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ABSTRACT
We consider a wireless collision channel, shared by a finite
number of mobile users who transmit to a common base
station using a random access protocol. Mobiles are self-
optimizing, and wish to minimize their individual average
power investment subject to minimum-throughput demand.
The channel state between each mobile and the base station
is stochastically time-varying and is observed by the mobile
prior to transmission. Given the current channel state, a
mobile may decide whether to transmit or not, and to de-
termine the transmission power in case of transmission. In
this paper, we investigate the properties of the Nash equi-
librium of the resulting game in multiuser networks.

We characterize the best-response strategy of the mobile and
show that it leads to a “water-filling”-like power allocation.
Our equilibrium analysis then reveals that one of the pos-
sible equilibria is uniformly best for all mobiles. Further-
more, this equilibrium can be reached by a simple distrib-
uted mechanism that does not require specific information
on other mobiles’ actions. We then explore some additional
characteristics of the distributed power control framework.
Braess-like paradoxes are reported, where the use of multi-
ple power levels can diminish system capacity and also lead
to larger per-user power consumption, compared to the case
where a single level only is permitted.

1. INTRODUCTION
1.1 Background and Motivation
Wireless technologies are broadly used nowadays for both
data and voice communications. The transmission proto-
cols of wireless devices need to cope with the scarce resources
available, such as bandwidth and energy. Additional difficul-
ties relate to the dynamic nature of wireless networks. For
example, the mobility of terminals and the frequent change
in their population introduces new challenges for routing
protocols. An additional distinctive dynamic feature of wire-
less communications is the possible frequent time variation

in the channel quality between the sender and the receiver,
an effect known as channel fading [1].

Motivated by scalability considerations, it has been advo-
cated in recent years that mobiles should have the freedom
to distributively adjust their transmission parameters (e.g.,
[2]). Perhaps the most effective parameter that can be au-
tonomously controlled is the transmission power. Power con-
trol becomes extremely significant when the mobile is aware
of its channel quality. Evidently, if channel state informa-
tion (CSI) is available, it can be exploited for increased rates
and better usage of the available power [1, 3, 4].

Much research has accordingly been devoted to study the op-
timal power allocation in face of varying channel conditions.
It turns out that the single-user closed-form solution to this
problem is analogous to “water-filling” (or water-pouring),
in the sense that transmissions are kept for better chan-
nel quality (see [5]). In shared, multiuser, wireless domains
this power-control framework becomes more involved, as the
performance of each mobile is significantly affected by the
actions taken by other mobiles. A classic model, which we
consider in this work, is that of a collision channel, where
multiple simultaneous transmissions lead to the loss of all
transmitted data.

In considering user-controlled transmissions, two basic (and
commensurate) requirements should be considered:

(i) Distributed control: Each user should base its decision
on locally available information (perhaps augmented
with some centrally controlled data which is easily
available to all).

(ii) Self-optimizing framework: If tight central regulation
is to be avoided, the procedures used by each mobile
should be perceived efficient from its own point of view.

Our work considers the combined power-control and trans-
mission scheduling problem in a time-slotted collision chan-
nel. At every time slot each user may observe its own chan-
nel quality, and decide whether to transmit or not, and if so
at which power level (chosen from a discrete set). Our focus
in this paper is on local stationary transmission strategies, in
which this decision can depend (only) on the current channel
state of the mobile. A basic assumption of our user model
is that each mobile user has some throughput requirement,
which it wishes to sustain with a minimal power investment.



The required throughput of each user may be dictated by its
application (such as video or voice which may require fixed
bandwidth), or mandated by the system. Users cannot coor-
dinate their transmissions, and adjust their transmission de-
cisions to minimize their power investment based on network
conditions. This situation is naturally modeled and analyzed
as a noncooperative game between the mobiles. The basic
objective of this paper is to obtain structural properties for
the associated Nash equilibria, and investigate the effects of
the physical parameters (e.g., the channel state distribution,
the available power levels) on equilibrium performance.

The technological relevance for our work lies, for exam-
ple, in Wireless Personal and Local Area Network systems
(WPANs, WLANs), where the underlying network users
may have diverse (application-dependent) throughput re-
quirements. The leading WLAN standard 802.11x [6], em-
ploys a random access protocol, whose principles are based
on the Aloha protocol [7]. Interestingly, on-going IEEE stan-
dardization activity (the 802.11n standard) focuses on the
incorporation of CSI for better network utilization. This last
fact motivates our research, as it can contribute to the un-
derstanding and improvement of present and future wireless
platforms.

1.2 Related Work
Significant research efforts have been dedicated over the last
decade to the study of wireless networks through game-
theoretic tools. In particular, several papers (e.g., [8, 9, 10])
have studied the equilibrium properties of power allocation
games, where mobile users adjust their transmission power
to meet some objective (such as maximizing the throughput,
or the energy investment per bit). The above papers con-
sider a static setup, where mobiles adjust their power based
on average network conditions. Consequently, an equilib-
rium is characterized by fixed transmission powers for all
users.

Recently, [11, 12] consider the power allocation game un-
der time-varying channel conditions, which require users to
adjust their transmission power as a function of the chan-
nel state. In [11] it is assumed that the channel state of
a particular user is available to all others, an assumption
that might be hard to justify in practice. As in our model,
[12] considers the case where only private channel state in-
formation is available. The reception model that is studied
in the above references supports multipacket-reception, as
opposed to the collision channel studied here. The user ob-
jective in [11, 12] assumes that users maximize individual
throughput subject to power constraints. In addition, these
two papers study a specific rate function that corresponds
to the Gaussian channel.

