
Multigrid Algorithms for Temporal Difference Reinforcement Learning

Omer Ziv OMERZ@V-TARGET.COM
Department of Electrical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel

Nahum Shimkin SHIMKIN@EE.TECHNION.AC.IL
Department of Electrical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel

Key Words: Multigrid, temporal difference learning, basis function hierarchies.

Abstract
We introduce a class of Multigrid based temporal
difference algorithms for reinforcement learning
with linear function approximation. Multigrid
methods are commonly used to accelerate
convergence of iterative numerical computation
algorithms. The proposed Multigrid-enhanced
TD(λ) algorithms allows to accelerate the
convergence of the basic TD(λ) algorithm while
keeping essentially the same per-sample
computational cost. We propose two versions of
the algorithm, a sequential and synchronous one,
establish the convergence of the latter, and
provide a simulation example that demonstrates
the potential performance benefits.

1. Introduction

Reinforcement Learning (RL) is concerned with on-line
computation of effective control policies, based on
interaction with the controlled environment (Bertsekas &
Tsitsiklis, 1996; Sutton & Barto, 1998). Special emphasis
is placed on techniques for handling large and complex
problems, in particular models with a large state space.
Parameterized function approximators are commonly
invoked to provide compact representations and learning
generalization.

Temporal difference algorithms for evaluating the value
function of a given policy are a central component in
many RL schemes. The basic TD(λ) algorithm was
introduced in Sutton (1988), and its convergence with
linear function approximation was analyzed in Tsitsiklis
and Van Roy (1997). Recently, two new classes of related
algorithms were introduced, LSTD(λ) (Boyan, 2002; Xu,
He & Hu, 2002) and λ-LSPE (Nedić & Bertsekas, 2003;

—————
 To appear (in a shorter version) in Proceeding of the ICML'05
Workshop on Rich Representations for Reinforcement Learning, Bonn,
Germany, August 2005.

Bertsekas, Borkar & Nedić, 2004). These algorithms are
essentially of a least-squares nature, and compared to
TD(λ) offer faster convergence in terms of the data
sample count, while the computational complexity per
sample increases from ()O K to 2()O K at least, where
K is the number of parameters to be learned.
Consequently, when K is large these algorithms may not
be feasible. In this paper we propose a Multigrid-based
enhancement of the TD(λ) algorithm, which aims to
improve the convergence rate while retaining the same

()O K complexity per iteration.

Multigrid (Briggs, Henson and McCormick, 2000;
Trottenberg, Oosterlee & Schüller, 2001) is a well-
established approach to accelerate iterative solutions of
large sets of linear equations, such as those arising in the
numerical solution of partial differential equations.
Essentially, an iterative relaxation scheme at a fine
resolution level is augmented by a coarse-grid correction
which reduces the so-called "smooth" error components,
which are otherwise slow to converge. Applying this
correction recursively over several resolution levels leads
to a Multigrid scheme. When applied to value iteration or
TD(λ) with linear function approximation, this approach
leads to algorithms that operate with different sets of basis
functions, each intended to capture a different resolution
level of the problem. We shall focus in particular on the
Algebraic Multigrid (AMG) variant of Multigrid, which
allows the automatic construction of the coarse grid
hierarchies based on the system matrices. This opens up
interesting possibilities for the automatic construction of
basis function hierarchies.

We shall propose two variants of a Multigrid learning
algorithm. The Sequential Multigrid TD(λ) algorithm, or
SeqMGTD(λ), operates on each grid level sequentially,
similar to standard Multigrid, with only one level active at
a time. In Simultaneous Multigrid TD(λ), or
SimMGTD(λ), computations at all resolution levels are
performed simultaneously as soon as a new data point is
available. As will be shown, the latter algorithm

converges to the exact (fine-level) solution of the
problem. The analysis of this algorithm will further point
to some possible enhancements of the standard TD(λ)
algorithm by modifying its eligibility trace vector.

