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Abstract— We consider the standard distributed average
consensus algorithm under the conditions of random communi-
cation link failures, for which we analyze convergence of nodes
to average consensus in the mean square sense. We first recast
this problem as a discrete-time linear system with multiplicative
random coefficients. We then rewrite the system equations as
a nominal system in feedback with diagonally structured time-
varying stochastic uncertainty; a problem for which necessary
and sufficient mean square stability conditions have recently
been derived. We investigate the particular instance of these
conditions in the case of networked consensus with random
link failures. In particular, we show that for circulant graphs,
mean square convergence is guaranteed for any probability of
link failure other than 1. We anticipate our particular analysis
techniques to be applicable to the robust performance problem
as well.

I. INTRODUCTION

We consider the distributed average consensus problem
over a connected, undirected network under the conditions
of random communication link failures. The objective of
distributed average consensus is for all nodes to reach
consensus at the average of their initial values using a
distributed algorithm that relies only on communication
between neighboring nodes in the network graph. Distributed
average consensus is a well-studied problem that has been
investigated under a variety of contexts including vehicle
formations [1], [2], [3], aggregation in sensor networks and
peer-to-peer networks [4], [5], and load balancing in parallel
processors [6], [7].

In a network where the communication structure is fixed, it
has been shown that convergence of the consensus algorithm
depends on the second smallest eigenvalue of the Laplacian
matrix of the graph, see [8], [9] for example. Recently,
interest has turned to investigating scenarios where the
communication structure is time-varying. One such scenario
is where the network evolves over time due to the mobility
of nodes, and work has been done to identify necessary and
sufficient conditions for convergence in this model [1], [2],
[3]. Additionally, it has also been shown that in a network
with a time-varying topology, as long as the union of all
infinitely occurring graph instances is connected, there is a
distributed consensus that will eventually converge [4].

Another scenario, which is the subject of this work,
is one where the underlying network graph is fixed, but
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where communication links are not necessarily reliable. For
example, in wireless networks, messages may be lost due
to interference, and in wired networks, buffer overflow may
result in packet loss. This scenario can be modeled using
stochastic communication link failures. For a completely
connected network where links fail with uniform probability,
it has been shown that the consensus algorithm convergences
almost surely [10]. In [11], the authors give necessary and
sufficient conditions for almost sure convergence in networks
where the algorithm weight matrices are i.i.d, and in [12],
the authors analyze a model where the network topology is
arbitrary and links may fail with non-uniform probability,
and they establish sufficient conditions for mean square
convergence based on the mean Laplacian. Additionally, both
[13] and [14] study the effects of stochastic communication
failures on the convergence rates of the consensus algorithms
in directed and undirected graphs respectively.

In this work, we consider a simple distributed average
consensus algorithm over a network where links fail with
uniform probability. We illustrate how this problem can be
recast as a nominal system in feedback with diagonally
structured time-varying stochastic uncertainty; a problem
for which necessary and sufficient mean square stability
conditions have recently been derived [15], [16]. We then
present an analysis of this system for circulant graphs and
prove mean square stability for any link failure probability
other than 1. We anticipate that our analysis techniques will
be applicable to the robust performance problem as well.

An outline of this paper is as follows. In Section II, we
formally define the system model and consensus algorithm.
Section III illustrates how the problem can be reformulated
as a structured stochastic uncertainty problem. In Section IV,
we give stability analysis of this reformulation for circulant
graphs. Finally, we conclude in Section V with a brief
discussion of future research directions.