In [13], a similar model is considered, except that a single
power level only is available to each user. We extend this
work by allowing users to control their transmission power
too. For the single power case, it was established in [13] that
two equilibria exist, where the better one coincides with the
optimal (centralized assigned) stationary transmission strat-
egy. In our extended model we show that multiple equilib-
ria may exist (not necessarily two), where one is best for all
users, yet can be inferior to the optimal solution.

1.3 Contribution and Paper Organization
This paper presents a study of the non-cooperative power
control game between the channel-aware, self-interested net-
work users. The main contributions are summarized below.

• We provide a general model for the distributed power con-
trol and transmission scheduling problem, that incorporates
stochastic channel variation, with which the interaction of
selfish users may be studied.

• We characterize the best-response transmission strategy
for each mobile, i.e., the individually optimal power control,
given that other user strategies are fixed. The novelty here is
in considering the discrete water-filling problem, where the
channel quality takes a finite number of values and where the
number of power levels available to each mobile is finite as
well. This framework is more realistic than the continuous
case studied in classical water-filling literature ([1, 5] and
references therein).

• Based on the structural properties of each user’s best re-
sponse, we not only characterize each equilibrium in iso-
lation, but are also able to obtain important system-wide
properties. We show that equilibria are completely ordered
in terms of the per-user power investment; hence, there is a
power-efficient equilibrium, which is best for all. This equi-
librium can be reached through best response dynamics that
requires minimal information structure for each mobile.

•On the negative side, we show that the power-efficient equi-
librium is usually inferior to the centrally assigned power
schedule. In addition, we demonstrate that the freedom
given to users in the form of multiple power levels, might
have negative effects on network performance, in terms of
both channel capacity and overall power consumption. This
fact should be therefore considered in the design of present
and future medium access protocols.

We emphasize that the above results are valid under general
assumptions on the channel state distribution, the allowed
power-levels and the associated rates. Moreover, we make
no symmetry assumptions on the users, which are imposed
in much of the existing work in this area.

The structure of the paper is as follows. We first present
the general model (Section 2), and define the Nash equilib-
rium point of the noncooperative game. Structural results
of the Nash equilibria are derived in Section 3. In addition,
we show that if the required rates are feasible, there exists
an equilibrium point which is uniformly best for all users in
terms of the power investment. Accordingly, in Section 4
we suggest a simple distributed mechanism that converges
to that equilibrium. In Section 5 we address the efficiency
loss incurred by selfish user behavior, and identify a cou-
ple of Braess-like paradoxes. Section 6 discusses some con-
sequences of our results. Conclusion and further research
direction are drawn in Section 7.

2. THE MODEL
We consider a wireless network, shared by a finite set of
mobile users M = {1, . . . , M} who transmit to a common
base station over a shared collision channel. Time is slotted,
so that each transmission attempt takes place within slot



boundaries that are common to all. A finite set of power
levels1 Qm = {Qm

0 , Qm
1 , . . . , Qm

Jm} are available to each mo-
bile m, where 0 = Qm

0 < Qm
1 , · · · < Qm

Jm . A transmission at
any (positive) power level is successful only if no other user
attempts transmission simultaneously. Thus, at each time
slot, at most one user can successfully transmit to the base
station.

To further specify our model, we start with a description of
the channel between each user and the base station (Sec-
tion 2.1), ignoring the possibility of collisions. In Section
2.2, we formalize the user objective and formulate the non-
cooperative game which arises in a multi-user shared net-
work.

2.1 The Single-User Channel
Our model for the channel between each user and the base
station is characterized by two basic quantities.

a. Channel State. We assume that the channel state (or
quality) between mobile m and the base station evolves as
an ergodic Markov chain Xm(t) taking values in a finite set
Xm = (xm

1 , xm
2 , . . . , xm

Im) of Im states. For convenience we
shall assume that the states are ordered from worst (xm

1 ) to
best (xm

Im) and denote this relation by xm
1 < xm

2 < . . . <
xm

Im . The Markov chains Xm(t), m = 1 . . . M , are assumed
to be independent. We denote by πm the row vector of
steady state probabilities of the Markov chain Xm(t), and
by πm

i its ith entry corresponding to state xm
i ∈ Xm.

b. Expected data rate. Let Rm
i,j ≥ 0 denote the expected

data rate (in bits per second) that user m can sustain at a
given slot as a function of the current channel state xm

i and
the power level Qm

j assigned for the transmission. We as-
sume that the data rate strictly increases with the channel
quality, and further that it strictly increases with the trans-
mission power. That is,

Rm
1,j < Rm

2,j < · · · < Rm
Im,j , j ∈ {1, . . . Jm} (1)

Rm
i,1 < Rm

i,2 < · · · < Rm
i,Jm , i ∈ {1, . . . Im}; (2)

naturally, Rm
i,0 = 0, since Qm

0 = 0 by definition.

Example: Assume that white Gaussian noise with a spectral
density of N0/2 is added to the transmitted signal. Then
if a user can optimize its coding scheme to approach the
Shannon capacity, the average rate that can be sustained is
given by the following rate function

Rm
i,j = log(1 + xm

i Qm
j /N0). (3)

The Gaussian channel case is broadly studied in the Informa-
tion Theory literature. We shall consider the rate function
(3) in our experiments.

2.2 User Objective and Game Formulation
In this subsection we describe the user objective and the
non-cooperative game which arises as a consequence of the
user interaction over the collision channel. We characterize
stationary transmission strategies, which are central in this

1A continuum of power levels can be treated as well, and in
fact turns out to be analytically simpler. Here we choose to
focus on the finite case which is more realistic.

paper, and then define the Nash equilibrium of the game
within this class of strategies.