An extensive literature exists on hierarchical and
multiscale methods in Dynamic Programming and RL,
pointers to which may be found in (Boutillier, Dean, &
Hanks, 1999; Barto & Mahadevan, 2003). In the context
of iterative policy evaluation, the aggregation-
disaggregation algorithm of Schweitzer, Puterman &
Kindle (1985) (see also Shweitzer, 1991) uses coarse
level corrections over fixed state aggregates, but with
"aggregation directions" (or inter-level operators as
defined below) that are re-computed at each iteration,
while Bertsekas & Castañon (1989) propose a related
scheme with adaptive state aggregates. The Multigrid
framework, on the other hand, essentially relies on a fixed
multi-level structure, an approach which facilitates its
incorporation in the TD(λ) algorithm with little overhead.
An application of Multigrid methods to Q-learning for
controlled diffusion processes is reported in Pareigis
(1997), where the focus is on the relation between time
and space discretization.

The paper is structured as follows. Sections 2 and 3
provide the necessary background on Multigrid and
TD(λ), respectively. Section 4 outlines the
(straightforward) application of Multigrid to value
iteration for policy evaluation in a non-learning scenario.
Section 5 presents the Multigrid learning algorithms are
their analysis, while Section 6 presents a basic simulation
experiment, followed by concluding remarks.

2. Multigrid Basics

We consider the efficient solution of the system of linear
equations =Ax b , where A is a square matrix and
typically sparse. Standard iterative methods are of the
form ()1: −= + −x x Q b Ax , where Q stand for a scaled
identity matrix (Richardson iteration), the diagonal of A
(Jacoby relaxation), or its lower-triangular part (Gauss-
Seidel). When the smoothing matrix ()-1I - Q A has
eigenvalues close to the unit circle, the corresponding
error components are slow to converge. Such error
components are referred to as "smooth", and typically
correspond to "low frequency" components in a geometric
context. Multigrid uses coarse-level corrections to reduce
these smooth error components.

A multigrid structure comprises of: (a) A sequence of
subsequent resolution levels indexed by

max{0,1, , }∈A … A , with 0=A the finest; (b) A
corresponding set of equations =A x bA A A of dimensions
nA , where 0 0,A b are the primary (fine-resolution) system

matrices, ,A bA A represent the system equations at
resolution level A , and 1n +A is several times smaller than
nA (a factor of 4 is common for 2D problems); (c)
Restrictor operators 1+IAA which turn a solution xA into an
approximate solution 1

1
+

+ =x I xA
A A A of the next-coarser

level; and (d) Interpolators 1+IAA (1n n +×A A matrices),
which do the opposite.

A basic two-level coarse grid correction at level max<A A
proceeds as follows. Starting with a vector xA , an
approximate solution to the equation =A x rA A A (with rA
to be defined shortly) is obtained as follows:

1. Presmoothing: Apply a (small) number of
iterative relaxations ()1: −= + −x x Q r A xA A A A A A

2. Compute the residual res = −r A xA A A A , and
restrict to the next level: 1

1 res+
+ =r IAA A A

3. Approximately solve 1 1 1+ + +=A x rA A A

4. Apply correction: 1 1: + += +x x I xA
A A A A

5. Postsmoothing: Similar to presmoothing.

By recursively applying this procedure at step 3 we obtain
a multi-grid scheme. A standard V-cycle starts at level 0
with 0 0=r b and proceeds all the way down to level maxA
and back up. Note that the system vectors bA (for 1≥A)
do not play any role here as they are replaced by the
interpolated residuals rA . At the coarsest level max=A A
the dimension is typically chosen to be sufficiently small
so that the equation =A x rA A A may be solved exactly. We
note that other, more involved cycles are often used as
well. The whole scheme is usually initialized with some
"coarse to fine" procedure which does utilize the system
vectors ()bA .

In classical (geometric) Multigrid, the system equations at
the different levels are typically obtained by discretizing
the original (continuous) problem over a regular grid at
different resolutions. The inter-level (restriction and
interpolation) operators are then constructed. A judicious
choice of these operators is critical for the efficiency of
the method, especially in the presence of discontinuities
and other spatial irregularities, and is highly problem
dependent.

2.1 Algebraic Multigrid (AMG)

AMG (Brandt, McCormick & Ruge, 1984; Stüben, 2001)
takes a different approach. Here the multigrid structure is
constructed automatically in a setup phase from the initial
system matrices 0 0,A b , based only on the algebraic

structure of 0A and without any “higher level"
information on the problem. This makes AMG attractive
as a "black box" solver for sparse linear equations,
whether of geometric origin or not.