II. PRELIMINARIES

We model the network by a connected, undirected graph
G = (V,E) where V is the set of N nodes and E is
the set of M communication links between them. Each
communication link has independent identical probability
p of failing in each round, where 0 ≤ p < 1. If a link
fails, no communication takes place across that link in either
direction in that round. Each node has an initial value xj(0),
and the objective is for nodes to reach consensus at the
average of all values xave :=

∑N
j=1 xj(0). We study a simple

distributed averaging protocol where, in each round, each
node exchanges information with all neighbors with which



it has active (not failed) communication links. We denote this
neighbor set by Nj(k). Each node updates its state according
to the following rule,

xj(k + 1) = β
∑

i∈Nj(k)

xi(k) + (1− |Nj(k)|)βxj(k),

where β > 0 is a constant that is identical for all nodes.
Let L denote the Laplacian matrix of the graph G. Then,

in the case where p = 0, the state x(k) evolves according to
the linear recursion

x(k + 1) = Ax(k), (1)

where the weight matrix A is given by A := I−βL. It is well
known that the system converges to consensus at xave if and
only if |λ2(A)| < 1 [8], [9], [17], [18], [1]. If the graph is
connected, there always exists a β for which this inequality
holds, for example β < 1

D where D is the maximum vertex
degree of the graph [9]. In this work, we assume that A is
such that |λ2(A)| < 1.

As shown in [14], the system (1) can be extended to
incorporate link failures. We note that a similar model for
communication failures in directed graphs is given in [19].
Let B be an oriented incidence matrix of the graph G. B is
an N ×M matrix where each column bj , j = 0, . . . ,M − 1
corresponds to an edge in the graph. Each bj has a 1 in the
row corresponding to one vertex incident to edge j and a -1
in the row corresponding to the other incident vertex1. The
remainder of the entries are 0. In a system where all links
have identical probability p of failing in each round, the state
vector x evolves according to the following recursion,

x(k + 1) = Ax(k) +
M−1∑
j=0

µj(k)βbjb∗jx(k), (2)

where µj(k) are Bernoulli random variables with

µj(k) :=
{

1 with probability p
0 with probability 1− p.

By choosing δj(k) := p − µj(k) and noting that the δj(k)
are zero mean, (2) can be rewritten as a linear recursion with
zero mean multiplicative noise,

x(k + 1) = Ax(k) +
M−1∑
j=0

δj(k)βbjb∗jx(k),

where A is the expected weight matrix,

A := A+ p

M−1∑
j=0

βbjb
∗
j .

We measure how far the system state is from consensus
at xave using the deviation from average vector, with each
component defined by x̃i(k) := xi(k) − xave. The vector
of deviations is the projection of x(k) onto the subspace

1Note that the choice of orientation for each edge is arbitrary and does
not reflect any underlying property of the communication link.
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Fig. 1. The feedback system (H, ∆).

orthogonal to span(1), where 1 is the N -vector with all
entries equal to 1. Equivalently,

x̃(k) := Px(k),

where P := I − 1
N 11∗ . The evolution of the this deviation

from average vector is governed by the following recursion,
which was first derived in [14],

x̃(k) = Ãx̃(k) +
M−1∑
j=0

δj(k)βbjbj∗x̃(k), (3)

with Ã := PA. As (2) and, therefore, (3) are stochastic
systems, we study convergence to xave in the mean square
sense. Specifically, we say that the system converges in mean
square if the total deviation from average converges to 0 as
k →∞, i.e.

limk→∞E
[
‖x̃(k)‖22

]
= 0.

In the next section, we show how the mean square conver-
gence of (3) can be characterized using stochastic structured
uncertainty analysis.

III. PROBLEM REFORMULATION

In this section, we show how (3) can be converted to a
form that is a amiable to robust stability analysis by rewriting
the dynamics as a feedback between a nominal system H
and a diagonally structured stochastic perturbation ∆, as
illustrated in Fig. 1. With this formulation, necessary and
sufficient conditions for mean square stability are given in
terms of only the nominal system.

We first note that (3) can be decomposed into an equivalent
representation of M2 scalar subsystems, one for each pair of
edges in G, as follows

Hi,j :
{
x̃(k + 1) = Ãx̃(k) + βbiu(k)
yj(k) = b∗j x̃(k)

, i, j = 0, ...,M−1,

(4)
ul(k) = δl(k)yl(k), l = 0, ...,M − 1. (5)



Let H be the M × M matrix of H2 norms of the
subsystems

H :=

 ‖H0,0‖22 · · · ‖H0,N−1‖22
...