2.2.1 Basic Definitions
We associate with each user m a throughput demand ρm (in
bits per second) which it wishes to deliver over the network.
The objective of each user is to minimize its average trans-
mission power while maintaining the effective data rate at
(or above) this user’s throughput demand. We further as-
sume that users always have packets to send, yet they may
delay transmission to a later slot to accommodate their re-
quired throughput with minimal power investment.

Our focus in this paper is on local and stationary trans-
mission strategies, in which the transmission power decision
(which includes the decision not to transmit at all) can de-
pend only on the current state of the mobile xm

i . The user
does not have any information regarding the channel state
of other users. For any given channel state, the mobile de-
cision may include randomization over the available powers.
A formal definition is provided below.

Definition 2.1 (Locally stationary strategy). A
stationary strategy for user m is represented by an Im ×
(Jm +1) matrix qm, where its (i, j) entry, denoted qm

i,j, cor-
responds to the probability that user m will transmit at power
Qm

j when the observed channel state is xm
i . As such, the set

of feasible stationary strategies is given by

∆m =

(
qm

i,j ≥ 0,

JmX
j=0

qm
i,j = 1 ∀i = 1, . . . Im

)
.

For simplicity, we shall refer to the above defined strategy as
stationary strategy. We also define two user-specific quanti-
ties that are derived from a given stationary strategy qm.

• The transmission probability pm(qm) in a slot, given
by

pm(qm) =

ImX
i=1

πm
i

0
@

JMX
j=1

qm
i,j

1
A . (4)

• The collision-free data-rate Hm(qm), which stands for
the average data-rate of successful transmissions, namely

Hm(qm) =

ImX
i=1

πm
i

0
@

JMX
j=1

qm
i,jR

m
i,j

1
A . (5)

We use the term multi-strategy when referring to a collec-

tion of (stationary) user strategies, and denote it by q
4
=

(q1, . . . ,qM ). The notation q−m will be used for the trans-
mission strategies of all users but for the m-th one. Note
that the probability that no user from the setM\{m} trans-
mits in a given slot is given by

Q
l6=m(1−pm(ql)). Since the

transmission decision of each user is independent of the deci-
sions of other users, the expected data rate of user i, denoted
rm(q), is given by

rm(q) = Hm(qm)
Y

l6=m

(1− pl(ql)). (6)



The basic assumption of our model is that users are self-
optimizing and are free to determine their own transmission
strategy in order to fulfill their objectives. Furthermore,
users are unable to coordinate their transmission decisions.
This situation is modeled and analyzed in our paper as a
non-cooperative game [14] between the M users. In partic-
ular, we are interested in the Nash equilibrium point of the
game.

A Nash equilibrium point (NEP) for our model is a multi-
strategy q = (q1, . . . ,qM ), which is self-sustaining in the
sense that all throughput constraints are met, and neither
user can lower its power investment by unilaterally modify-
ing its transmission strategy. Formally,

Definition 2.2 (Nash equilibrium point). A multi-
strategy q = (q1, . . . ,qM ) is a Nash equilibrium point if for
every m ∈M,

qm ∈ argmin
q̃m∈∆m

8
<
:

ImX
i=1

πm
i

� JMX
j=1

q̃m
i,jQ

m
j

�
: rm(q̃m,q−m) ≥ ρm

9
=
; .

(7)

Using game-theoretic terminology, a Nash equilibrium is a
multi-strategy q = (q1, . . . ,qM ) so that each qm is a best
response of user m to q−m, in the sense that the user’s cost
(average power in our case) is minimized.

Noting (6), it is important to emphasize that the only inter-
action between users is through the effective collision rate
over the shared channel. This observation is significant in
the context of the game dynamics, as the only external in-
formation that is required for best response adaptation is
not user-specific and can be relatively easily measured.

Remark 1. As noted above, we restrict attention here
to stationary strategies. When the channel state process is
i.i.d., it may be shown that a Nash equilibrium in locally
stationary strategies is in fact a Nash equilibrium in general
strategies. For more general state processes (e.g., Markov-
ian), this need not be the case and the restriction to station-
ary strategies is upheld for simplicity of implementation.

3. EQUILIBRIUM ANALYSIS
In this section we characterize the Nash equilibria (7) of
the network under stationary transmission strategies. Our
analysis starts by examining the best-response strategy of
each mobile. In particular, we demonstrate that classic
“water-filling” properties for optimal power control carry
over to the noncooperative-game framework. We then show
that one of the possible equilibrium points is best for all
users in terms of their power investment.

3.1 Basic Properties
This subsection provides some basic properties of the best-
response strategy. Our first result states that the through-
put demands should be met with equality at every equilib-
rium point.

m

m

J
Q  
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m
jQ  3
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Figure 1: The rate as a function of the transmission
power for some fixed state xi

m. Observe that a power
level which obtains a rate which is not on the lower
concave hull of the interpolation (Qm

3 in the figure)
would not be used: A convex combination of Qm

2 and
Qm

4 can lead to a better rate at the same power cost.

Lemma 1. Let q = (q1, . . . ,qM ) be a Nash equilibrium
point (7). Then

rm(q) = ρm. (8)

Proof. The result immediately follows from (5)–(7) by
noting that both the user rate and average power consump-
tion are monotonously increasing functions of qm

i,j ,
j ∈ {1, . . . Jm}, i ∈ {1, . . . Im}. Indeed, if the current rate is
strictly higher than required, each user may unilaterally re-
duce its power investment (and still hold to its requirement)
by slightly decreasing some qm

i,j > 0, j ∈ {1, . . . Jm}.