The AMG setup phase proceeds recursively, starting at
0=A . First the inter-level operators 1+IAA and 1+IAA are

constructed based on AA . The system matrices for the
next level are then defined, typically via the Galerkin
operator 1

1 1
+

+ +=A I A IA A
A A A A , and 1

1
+

+ =b I bA
A A A . This

proceeds until the dimension of AA is sufficiently small
for a direct solution.

Several procedures exist for the definition of the inter-
level operators at the setup phase. The guiding principle is
to allow any algebraically smooth error vector to be well
approximated over the next level, namely by some
interpolated vector of that level. For concreteness we
briefly describe a simple scheme (Ruge-Stüben algorithm
with direct interpolation) which applies to matrices

()ija=AA with predominantly non-positive off-diagonal
elements (the diagonal is always taken to be positive).
Full details and generalizations can be found in (Stüben,
2001; section A.7). A variable i is said to be strongly
coupled to a variable j if

{ }maxij k i ika aε ≠− ≥ −

where (0,1)ε ∈ is a design parameter, with typical values
around 0.25. We start by a coarsening process which
splits the variables (1, ,)nA… into two disjoint sets C and
F , with the 1n +A variable in C are the next-level coarse
variables. The general objective is to ensure a strong
connectivity of each F -variable to C -variables; in
particular, a simple one-pass algorithm can ensure that
each F -variable is strongly coupled to some C -variable.
Given this partition, the interpolation operator is defined
by

()1

 :

 :
i

i

iki
i k

k P ii

e i C

a
e i F

a
α

−
+

∈

∈⎧
⎪= ⎨− ∈⎪
⎩

∑
I eA
A

where 0a− ≤ denotes the negative part of a , iP C⊂ is
the set of C -variables to which i is strongly coupled,
and

i

ijj
i

ijj P

a

a
α

−

−
∈

=
∑

∑
.

Finally, the restriction operator is defined as
1

1 ()T+
+ =I IA A
A A .

Simpler interpolators are used in a (strict) aggregation
scheme, where each F -variable is interpolated from
exactly one F -variable. The variables are thus effectively
partitioned into disjoint aggregates, each represented by a
single coarse variable. Here we may define

() { }
1

1 for a single for which max

0 : otherwise

ik ijj i
ik

k a a
≠

+

⎧ − = −⎪= ⎨
⎪⎩

IAA

Aggregation schemes often result in inferior performance,
but are somewhat simpler to implement.

Multigrid theory aims to establish convergence of the
iterative algorithm and, more importantly, to provide
bounds on the convergence rate and guidelines for
algorithm improvement. A well developed theory
currently exists mainly for problems in which the system
matrix A is symmetric and positive-definite (s.p.d.), and,
in particular, when A is also an M-matrix (namely s.p.d.
with negative off-diagonal elements) and diagonally
dominant. In practice, properly planned algorithms (and
AMG in particular) are robust with respect to violation of
these assumptions.

3. MDPs and the TD(λ) Algorithm

Consider a Markov Decision Process (MDP) with state S
and action space A . We assume here a finite state space
(but note that the proposed learning algorithms are
applicable to more general state spaces due to the use of
basis functions). Given the state ts and action ta at time
t , a reward (,)t t tg g s a= is obtained, and the next state

1ts + is determined according to the stationary transition
probability ()1 | ,t t tp s s a+ .

A stationary policy π is a mapping []: 0,1π × →S A ,

where (),s aπ is the probability of taking action a at
state s . Fixing the policy π , the state process becomes a
Markov chain with transition probabilities

()' |p s s = () (), ' | ,
a

s a p s s aπ∑ , and expected rewards

() () (), ,
a

g s s a g s aπ= ∑ . We shall assume that the
induced Markov chain is irreducible, a-periodic, with a
unique stationary distribution ()q s . For future reference
we denote by P the transition matrix with

(), ' ' |s s p s s=P , the reward vector g with elements

()s g s=g , and the diagonal matrix D with ()ss q s=D .
We consider the discounted cost functional with a
discount factor (0,1)γ ∈ , namely

00
v() (|)t

tt
s E g s sγ∞

=
= =∑ . The function v()s of the

stationary policy π is well known to be the unique
solution of the Bellman equation