...
‖HM−1,0‖22 · · · ‖HM−1,M−1‖22

 ,
where the discrete-time H2 norm of Hi,j is given by

‖Hi,j‖2 := tr

(
bi
∗

( ∞∑
l=0

Ãl βbjβbj
∗Ãl

)
bi

)

= β2 tr

(
bibi
∗

( ∞∑
l=0

Ãl bjbj
∗Ãl

))
.

In recent work, conditions for the mean square stability of
such systems have been derived [15], [16]. We restate the
relevant result here.

Theorem 3.1: Let H in (4) be a stable system, and let
var (δj) = σ2 for all j = 0, . . . ,M − 1. Then, the system
H in (4) in feedback with the uncertainty (5) is mean square
stable if and only if

σ2ρ (H) < 1,

where ρ(·) is the spectral radius.
This theorem implies that the distributed averaging algorithm
over a network where links fail uniformly at random with
probability p, as described by (2), converges to average con-
sensus in mean square if and only if the spectral radius of H
is strictly less than 1

σ2 . In the next section, we use this result
to prove that in specific network graph structures, namely
circulant graphs, mean square convergence is guaranteed for
any link failure probability other than 1.

IV. STRUCTURED UNCERTAINTY ANALYSIS

In this section, we derive mean square stability conditions
for the class of circulant graphs. A circulant graph is any
graph for which there exists a circulant adjacency matrix,
such as a d-dimensional torus network.

If G is a circulant graph, then H is circulant, and therefore,
so is the matrix H. One can find the eigenvalues of H
by taking the Discrete Fourier Transform (DFT) over any
column of H, (‖h0‖22, ‖h1‖22, ..., ‖hM−1‖22). Here, we use
the DFT over the first column of H, which is

ĥr :=
M−1∑
j=0

‖hj‖22e
−i 2πM jr

= β2 tr

b0b0∗
 ∞∑
l=0

Ãl
M−1∑
j=0

bjbj
∗e−i

2π
M jr Ãl

 ,

for r = 0, . . . ,M − 1. As the stability of H depends on the
spectral radius of H, we must identify the Fourier coefficient
with maximal absolute magnitude. This identification can be
obtained from the following lemma.

Lemma 4.1: Let ĉr be the Discrete Fourier Transform
over a sequence of non-negative reals, (c0, c1, . . . cM−1). The

Fourier coefficient with maximal modulus occurs at r = 0,
i.e.

|ĉr| ≤ ĉ0 = c1 + c2 + · · · cM−1, r = 0, . . . ,M − 1.
Proof: Assume, without loss of generality, that

c0 + c1 + . . .+ cM−1 = 1,

which also implies that ĉ0 = 1. Each Fourier coefficient
ĉr, r = 0 . . .M − 1, is a convex combination of a subset of
the M roots of unity e

−2πi
M j , j = 0 . . .M−1. Therefore each

ĉr lies in the convex hull of those roots and thus also lies in
the unit disk. This implies that |ĉr| ≤ 1 for r = 0 . . .M − 1,
and as ĉ0 = 1, we also have |ĉr| ≤ ĉ0 for r = 0 . . .M − 1.

This result proves that ρ(H) is the modulus of the Fourier
coefficent with r = 0,

ĥ0 = β2 tr

b0b0∗
 ∞∑
l=0

Ãl
M−1∑
j=0

bjbj
∗ Ãl

 (6)

= β2 tr

(
b0b0

∗
∞∑
l=0

ÃlLÃl

)
(7)

= β2 tr
(
b0b0

∗ L (I − Ã2)−1
)
. (8)

Equation (7) is derived from (6) by observing that, by
definition of bj ,

∑M−1
j=0 bjb

∗
j = L. Ã and L are both circulant

matrices, and therefore, they commute, which allows us to
derive (8) from (7).