Noting (6), we observe that the best-response strategy can
be analyzed for each user in isolation, as the overall effect of
other users is manifested only through a multiplicative term
which modulates the effective rate. Indeed, Lemma 1 indi-
cates that the user’s best response must obey Hm(qm) =

ρ̄m, where ρ̄m = ρm
Q

l6=m(1−pl(ql))
. Consequently, we shall

henceforth use the latter transformation for the best-response
characterization.

Consider the (discrete) rate function obtained for a given
state xm

i , and let fm
i (Qm) be its continuous interpolation.

Let gm
i (Qm) be the lower concave hull of fm

i (Qm), i.e, the
smallest concave function such that gm

i (Qm) ≥ fm
i (Qm) (see

Figure 1). We next assert that power levels that are not on
the lower concave hull gm

i (Qm) would not be used in any
best-response strategy.

Lemma 2. Consider any channel state xm
i . Let Qm

j be a
power level whose associated rate is below gm

i (Qm). Then
qm

i,j = 0 under every best-response strategy.

Proof. Assume by contradiction that qm
i,j > 0. Let Qjh >

Qm
j and Qjl < Qm

j be the two adjacent to Qm
j levels that are

on the lower concave hull gm
i (Qm) (see Figure 1). Then there

exists some 0 < δ < 1 such that δQjh + (1 − δ)Qjl = Qm
j .

Let ε > 0 be some small constant. Consider now the mod-
ified strategy q̃, given by q̃m

k,j = qm
k,j , k 6= i, q̃m

i,j′ = qm
i,j′ ,



j′ /∈ {j, jh, jl}, q̃m
i,j = qm

i,j − ε, q̃m
i,jh

= qm
i,jh

+ εδ, q̃m
i,jl

=
qm

i,jl
+ ε(1− δ). This strategy obviously maintains the same

power investment, yet obtains strictly higher rate. Hence
Hm(q̃m) > ρ̄m. We may now follow the same argument
as in the proof of Lemma 1 to conclude that there exist a
lower-power strategy that holds to the rate requirement, in
contradiction to the optimality of q.

As a consequence of the above lemma, for any given chan-
nel state xm

i , the interpolation of power levels that can be
used (with the associated rates) creates a piecewise-linear
concave function. Due to concavity, the next result imme-
diately follows.

Lemma 3. Let qm be a best-response strategy. Then for
every state xm

i there are at most two non-zero elements qm
i,j

and qm
i,k. Moreover, these elements correspond to adjacent

power-levels Qm
j and Qm

k on the lower concave hull gm
i .

Proof. Fix a channel state xm
i . Based on Lemma 2 we

may restrict attention to power levels that are on the lower
concave hull gm

i (Qm). Hence, the interpolation of their cor-
responding rates Rm

i,j is exactly gm
i (Qm). To prove the claim,

we next show that a strategy q which assigns strictly posi-
tive transmission probabilities to non-adjacent power levels
(on the lower concave hull) is indeed suboptimal. Let Qm

l

and Qm
h be two such power levels, and assume by contradic-

tion that positive probabilities are assigned to these power
levels. By assumption, there exists an additional power level
Qm

j∗ (which belongs to gm
i (Qm)) such that

Qm
j∗ = δQm

l + (1− δ)Qm
h , (9)

0 < δ < 1. Consider a modified strategy q̃ which is iden-
tical to q except that q̃m

i,l = qm
i,l − δε, q̃m

i,h = qm
i,l − (1 − δ)ε,

q̃m
i,j∗ = qm

i,j∗ + ε. Noting (9), both q̃ and q consume the
same average power. The difference in both strategy rates,
after divided by ε is given by gm

i (δQm
l + (1 − δ)Qm

h ) −
[δgm

i (Qm
l ) + (1− δ)gm

i (Qm
h )]. This quantity is strictly pos-

itive due to concavity (and noting that gm
i is a strictly in-

creasing function). We now repeat the same argument as
in Lemma 1 to conclude that a lower-power strategy can be
derived from q̃, contradicting the optimality of q.

The significance of Lemma 3 is that the best-response for
each state can be represented by a point on the concave hull
graph.

Until now we have focused on the optimal strategy within
each channel state. We next wish to provide a characteriza-
tion of the best-response across the different states. To that
end, we require the following definition.

Definition 3.1 (rate-gain). Let Qm
j and Qm

k (Qm
j <

Qm
k ) be two adjacent power-levels on the lower concave hull

of gm
i . The rate-gain (under state xm

i ) for these two power

levels is defined as σm
i,k

4
=

Rm
i,k−Rm

i,j

Qm
k
−Qm

j
.

The next result states that higher rate-gain power levels
should always be preferred. This property is central in the
characterization of the best-response, and would have impli-
cations on the efficient calculation of the best-response, as
well as on the equilibrium structure (See Section 3.2)

Lemma 4. Consider two channel states xm
i and xm

i′ . A
power allocation with qm

i,j < 1 (j ≥ 1) and qm
i′,k > 0 (k ≥ 1)

such that σm
i,j > σm

i′,k is always suboptimal.

Proof. The idea of the proof, is to raise the transmission
probability qm

i,j and decrease qm
i′,k while preserving the same

data rate. Such strategy would lower the average power
investment, and the result will follow.