()γ− =I P v g (1)

where I denotes the identity matrix and v is a vector of
state values, i.e. ()vs s=v . The value function is
approximated as a linear combination of K basis
functions { : }K

k Sφ → ℜ , namely

() () ()1
v K T

k kk
s s sφ θ φ θ

=
≈ =∑

where 1(, ,)Kφ φ φ= … , and Kθ ∈ℜ is the parameter
vector to be tuned. The TD(λ) algorithm iteratively
applies the following update rule

() ()()()1 1 1
T

t t t t t t t tg s sθ θ α φ γφ θ− + −= + − −z ;

()1t t tsλγ φ−= +z z

where ((),)t tz s s S= ∈z is the eligibility trace vector,
initialized by 0 =z 0 . []0,1λ ∈ is the algorithm
parameter, and tα is a positive gain sequence.

Theorem 1 (Tsitsiklis & Van Roy, 1997). Assume that
 (i) The gain sequence satisfies

0 tt
α∞

=
= ∞∑ , 2

0 tt
α∞

=
< ∞∑

 (ii) The basis functions are linearly independent.
Then TD(λ) converges with probability 1 to the unique
vector *θ that satisfies

*θ =A b (2)

where A is a K×K matrix and b a K×1 vector defined
as follows

() ()1T γλ γ−= − −A Φ I P D I P Φ

() 1T γλ −= −b Φ D I P g .

(3)

Φ is the N×K matrix with basis functions as its columns,
namely ()sk k sφ=Φ .

4. AMG for Value Iteration

In this section we briefly consider value iteration for the
known model case. Here the application of AMG as a
“black box” solver to (1) is straightforward, by defining

γ= −A I P and =b g . Observe that standard value
iteration, namely : γ= +v Pv g , is equivalent to a
Richardson relaxation of the corresponding linear system.
It is well known that standard value iteration is slow to
converge when γ P has an eigenvalue close to the unit

disk, namely γ is close to 1, and this is exactly when that
we expect AMG (and Multigrid in general) to provide a
significant improvement.

Similarly, we can apply AMG to solve (2), with A and b
as defined in (3). This is the starting point for the
multigrid learning algorithms of the next section.

In the special case when the transition probability matrix
P is symmetric, the matrix γ= −A I P turns out to be an
M-matrix with strictly dominant diagonal, a case to which
AMG theory nicely applies. Note also that P is typically
sparse in practical problems, hence so is A, a property
which is important for Multigrid efficiency. However,
since P is hardly ever symmetric, theoretical performance
bounds are not readily available. Nonetheless, standard
AMG algorithms can be applied to the non-symmetric
case without modification, and practical experience shows
that they perform well even when symmetry is violated
(e.g., Stüben, 2001, p. 518). It should also be noted that
convergence to the exact solution can always be enforced,
simply by “turning off” the coarse grid corrections at
some point, or by monitoring the error reduction as done
in other hierarchical schemes (Schweitzer et. al., 1985;
Bertsekas & Castañon, 1989). For the problems we tested,
unforced convergence was always obtained.

5. Multigrid Temporal Difference Learning

To motivate the proposed Multigrid enhancement to
TD(λ), we briefly consider the convergence of the mean
of the parameter vector { }tθE , denoted tθ . The
stochastic dynamics of the TD(λ) algorithm, as derived in
(Tsitsiklis & Van Roy, 1997), may be asymptotically
approximated by ()1t t t tθ θ α θ+ = + −b A , where A and

b are defined in (3). The error *
t tθ θ= −e relative to the

fixed point * 1θ −= A b satisfies 1 ()t t tα+ = −e I A e . TD(λ)
may thus be interpreted as a stochastic smoother of the
error. Multigrid is therefore a natural candidate for
speeding up its convergence.

5.1 The SeqMGTD(λ) algorithm

Oyr first algorithm mimics the V-cycle of the Multigrid
algorithm as described in Section 2. We assume that we
are given an initial (fine-level) set of K basis functions,
with corresponding feature vectors () ()0 s sφ φ= , as well

as a set of interpolators 1+IAA and restrictors 1+IAA . We then
recursively define feature vectors for all levels by

() ()1 1
T Ts sφ φ+ += IAA A A (4)

The algorithm is started by the function call
()0 0:=seqMTD , 0θ θ =A , where 0θ is an initial guess. The

algorithm requires some switching criterion for the pre
and post iterates. In the reported experiments we used the
simplest rule of switching after a fixed number of
iterations. Another reasonable option would be to increase
the iteration count per level as the gain parameter
decreases. The algorithm is started by the function call

()0 0:=seqMTD , 0θ θ =A , where 0θ is an initial guess. The
estimated value function at the end of a complete cycle is
given by () ()0 0v Ts sφ θ= . The value function for
intermediate times while level A is completed is given
more accurately by () ()0

v T
m mm

s sφ θ
=

= ∑ A .

