node degree of the leaders and the variance
of the network.

Finally, Figure 4 shows results for a 250 node geometric
graph, where nodes are placed randomly on a unit square,
and an edge is drawn between nodes i and j if the Euclidean
distance between i and j is less than 0.0163. The graph
has 1,178 edges and a mean vertex degree of 9. As in the
previous example, we compare the greedy algorithm and
greedy algorithm with approximate variances to the max de-
gree heuristic and random leader selection. In this example,
the approximation-based greedy algorithm performs nearly
as well as the greedy algorithm, and both perform better than
the two other schemes. Unlike the previous examples, the
max-degree heuristic leads to particularly bad leader sets in
this network. This may be due to the fact that in a geometric
graph, the degree skew is low, and so the node degree does
not play a significant role in the “importance” of a node in
reducing variance.

VI. CONCLUSION AND FUTURE WORK

We have presented a characterization of the robustness of
leader-follower consensus algorithms in undirected networks
in terms of the H2 norm of the system. This value captures
the coherence of the network in the face of external distur-
bances for a particular choice of leaders. We have shown that
network coherence depends on the eigenvalues of a principal
submatrix of the Laplacian and presented the coherence max-
imization problem as an optimization problem. We have also
proposed two more scalable, heuristic-based leader selection
algorithms, and we have compared the performance of these
algorithms on several network examples.

The generalization of coherence analysis and leader selec-
tion to systems with dynamics based on a weighted Laplacian
is straightforward and will be included in the full version
of this paper. We anticipate that this work can also be
easily extended to double integrator consensus dynamics in
undirected networks. With respect to directed networks, the
analysis of the H2 norm can be applied to certain directed
graphs where the Laplacian matrix is normal. However, the
heuristics for leader selection depend on the symmetry of
the Laplacian, and therefore alternate heuristics must be
considered for this case.

A topic of primary interest is the scalability of the leader
selection algorithms. The greedy heuristics presented in this
work can be applied to networks with numbers of nodes
in the thousands. The application of the leader selection
problem to massive networks on the order of millions of
nodes will require more scalable techniques, and we will
address this issue in future work.
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APPENDIX

We list some useful theorems that relate the eigenvalues of
a Hermitian matrix to the eigenvalues of the compression or
perturbation of that matrix. See [14] for a general reference.

Cauchy Interlacing Theorem

Theorem A.1: Let A be an Hermitian n × n matrix, and
let ω be an n-vector with each ωi ∈ {0, 1}. A[ω] denotes the
p × p principal submatrix of A that is formed by removing
the rows and columns corresponding to the components of
ω that are equal to 1. The eigenvalues of A and A[ω] are
related as follows,

λj(A) ≤ λj(A[ω]) ≤ λn−p+j(A).

For example, if B is an n − 1 × n − 1 principal submatrix
of A, then

α1 ≤ β1 ≤ α2 ≤ β2 ≤ . . . ≤ αn−1 ≤ βn−1 ≤ αn.

Eigenvalues of Inverses of Principal Submatrices

Theorem A.2: Let A be an Hermitian n×n matrix and let
A[ω] be a principal submatrix of A. The following inequality
holds for i = 1 . . .m.

λi

(
A−1[ω]

)
≥ λi

(
A[ω]−1

)
.
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