Notice that according to Lemmas 2–3 we may restrict at-
tention to strategies in which two adjutant power levels on
the lower concave hull of each state are used. To simplify
notations, let Qm

j and Qm
j−1 be those power levels for state

xm
i , and let Qm

k and Qm
k−1 be those for state xm

i′ . Accord-

ingly, σm
i,j =

Rm
i,j−Rm

i,j−1
Qm

j −Qm
j−1

and σm
i′,k =

Rm
i′,k−Rm

i′,k−1
Qm

k
−Qm

k−1
. For

ε > 0 small, consider the modified strategy q̃m
i,j = qm

i,j + ε,
q̃m

i,j−1 = qm
i,j−1 − ε. This strategy raises the average rate

by πm
i ε(Rm

i,j − Rm
i,j−1). To compensate for this rate raise,

we further impose q̃m
i′,k = qm

i,k − δ, q̃m
i′,k−1 = qm

i,k−1 + δ.
To equalize the rates obtained by q and q̃, δ is chosen as

δ = ε
πm

i
πm

i′

Rm
i,j−Rm

i,j−1
Rm

i′,k−Rm
i′,k−1

. The difference in power investments

between q̃ and q is consequently given by

1

επm
i

"
(Qm

j −Qm
j−1)−

Rm
i,j −Rm

i,j−1

Rm
i′,k −Rm

i′,k−1

(Qm
k −Qm

k−1)

#

=
1

(επm
i )(Rm

i′,k −Rm
i′,k−1)

[(Qm
j −Qm

j−1)(R
m
i′,k −Rm

i′,k−1)

−(Rm
i,j −Rm

i,j−1)(Q
m
k −Qm

k−1)], (10)

which is strictly less than zero by the lemma’s assump-
tion.

3.2 Equilibrium Structure and Calculation of
the Best-Response

Lemma 4 leads to several significant properties regarding the
structure of the equilibrium. As expected, better channel
states would be always preferred. In addition, there always
exists a best-response strategy with a single randomization
of power levels. These properties are summarized in the next
proposition.

Proposition 1. The following properties are valid for every
best-response strategy: (i) There exists some state xm

i in
which the user transmits with positive probability (i.e., 0 <PJm

j=1 qm
i,j ≤ 1), and further

PJm

j=1 qm
k,j = 1 for k > i andPJm

j=1 qm
k,j = 0 for k < i. (ii) There exists a best response

with a single randomization, that is for every channel state
i but one there exists some power level in Qj which is used
w.p. 1, i.e., qm

i,j = 1.

Proof. (i) Let xm
i be the lowest channel quality at which

the user transmits with positive probability. Then by con-

struction,
PJm

j=1 qm
k,j = 0 for k < i. For every k > i, let

Qm
jk

be the smallest power level that is on the lower concave
hull gm

jk
. It can be easily seen that σm

k,jk
> σm

i,j for every

Qj that is on the lower concave hull gm
i . This property

essentially follows from (2). Assume by contradiction thatPJm

j=1 qm
k,j < 1; this means that qm

k,jk
< 1. It then follows by

Lemma 4 that such strategy cannot be optimal.
(ii) In view of Lemma 4, a best-response with more than a



single randomization is possible if and only if two (or more)
rate-gains, corresponding to active power levels of two (or
more) different channel states, are the same. In that case,
the same interchange argument used in the proof of Lemma
4 can be applied for constructing an equal power strategy
that eliminates one of the randomizations. Repeating such
procedure will result in a single randomization.

Remark 2. Classic results on“water-filling”optimization
consider the specific cost function (3). For this function, it
can be shown that higher powers are used for better chan-
nel states. Under our general model assumptions this is
not necessarily true. Generally, an additional property of
“increasing differences” is required for monotonicity in the
power levels as described above. In our case, the increasing
differences property holds if and only if

Rm
i′,j′ −Rm

i,j′ > Rm
i′,j −Rm

i,j (11)

for every two indices pairs i′ > i and j′ > j.

Based on Lemma 4, the following iterative procedure can be
carried out to efficiently calculate the best-response:

1. Arrange the rate-gains in decreasing order.

2. Starting with the highest rate-gain, say σm
i,k =

Rm
i,k−Rm

i,j

Qm
k
−Qm

j
,

set qm
i,k := 1, qm

i,j := 0. Calculate the average rate via
(5). If the total rate exceeds ρ̄m find qm

i,k < 1, qm
i,j > 0

such that required rate is met with equality.

3. Otherwise, raise the rate by examining the next high-
est rate-gain, and setting the associated probabilities
as in 2. Repeat this step until obtaining the required
data rate ρ̄m.

It immediately follows from Lemma 4 and Proposition 1 that
step 3 above proceeds by either augmenting the power-level
for a channel state which is at use, or initiating transmissions
for a new channel state (with lower quality than the ones
used so far). See Figure 2 for a graphical interpretation.
The above procedure guarantees convergence to the best-
response strategy; this property easily follows from Lemma
4.

3.3 Power-Efficient Equilibrium
The previous subsections established certain properties that
are common to all equilibrium points. The aim of this sec-
tion is to compare the possible equilibria in terms of power
investment. We shall establish that the equilibrium point
are ordered with respect to the individual users’ power in-
vestment uniformly across all users. That is, if some user
spends more power in one equilibrium than in the other,
so do other users. This property immediately implies that
if there exist several equilibrium points, one of them is best
for all users in terms of the power investment. We shall refer
to this equilibrium as the power-efficient equilibrium.

We establish below that equilibria are ordered (component-
wise) in terms of the power investment. For this result, the
following lemma is required.
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Figure 2: Consider a two-state channel with two
power levels available. This graph depicts the rate
as a function of the used power for both states. The
procedure for optimizing the power allocation starts
with using the lower power level at the best state.
If the obtained rate is not satisfactory, note that in
this case the preceding choice is to transmit with
the lower power level also at the worse state. This
example demonstrates a scenario where users may
frequently transmit, resulting in frequent collisions.

Lemma 5. Assume that user m is a unique network user.
Consider two different rate demands ρm and ρ̃m for that user
so that ρm < ρ̃m. Let qm and q̃m be best-responses for ρm

and ρ̃m, respectively. Then pm(qm) ≤ pm(q̃m).