Table 1: Sequential Multigrid TD(λ) at level A

()0
0 1 1SeqMGTD , , , , ,θ θ θ θ −A AA …

1. Initialize level correction: 0:θ θ=A A , :=z 0A
2. Pre-iterate at level A with residual rewards:

2.1. Observe the transition 1t ts s +→ and the reward

tg at time t .
2.2. Update the eligibility traces (): tsλγ φ= +z zA A A
2.3. Sample the residual

() ()()1
10

:
T

t m t m t mm
r g s sφ γφ θ−

+=
= − −∑ A

A

2.4. Calculate the temporal difference

() ()()1
T

t td r s sφ γφ θ+= − −A A A A A

2.5. Update ,: t dθ θ α= + zA A A A A
2.6. If the switching criterion is met then continue,

otherwise repeat from 2.1.
3. Apply coarse grid correction: If max≠A A ,

3.1. Recursive call
()1

0
1 0 1: MG-TD , 1, , , ,θ θ θ θ θ

++ = = +0
AA AA …

3.2. Correction using the interpolated error
1 1:θ θ θ+ += + IAA A A A

4. Post-iterate: repeat step 2 until meeting the
switching criterion.

5. Return θA .

To understand the proposed algorithm, note that the
Multigrid algorithm (as presented in Section 2) at level A
aims at the solution of the equation =A x rA A A , where rA
is defined recursively via 1 1 1 1()− − − −= −r I r A xA

A A A A A . In the
RL context, this equation cannot be represented explicitly
since the AA and rA are unavailable. We resolve this
problem by using an appropriate TD(λ) type iteration that
serves as the iterative smoother for that level. First, the
interpolated residual rA is sampled as step 2.3, and serves
as the driving reward signal for that stage. The TD(λ)

algorithm then proceeds with the level- A basis functions.
A transition to level 1+A then takes place for the purpose
of coarse grid correction, intended to accelerate the
convergence of the smoothed error at level A .

At the coarsest level (max=A A) step 3 and 4 should be
skipped. Alternatively, the TD(λ) iteration at that stage
may be replaced by another learning algorithm such as
LSTD(λ) or λ-LSPE.

The algorithm is sequential in nature, as the different
levels operate on non-overlapping time intervals. This
implies, in particular, that to make full use of data points
at each level requires data reuse, or experience replay.
Resetting of the eligibility traces at the beginning of each
stage is not necessary if temporal continuity of the data
samples is maintained in subsequent activations of the
same level.

 The following claim demonstrates that each level in
isolation approaches the solution of the desired equation
at that level. I

Proposition 1. Assume that the conditions of Theorem
1 are satisfied with the level-0 basis functions ()0 sφ , and
that all interpolator operators (1+IAA) are full rank. If at
some point the SeqMGTD(λ) algorithm is kept indefinitely
at level A , then θA converges (w.p. 1) to the solution of
the equation θ =A rA A A . Here AA is defined as in (3) with
Φ replaced by ΦA , and satisfies the recursion

1
1 1

−
− −=A I A IA A

A A A A ; while rA is defined recursively via
1 1 1 1()θ− − − −= −r I r AA

A A A A A , with 0r defined as b in (3) with
Φ replaced by 0Φ .

The proof (details of which we omit here) follows from
Theorem 1 by substituting rA for the reward signal,
computing its expected value with respect to the invariant
distribution, and some algebra.

Convergence of the overall algorithm cannot be
established in general, as even the basic AMG algorithm
is not guaranteed to converge without further restrictions
on the system matrices or inter-level operators. However,
with a bounded number of smoothing iterates per level
and diminishing gain, more complete results may yet be
obtained. We demonstrate that for the following variant
of the algorithm.