In order to simplify the expression for ĥ0 further, we
observe that the choice of the column of H over which
the DFT is taken is arbitrary; ĥr are equivalent for each
column. Therefore, the following relationship holds for all
i, j = 0, . . . ,M − 1

tr
(
bibi
∗ L (I − Ã2)−1

)
= tr

(
bjbj

∗ L (I − Ã2)−1
)
,

and we can rewrite ĥ0 as the average of the 0th Fourier
coefficients for each column of H,

ĥ0 =
1
M

M−1∑
j=0

β2 tr
(
bjbj

∗ L (I − Ã2)−1
)

(9)

=
β2

M
tr
(
L2(I − Ã2)−1

)
. (10)

Equation (9) indicates that one can determine ρ(H) from
the eigenvalues of L and Ã, and, as both are circulant
operators, the eigenvalues can be obtained analytically using
the DFT. However, in order to show that our original system
(2) converges in mean square, we can employ a simpler
approach using well known bounds on the eigenvalues of the
Laplacian. First we note that the eigenvalues of Ã, denoted
λi(Ã), i = 1, . . . , N are related to the eigenvalues of L,
denoted λi(L), i = 1, . . . , N , where the eigenvalues of L are
given in order of decreasing magnitude, by the following,

λi(Ã) =
{

1− (1− p)β λi(L) for i = 1, . . . , N − 1
0 for i = N.
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Fig. 2. The feedback system (H, ∆) with input v and output w.

Therefore it is possible to rewrite (9) in terms of just the
eigenvalues of L,

ĥ0 =
β2

M

N−1∑
i=1

λi(L)2

1− (1− (1− p)β λi(L))2
. (11)

It has been shown that the eigenvalues of the Laplacian of
a connected graph are such that 0 = λN (L) < λN−1(L) ≤
λN−2(L) ≤ . . . ≤ λ1(L) = 2D, where D is the maximum
vertex degree of the graph [20]. Since ĥ0 is monotonically
increasing over λi(L), the summation in (11) can be bounded
by using the upper bound on λN (L), giving,

ρ(H) ≤ β2

(
N − 1
M

)(
(2D)2

1− (1− (1− p)β 2D)2

)
. (12)

Recall that by Theorem 3.1, the system H is mean square
stable if and only if σ2ρ(H) < 1. For uniform link failure
probability p, σ2 = p− p2. Using this fact and the bound in
(12) gives conditions that guarantee the mean square stability
of the system. We state this result in the following theorem.

Theorem 4.2: For a circulant network with N nodes and
M edges with a maximum vertex degree of D, the system
that obeys the dynamics in (2) converges in mean square if
β and p satisfy the following inequality(

N − 1
M

)(
pβD

1− (1− p)βD

)
< 1.

As a direct consequence of this theorem, it is possible to
select a β that guarantees mean square convergence for any
probability of link failure other than 1.

Corollary 4.3: Consider the dynamics (2) for a circulant
network. The system converges in mean square for any link
failure probability 0 ≤ p < 1 if β is chosen such that 0 <
β < 1

D .
We note that this choice of β also guarantees convergence
for the algorithm over the network with no communication
failures [9].

V. DISCUSSION

Our aim in this paper has been to demonstrate how
structured uncertainty analysis in the spirit of robust control
can be used to address consensus problems with link failures.
In this particular case, the uncertainty is of the time-varying

stochastic type. While, in this initial work, we have shown
mean square convergence for circulant networks, our ultimate
goal is to quantify performance in the presence of link
failures using the technique of equivalence between robust
performance and robust stability. It may be possible to derive
analytical bounds for the robust performance by studying the
system described by Figure 2 and quantifying the variance
of the output w in response to the input v. This technique
has been previously studied in a deterministic context [21],
[22], and we anticipate it will be applicable to the stochastic
setting proposed in this work.
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