Proof. Consider the iterative procedure for obtaining
the best-response strategy (see Section 3.2), which gradu-
ally raises the data rate (and the power investment) until
reaching the required rate. As earlier observed, it immedi-
ately follows from Lemma 4 and Proposition 1 that each step
of the above procedure proceeds by either augmenting the
power-level for a channel state which is at use, or initiating
transmissions for a new channel state (with lower quality
than the ones used so far). Note further that a new channel
state will not be used unless the transmission probability
at better states equals one, hence the overall transmission
probability (weakly) increases along the procedure.

The path for obtaining ρm can obviously be treated as a
“midway” for obtaining ρ̃m. Consequently, based on the
above observations, pm(qm) ≤ pm(q̃m) must hold.

The above lemma immediately leads to the next theorem.

Theorem 2. Let q and q̃ be two equilibria so that

Hm(qm) < Hm(q̃m)

for some user m. Then Hl(ql) < H l(q̃l) for every other user
l 6= m. Consequently, the power investments that correspond
to q̃ are strictly higher for all users, compared to the power
investments under q.

Proof. Recall from Lemma 1 that

rm(q) = ρm (12)



for every equilibrium point q. Noting (6), dividing the equa-
tions (12) of any two users m and l results in the following

relation Hm(qm)(1−pl(ql))

Hl(ql)(1−pm(qm))
= ρm

ρl , or

�
Hm(qm)

1−pm(qm)

�
�

Hl(ql)

1−pl(ql)

� =
ρm

ρl
. (13)

If Hm(qm) < Hm(q̃m), it follows by Lemma 5 that pm(qm) ≤
pm(q̃m). Hence in order to keep the fixed ratio for q̃ it fol-
lows that H l(ql) < H l(q̃l). It remains to verify that the
power investment at q̃ is strictly higher compared to the
equilibrium q. Evidently if this was not the case, users can
use q̃m as a starting point, by subtracting a small amount
from some q̃m

i,j > 0, j > 1 and obtaining a strictly lower-
power allocation for Hm(qm); this contradicts q being an
equilibrium point.

The significance of Theorem 2 is that all mobiles are better-
off at one of the equilibrium points, the power-efficient equi-
librium. The next subsection is thus dedicated to finding a
simple distributed mechanism which converges to this equi-
librium point.

4. BEST-RESPONSE DYNAMICS AND CON-
VERGENCE TO THE POWER EFFICIENT
EQUILIBRIUM

A Nash equilibrium point for our system represents a strate-
gically stable working point, from which no user has incen-
tive to deviate unilaterally. Still, the question of if and how
the system arrives at an equilibrium needs to be addressed.
Furthermore, one of the equilibria (the power-efficient equi-
librium) is best for all users, hence it is of major importance
to employ mechanisms that converge to that equilibrium
point. We establish below that the natural course of asyn-
chronous best-response dynamics converges to this desirable
equilibrium. Notably, these dynamics would not require spe-
cific knowledge on other user strategies, thus they can be
practically applicable in wireless systems.

The distributed mechanism we consider here relies on a
user’s best-response, which was comprehensively studied in
Section 3. Recall that in our model, the best response for
user m is a solution to the following optimization problem

min
qm∈∆m

8
<
:

ImX
i=1

πm
i

� JMX
j=1

qm
i,jQ

m
j

�
: Hm(qm) = ρ̄m

9
=
; , (14)

where ρ̄m = ρm
Q

l6=m(1−pl(ql))
. Our distributed mechanism can

be described as follows. Each user updates its transmission
strategy from time to time through its best response (14).
The update times of each user need not be coordinated with
other users.

This mechanism reflects what greedy, self-interested users
would naturally do: Repeatedly observe the current net-
work conditions and react to bring their throughput to the
required level, while using minimal power. For the analysis
of the best-response scheme we assume the following.

Assumption 1.

(i) The user population and their throughput requirements
are fixed. Users may however join the network at different
times.
(ii) Each user a-priori knows its own channel state distrib-
ution.
(iii) Users repeatedly update their transmission strategies
(i.e., an infinite number of updates for each user) using
Eq. (14) .
(iv) The prevailing quantities

Q
l6=m(1− pl) are perfectly es-

timated by the user before each update.

Our convergence result is summarized below.

Theorem 3. Assume that ρ = (ρ1, . . . , ρn) admits an
equilibrium point. Then under Assumption 1, the best re-
sponse dynamics asymptotically converges to the power-efficient
equilibrium.

The proof proceeds by showing that the vector of user trans-
mission probabilities p monotonously increases until conver-
gence. A full proof is provided in the appendix.

We briefly list here some important considerations regarding
the presented mechanism.

• It is important to notice that each user is not required
to be aware of the specific strategy of every other user.
Indeed, only the overall idle probability of other usersQ

j 6=i(1 − pj) is required in (14) (in addition to the
private channel state distribution of the user which is
assumed to be a-priori known). This quantity could
be estimated by each user by monitoring the channel
utilization.

• Assumption 1(iv) entails the notion of a quasi-static
system, in which each user responses to the steady
state reached after preceding user updates. This as-
sumption approximates a natural scenario where users
update their transmission probabilities at much slower
time-scales than their respective transmission rates.

The assumptions used for our convergence results are ob-
viously idealized and should be supplemented with further
analysis of the effect of possible deviations from the model.
Such deviations could lead the system to converge to worse
equilibria, which is obviously undesirable. If such behavior
is detected, users can reset their probabilities and restart
the best-response mechanism for converging to the power-
efficient equilibrium. This procedure resembles the basic
ideas behind TCP protocols. The exact schemes for de-
tecting suboptimal network operation, and consequently di-
recting the network to the best equilibrium, are beyond the
scope of the present paper.