5.2 The SimMGTD(λ) algorithm

We next consider a variant of the last algorithm which
proceeds simultaneously at all levels, thereby eliminating
the requirement for data reuse. Moreover, for this variant
a convergence analysis of overall algorithm is provided.

The algorithm is shown in the next table. To highlight the
similarity with the previous algorithm is has been written
in recursive from, but can easily be written more

explicitly as will be seen shortly. The SimMGTD(λ)
algorithm has the following distinctive features:

1. All parameters except 0θ are reset to 0 before
each TD(λ) iteration.

2. The same temporal difference signal 0d is used
at all levels.

Thus, the temporal difference updates at all levels level
are carried out simultaneously and instantaneously, and
no coarse-level parameters need to be retained for the
next iteration. As before, the value function estimate is

() ()0 0v Ts sφ θ= .

Table 2: Simultaneous Multigrid TD(λ)

A. Basic loop:
1. Initialize 0θ , : 0=zA for all A
2. Observe the transition 1t ts s +→ and the reward

tg at time t .
3. Calculate the level-0 temporal difference:

() ()()0 0 0 1 0:
T

t t td g s sφ γφ θ+= − −

4. Update 0θ : 0 0: MGTD(, 0)θ θ= =A
5. : 1t t= + ; goto A2.

B. 0MGTD(,)θA A (recursive function)

1. Update eligibility trace: (): tsλγ φ= +z zA A A
2. TD(λ) iteration: , 0: t dθ θ α= + zA A A A
3. Coarse grid correction:

3.1. Recursive call:
()1

0
1 : MGTD , 1θ θ

++ = = +0
AA A

3.2. Correction: 1 1:θ θ θ+ += + IAA A A A
4. Return θA .

An equivalent form of the algorithm is given next.

Lemma 1. The SimMGTD(λ) algorithm is equivalent to
the following iteration

0 0 0 0: t dθ θ= + Λ z

where 0 0, dz are as defined in Table 2, and
max 0 0

0, 0 ,1
()T

t t tα α
=

= + ∑Λ I I IA
A A AA

.

Here 0I is the 0 0n n× unit matrix, and 0 0 1 1
1 2

−=I I I IAA A" .

This claim is easily verified by direct algebra, after noting
that the definition of ()sφA in (4) together with the

definition of zA imply that 1 1()T
+ +=z I zA
A A A .

We note that this equivalent form not efficient for the
purpose of implementation, as tΛ is an 0 0n n× matrix.
However, its does shed some light on the effect of the
coarse grid corrections in this algorithm, which is
equivalent to modulating the eligibility trace 0z by the
(positive definite) matrix tΛ . Moreover, this form will
leads us to the main convergence result of this section.

Theorem 2. Assume that the SimMGTD(λ)
algorithm is implemented with proportional gains, namely

,t tα β α=A A
for some non-negative constant βA , with 0 0β > . Assume
further that the conditions of Theorem 1 hold with respect
to the level-0 basis functions () ()0s sφ φ= and the above
gain factors tα . Then θA converges (w.p. 1) to the same
limit point as that the standard TD(λ) algorithm at the
finest level, namely to the solution of equation (3).

Proof (outline). For the assumed gains, it follows from
Lemma 1 that the algorithm is described by

0 0 0 0: t dθ θ α= + Cz , where max 0 0
0 0 1

()Tβ β
=

= + ∑C I I IA
A A AA

, a
symmetric positive definite matrix. Following the analysis
of Tsitsiklis & Van Roy (1997), it may be established that
the algorithm asymptotically follows the trajectories of
the ODE 0 0θ θ= − +CA Cb� , where 0A is known to be a
Hurwitz-stable matrix. It is now easily established (using
a Lyapunov equation argument) that stability of 0A
together with positive-definiteness of the symmetric
matrix C imply stability of 0CA , which implies stability
of the ODE and its convergence to the its equilibrium
point * 1 1

0 0 0 0() ()θ − −= =CA Cb A b . This, in turn, implies
the convergence (w.p. 1) of the learning algorithm to the
same point. �

6. An Illustrative Simulation Experiment

We next present some simulation experiments, which are
meant to illustrate in an idealized problem setting the
potential benefits of the proposed algorithms. The test-bed
problem we consider is a 1-D random walk described in
Figure 1. This Markov chain has N states, ordered on a
1-D line. Transition probabilities and rewards from inner
states and edge states are defined in the figure, and a
discount factor of 1 0.5Nγ −= is chosen, so that the
effective discount factor for a complete sweep of the state
is space 0.5. This problem is similar to the hop-world
problem in Xu et. al. (2002), and should provide favorable
conditions for performance improvement by multigrid
methods, due to the local and linear nature of the
transition structure.