5. EQUILIBRIUM (IN)EFFICIENCY AND
BRAESS-LIKE PARADOXES

In the previous two section we have indicated that there
exists a best equilibrium in terms of power investment. Fur-
thermore, this equilibrium can be reached through best-
response dynamics. Our first objective in this section is to



examine whether the best equilibrium is also socially opti-
mal. In [13] it was shown that this is the case when a single
power level is available to each user. We next demonstrate
by means of an example that this property generally does
not carry over to our model. We then investigate the conse-
quences of providing users with multiple power levels, and
relate our observations to the well-known Braess paradox.

Recently, there has been much work in quantifying the “effi-
ciency loss” incurred by the selfish behavior of users in net-
worked systems (see [15] for a comprehensive review). The
two concepts which are most commonly used in this con-
text are the price of anarchy (PoA), which is (an upper
bound on) the performance ratio (in terms of a relevant so-
cial performance measure) between the global optimum and
the worst Nash equilibrium, and price of stability (PoS),
which is (an upper bound on) the performance ratio between
the global optimum and the best Nash equilibrium.

Returning to our specific network scenario, consider the case
where a central authority, which has full information regard-
ing the channel state distributions of every user can enforce
a stationary transmission strategy (see Definition 2.1) for
every user m ∈ M. We consider the total power consump-
tion as the system-wide performance criterion, namely

C(q)
4
=
X

m∈M

ImX
i=1

πm
i

� JMX
j=1

qm
i,jQ

m
j

�
. (15)

Our aim is to compare the performance of the optimal cen-
trally assigned multi-strategy to the performance at the Nash
equilibrium with respect to the quantity C(q).

A simple example in [13] shows that the PoA generally un-
bounded. The example obviously holds for our (more gen-
eral) model as well. The fact that the power-efficient equi-
librium can be reached by a distributed asynchronous mech-
anism (as established in Theorem 3), makes the price of sta-
bility more significant, as the price of anarchy can be avoided
by employing the mechanism.

We next show through a numeric example that unlike the
single power case, there can be a gap between the power-
efficient equilibrium and the optimal solution.

Example 1. We consider a wireless network of two sym-
metric users, with identical channel conditions and rate re-
quirements ρ1 = ρ2 = ρ (hence user indexes are omitted in
the sequel). The rate per (state,power) pair is given by (3).
The possible channel states are X = {0.1, 0.5, 5, 30, 80, 200}
and the corresponding steady state distribution is

π = (0.3, 0.25, 0.2, 0.12, 0.08, 0.05).

We consider two different game instances:

• Instance 1: Multiple power levels are allowed for each
user; Q(1) = {0, 1, 2, 3, 6, 8, 15}.

• Instance 2: A single power level (besides zero) is al-

lowed; Q(2) = {0, 2}.

Figure 3 depicts the per-user energy at equilibrium as a func-
tion of the required data rate ρ (note that multiple equilibria
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Figure 3: The average energy as a function of the
required rate. Note that multiple equilibria are pos-
sible for a given ρ. In the marked region of re-
quired rates, the power-efficient equilibrium with a
single power level outperforms the respective one
with multiple power levels.

are possible for a given ρ).

The interesting region of required rates is ρ ∈ [0.78, 0.92]
(emphasized in the figure itself). For rates at this region,
the power-efficient equilibrium of Instance 2 (a single power
level) obtains lower energy investment compared to the power-
efficient equilibrium of Instance 1 (multiple power levels).
Noting that the single power level of 2 is one of the available
powers in Q(1) indicated that the power-efficient equilibrium
for the multiple-power case is not a system-wide optimal
multi-strategy. Indeed, a simple power strategy that uses a
single power only outperforms the equilibrium of Instance
1. Hence, the optimal centrally assigned strategy would ob-
viously outperform the equilibrium policy of Instance 1 as
well.

We have demonstrated through an example that the price of
stability is generally larger than 1. A precise quantification
for this measure obviously depends on the channel charac-
teristics, the available powers and the assumptions on the
rate functions. Explicit models and their associated price of
stability are an interesting subject for future research.

A classic example for the consequences of self-interested be-
havior in networks is the Braess paradox [16], which shows
that the addition of a link in a transportation network might
increase the overall traffic delay at equilibrium. We next
point to Braess like paradoxes in our network model, which
concern the addition of available power levels to each user.

The first Braess-like paradox has already been demonstrated
in Example 1 of the previous section. Recall that for re-
quired rates of ρ ∈ [0.78, 0.92], Instance 2 (a single power
level) outperforms Instance 1 (multiple power levels, which
include the one in Instance 2). Apparently, the addition
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Figure 4: The obtained rate ρ as a function of the
collision free rate H. Note that several equilibrium
points (up to six in this particular case) are possible
for each ρ. It is clearly seen that the use of a single
power level may accommodate larger ρ’s, compared
to the case where multiple power levels are used.

of power levels worsens user performance in terms of their
average energy investment.

We next demonstrate an additional type of Braess-like para-
dox, which relates to the network’s capacity. We use the
term “capacity” for the (total) maximal rate that can be
obtained in the network. Consider the following example.

Example 2. As in Example 1, we compare two scenarios
that differ in the allowed power levels. All conditions are
identical to the ones in Example 1. The only difference is
that instead of Instance 2 we consider the following instance:

• Instance 3: A single power level (besides zero) is al-

lowed; Q(3) = {0, 8}. Note that Q(3) ⊂ Q(1);

Figure 4 presents the throughput ρ that is obtained as a
function of the collision-free data rate Hm (5). Observe that
the use of a single power level increases the maximal rate ρ
that can be accommodated in the network. This example
indicates that the use of multiple power levels might decrease
the network capacity, due to selfish user behavior.