1 2 NN-1

1, 10p g= = +

0.5, 1p g= = −

0.5, 1p g= = −

1, 10p g= = +

Figure 1 . The 1-D random walk problem

In the setup phase of AMG we used two interpolation
methods, as described in Section 2: the Ruge-Stüben
method and state aggregation. In Figure 2 we show results
for the (non-learning) value iteration scheme of Section 4.
One computational unit equals the number of
mathematical operations required for a single sweep of
standard value iteration. The computational effort
required to reach a residual error norm of 1010− was
38203 for standard value iteration, 19103 for the Gauss
Seidel variant, 1174 for AMG with state aggregation, and
23 for AMG with Ruge-Stüben interpolation.

We next consider the Multigrid learning algorithms for
the same problem, this time with 256 states. The trivial
basis functions were used in the first level (namely

0Φ = I). For the purpose of the setup phase the full
model was made available, Ruge-Stüben interpolation
was employed. We used TD(0) at all levels (including the
coarsest one) and a constant gain of 0.1α = throughout.
In SeqMGTD, we switched levels every 5000 samples
(which accounts for the periodic ripple of the
corresponding graph). The norm of the error in the
parameter vector (relative to its target value) is plotted in
Figure 3 as a function of the number of iterations. The
number of iterations (in thousands) required for reducing
the error norm by half is 654 for standard TD, 76 for
SeqMGTD, and 62 for simMGTD.

In both cases, AMG shows at least order of magnitude
improvement relative to standard iteration methods.

7. Concluding Remarks

Multigrid is currently a major tools major tool in
computational mathematics for speeding up the
convergence of iterative methods. As such, its interaction
with dynamic programming, and with RL in particular,
seems natural. In this paper we have outlined some
specific ways in which Multigrid might be combined
with temporal difference learning, in order to speed up its
convergence.

Several issues remain concerning the possible application
of the proposed algorithms. A central question is how to
set up an effective multigrid hierarchy, namely the coarse
level equations and inter-level operators, especially when
the model is unknown. In many cases the state space
possesses enough structure, for example geometric, to
guide a reasonable selection of state aggregates. A notable
feature of AMG is the automatic creation of the multigrid
hierarchy at the setup phase, even when no such structure
is available. In the known model case, the implementation
of a setup phase of AMG is straightforward, with many
methods available in AMG literature. In the learning case,
the required data on the relevant system matrix may not
be available beforehand. One way to obtain the required
information is to compute an estimate of the matrix 0A ,
as carried out in the LSTD algorithm (Boyan, 2002).
Clearly this might be an expensive process when this
matrix is large; however, a crude or even qualitative
estimate should suffice for the setup phase. An interesting
alternative would be to develop methods that form
effective aggregates directly from the observed state
process, based on the observed temporal proximity

0 1 2 3 4 5
x 104

10-15

10-10

10-5

100

105

|re
s| 2

computational units

Value iteration
Gauss-Seidel
AMG:aggregation
AMG:Ruge-Stuben

Figure 2. Convergence curves for the 1-D random walk
problem with 1000 states. The AMG methods use 6 grid levels,
with one pre- and post-smoothing iteration for seqMGTD.

Figure 3. Learning curves for the random walk problem with
256 states. AMG methods use 6 grid levels. Each curve is an
average of 5 Monte-Carlo runs..

between states, and relying on the AMG guidelines for
relating states that have strong connections in the
(effective) transition matrix (see Kretchmar & Anderson,
1999, for some related ideas).

Other issues concern the optimization of various parts the
algorithms themselves, such as the choice of setup
method, relative gains at the different levels, and
switching rules between levels. Clearly, additional
experimental work is required to evaluate these issues, as
well as the overall efficacy of these algorithms. Further
theoretical results concerning convergence and
performance bounds are equally of interest.

From another perspective, one should note that AMG is a
bottom up approach which builds coarse basis from finer
ones. Applying this process to the full state space, for
example, may lead to a scheme for constructing effective
basis functions, based on the considerable theoretical and
practical insight of AMG research.

Finally, we point out the result in Lemma 1, which
implies that the coarse grid corrections in the SimMGTD
algorithm are equivalent to a certain modification of the
eligibility traces at the basic (fine) level. This might point
to other possibilities for accelerating TD(λ) (and related
algorithms) by modifying the eligibility trace, an issue
which seems worthy of further study.

Acknowledgments
We thank Irad Yavne for his invaluable guidance and
advice on Multigrid methods.

References
Barto, A.G., and Mahadevan, S. (2003). Recent advances

in hierarchical reinforcement learning. Discrete Event
Dynamic Systems: Theory and Applications, 13, 41-77.

Bertsekas, D. P., Borkar, V., & Nedić, A. (2004).
Improved temporal difference methods with linear
function approximation. In J. Si, A. G. Barto, W. B.
Powell and D. Wunsch (Eds.), Learning and
Approximate Dynamic Programming, Wiley-IEEE
Press, 2004.

Bertsekas, D. P., & Castañon, D.A. (1989). Adaptive
aggregation methods for infinite horizon dynamic
programming. IEEE Trans. Automat. Contr., 34, 589-
598.

Bertsekas, D.P., & Tsitsiklis, J.N. (1996). Neuro-Dynamic
Programming. Bellmont, MA: Athena Scientific.

Boutillier, C., Dean, T., & Hanks, S. (1999). Decision-
theoretic planning: structural assumptions and
computational leverage. Journal of Artificial
Intelligence Research, 11, 1-94.

Boyan, J.A. (2002). Technical update: least squares
temporal difference learning. Machine Learning, 49,
233-246.

Briggs, W. L., Henson V. E., & McCormick, S. F. (2000),
A Multigrid Tutorial, 2nd Edition. Philadelphia, MA:
Siam.

Brandt A, McCormick, S. F., & Ruge, J. (1984).
Algebraic multigrid (AMG) for sparse matrix equations.
In: D. J. Evans (Ed.), Sparsity and it Applications,
Cambridge University Press, pp. 257-284.

Kretchmar, R.M., and Anderson, C.W. (1999). Using
temporal neighborhoods to adapt function
approximators in Reinforcement Learning. Proceedings
of the International Work Conference on Artificial and
Natural Neural Networks (IWANN), pp. 488-496,
Alicante, Spain.

Nedić, A., & Bertsekas, D.P. (2003). Least squares policy
evaluation algorithms with linear function
approximation. Discrete Event Dynamic Systems:
Theory and Applications, 13, 79-110.

Pareigis, S. (1997). Multi-grid methods for reinforcement
learning in controlled diffusion processes. Proceedings
of NIPS'96: Advances in Neural Information Processing
Systems 9 (pp. 1033-1039). MIT Press.

Shweitzer, P. J. (1991). A survey of aggregation-
disaggregation in large Markov chains. In: W. Stewart
(Ed.), Numerical Solution of Markov Chains, New
York: Marcel Dekker, New York.

Schweitzer, P. J., Puterman, M. L., & Kindle, K.W.
(1985). Iterative aggregation-disaggregation procedures
for discounted semi-Markov reward processes.
Operations Research, 33(3), 589-605.

Stüben, K. (2001). An Introduction to Algebraic
Multigrid. Appendix A in Trottenberg et. al. (2001).

Sutton, R.S. (1988). Learning to predict by the methods of
temporal differences. Machine Learning, 3, 9-44.

Sutton, R.S., & Barto, A. G. (1998). Reinforcement
Learning: An Introduction. Cambridge, MA: MIT Press.

Trottenberg U., Oosterlee C., and Schüller A. (2001).
Multigrid. San Diego: Academic Press.

Tsitsiklis, J. N., & Van Roy, B.(1997). An analysis of
temporal-difference learning with function
approximation. IEEE Transactions on Automatic
Control, 42(5), 674-690.

Xu, X., He, H., & Hu, D. (2002). Efficient reinforcement
learning using recursive least-squares methods. Journal
of Artificial Intelligence Research, 16, 259-292.

http://stuff.mit.edu/people/dimitrib/TD_Policy_Eval.pdf
http://stuff.mit.edu/people/dimitrib/TD_Policy_Eval.pdf