6. DISCUSSION
The explanation for the Braess-like paradoxes, as well as for
the sub-optimality of the power-efficient equilibrium is quite
intuitive, given the nature of the collision channel. In some
cases, user strategies would result in frequent transmissions;
this would be the case if the rate-gain that is obtained at low
power levels, even at inferior channel states, is higher than
the rate-gain while switching to higher power levels. Figure 2
illustrates this idea. Consequently, the shared channel would
be subject to frequent collisions that would lead to both
unnecessary power investment and a decrease in network
capacity.

It is well known that the adjustment of power levels increases
capacity in single-user channels [5]. A challenging direction
for future research, inspired by the above observations, is
how to prevent the Braess-like paradoxes in multiuser wire-
less networks, and even better, enlarge capacity and reduce
power investment. A key role can be given to network man-
agement that should determine the right tradeoff between
user flexibility and overall performance, by assigning the
power levels appropriately.

7. CONCLUSION
This paper has studied the non-cooperative game over a
shared collision channel, where mobiles adjust their trans-
mission power based on local channel information. Mobiles
are heterogenous in terms of both their physical parameters
(channel distribution, available powers) and QoS parame-
ters (the required rates). We have characterized the best re-
sponse water-filling-like strategy, and consequently showed
that one equilibrium point is best for all users in terms of
power consumption. However, we showed that the best equi-
librium is generally suboptimal; moreover, phenomena simi-
lar to the Braess paradox might occur when additional power
levels are made available to the users. This factor should be
considered in the design and management of wireless sys-
tems.

The framework and results of this paper may be extended in
several ways. A central issue in any specific model would be
how to detect suboptimal equilibria and lead the network to
the best equilibrium point. A related direction is to examine
the resilience of best-response mechanisms, such as the one
suggested here, to changes in the transmitters population,
which obviously occur in wireless networks. An additional
research direction is to extend the reception model beyond
the collision model studied in this paper. In particular, cap-
ture models (which sometimes better represent WLAN sys-
tems) are of obvious interest. In these models, the use of
higher power levels increases not only the data rate, but
also the chances of the individual data for being properly
received at the base station. Hence, selfish mobiles have a
natural incentive to transmit at high power, which is usually
not the case for the collision model studied here. It will be
therefore interesting to examine whether some of the neg-
ative consequences of selfish behavior reported here disap-
pear, thereby reducing the gap between the power-efficient
operating point and the optimal one.
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APPENDIX
A. PROOF FOR THEOREM 3
For the proof, we use the following notations. Let the update
time-slots of each user m be given by an increasing sequence
{tm

k }, k ∈ {1, 2, 3, . . . }. Also, let

{tk} =
n
{t1k} ∪ {t2k} ∪ . . . {tM

k }
o

,

k ∈ {1, 2, . . . }. Note that at each tk at least a single user
updates its transmission probability. We shall use the nota-
tion pm

k for the transmission probability of user m at time
tk (similarly, pk is the transmission probability vector at
time tk across all users, and p−m

k is the vector of all users
but the mth one), with the convention of pm

0 = 0 for every
user m. With some abuse of notation, we use the nota-
tion rm(Hm,p−m) for the user’s rate, as determined by its
collision-free rate Hm (5) and the transmission probabilities
of other users. Subscripts for these quantities will denote
the time epoch. The explicit dependence of these quantities
in q is not denoted, for simplicity of the exposition.

For the proof of the theorem we require the next lemma.

Lemma 6. The sequence pk is increasing.

Proof. The result follows by induction. Obviously, 0 =
p0 ≤ p1, as at least a single user accesses the channel at
k = 1. Assume that p0 ≤ p1 ≤ . . .pk−1. We next show
that pk−1 ≤ pk. Denote by Mk the set of users who update
their probabilities at time k (so that pm

k−1 = pm
k ∀m /∈ Mk).

For each m ∈ Mk, let km < k be the last time epoch at
which user m updated its probability. Note that

rm(pm
k−1,p

−m
km−1) = rm(pm

k ,p−m
k−1) = ρm, (16)

by Lemma 1.

Since rm decreases in p−m and, by assumption, p−m
ki−1 ≤

p−m
k−1, it follows that Hm

k−1 ≤ Hm
k (as ri is increasing in

Hm). Since both these quantities are obtained through best-
responses, it follows from Lemma 5 that pm

k−1 ≤ pm
k

It follows from the above lemma that either some component
of p must exceed 1 at some iteration, or else p approaches a
limit, say p∗, and in this limit the equations (8) are obviously
satisfied (by continuity), i.e., it is an equilibrium point.

To conclude the proof, we now turn to show that if p̃ is
(another) equilibrium point, then p∗ ≤ p̃, hence p∗ is the
power efficient equilibrium (by the monotonicity of pm in
Hm and the monotonicity of Hm in the total power invest-
ment). To see this, we apply a similar induction as that
of Lemma 6, and also use the notations thereof. Obvi-
ously 0 = p0 ≤ p̃. Assume p0 ≤ p1 ≤ · · · ≤ pk−1 ≤ p̃.
Noting that rm(Hm

k ,p−m
km−1) = rm(H̃m, p̃−m) = ρm and

p−m
km−1 ≤ p̃−m for every m ∈M, it follows that Hm

k ≤ H̃m,
hence pk ≤ p̃. This argument also shows that if some com-
ponent of pk exceeds 1 for some k, then there is no equi-
librium point (i.e., the set of required user rates {ρm} is
infeasible).


