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Abstract. We study on-line play of repeated matrix games in which
the observations of past actions of the other player and the obtained re-
ward are partial and stochastic. We define the Partial Observation Bayes
Envelope (POBE) as the best reward against the worst-case stationary
strategy of the opponent that agrees with past observations. Our goal
is to have the (unobserved) average reward above the POBE. For the
case where the observations (but not necessarily the rewards) depend
on the opponent play alone, an algorithm for attaining the POBE is de-
rived. This algorithm is based on an application of approachability theory
combined with a worst-case view over the unobserved rewards. We also
suggest a simplified solution concept for general signaling structure. This
concept may fall short of the POBE.

1 Introduction

Repeated games provide the opportunity for each player to adjust her play ac-
cording to the observed past, in particular the observed actions of the other
players, or the rewards obtained for different choices of actions. The regret min-
imization framework allows to exploit this idea in a non-strategic framework,
without imposing any restrictions or rationality assumptions on the strategies
employed by the other players. The idea in regret minimization is to set a desired
goal for the average payoff, depending on the observed moves in the game, and
show that this goal may be obtained asymptotically. The most common goal is
the Bayes envelope – the maximal average payoff that a player could secure for
herself had she known in advance the relative empirical frequencies of the other
players’ actions. Obviously, with such prior knowledge, this payoff could be se-
cured simply by playing the stationary strategy which repeats at every stage the
best response (in the single-shot game) to the given relative empirical frequen-
cies. The difference between the actual average payoff and the current Bayes
envelope is termed the average regret. A strategy which asymptotically secures
non-positive average regret for all possible strategies of the other player has been
termed regret minimizing, and more recently universally consistent ([1]).

To motivate the following discussion let us consider a doctor that attends
many patients. Suppose that each patient may either have disease A or disease



B. The doctor may treat each patient using one of two treatments - 1 or 2.
Treatment 1 is effective only against disease A while treatment 2 is effective
only against disease B. Suppose that the doctor does not know if treatment 1 is
successful or not, however she does know if treatment 2 is successful or not. As
many patients arrive, the doctor’s overall goal is to have the best success rate
as if she knew in advance the patients’ disease distribution. This situation can
be captured in the following table. Each entry (r, s) in the table represents the
doctor’s reward, r, and by the observation, s, she receives.

Disease A Disease B
Treatment 1 (1, a) (0, a)
Treatment 2 (0, b) (1, c)

If the doctor was informed the results of each treatment the game reduces to a
matching pennies game, and the doctor can obtain the best rate possible. Since
this is not the case, a refined machinery is needed. Suppose that by time t the
doctor observed signals a, b, and c for πa, πb, and πc fraction of the time (respec-
tively). If it was known in advance that the patients’ disease is a stationary pro-
cess, then (assuming πb +πc 6= 0) the best response is r∗(πa, πb, πc) = max(πb,πc)

πb+πc
.

If πa = 1 then no information is gathered and the worst case disease distribution
is 1/2− 1/2, in which case the doctor cannot hope to gain more than 1/2. The
function r∗ is shown in Figure 1(a). We will show that while r∗ may not be
attainable in general its lower convex hull, rc, is attainable. rc is presented in
Figure 1(b). The difference between r∗ and rc is plotted in Figure 1(c). We note
that by attaining rc a higher reward than the pessimistic 1

2 is obtained for most
observation frequency vectors.

The case of perfect monitoring is well studied. Regret minimizing strategies
were originally provided in [2] and later in [3] (see also [1] for a more modern
approach). Recently, the feasibility of regret minimization has been established
even when a perfect monitoring of the opponents actions is not available. The
adversarial bandit formulation of [4] considers the case where only the reward
at each stage is observed (in addition to the player’s own action). It was shown
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Fig. 1. r∗ (a), rc (b), and the difference r∗ − rc (c) for the treatment game.



that regret minimizing strategies exist in this case as well. In [5] the regret min-
imization framework was extended to a general signalling structure, where the
observed signals are random functions of the two players’ actions at each stage.
The Bayes envelope in this case must be weakened to take into account the im-
perfect monitoring. This modified Bayes envelope is still defined in the space of
the (now unobserved) empirical actions frequency of the other player, but now
the worst-case payoff over all stationary strategies of the other player, which
induce the same signal frequencies as the empirically observed signal frequen-
cies, is considered. This envelope is termed Partial Observation Bayes Envelope
(POBE). The existence of regret minimizing strategies with respect to the POBE
was established in [5]. The proofs there rely on the approachability theory, lifted
to the space of measures over mixed actions. Concrete algorithms that attain
the POBE were not supplied in [5]. A simplified model was suggested in [6]. In
the model analyzed there the average reward can be consistently estimated from
the available signal data. Since the model of [6] essentially allows observing the
reward, the POBE of that model coincides with the perfect monitoring Bayes
envelope and efficient algorithms which are based on multiplicative weights were
derived.

In this paper we consider the general signalling model where the reward is
not assumed observed. We provide an explicit algorithm for attaining the POBE
when P2 alone affects the observation. We also suggest a simplified concept for
arbitrary signaling structure. This concept can be easily attained, possess some
non-trivial performance guarantees, but may fall short of the POBE. We note
in passing that an essential part of our imperfect monitoring model is that the
game and signalling are known to the player. This is required in order to allow
meaningful inference from the observed signals. A note about the terminology is
due. We use the words “game” and “opponent” in this paper, however the model
does not assume that the other participating agents are rational. Consequently,
the model may be considered as a game against Nature (as in the treatment
game above), where Nature’s play is not assumed stationary nor adversarial.

2 The Model

In order to model imperfect monitoring we consider a finite action two-person
game that is repeated in time. We refer to the players as P1 (the regret-minimizing
player) and P2. The stage game is assumed here to be a finite game in strategic
form, namely a matrix game. Let a ∈ A and b ∈ B denote the (finite) set of
actions of P1 and P2 in this game, respectively. The strategies of P1 and P2 in
the repeated game will be denoted by σ and ρ, respectively. A strategy is a map
from the set of all possible histories to the set of mixed actions of each respective
player in the stage game.

When P1 plays an action a and P2 plays an action b, P1 obtains a stochastic
reward with expected value r(a, b). This reward is assumed to be a positive

bounded random variable. The average reward until time t is r̂t
4
= 1

t

∑t
τ=1 rτ

(rτ is the reward at time τ). When P1 plays a mixed strategy p ∈ ∆(A) (∆(A) is



the set of probability vectors on A) and P2 plays a mixed strategy q ∈ ∆(B) the

obtained reward has the expected value of r(p, q)
4
=

∑
a∈A

∑
b∈B p(a)q(b)r(a, b).

The value of the associated one shot zero-sum game is denoted by v. Note that
since P2’s reward is unknown and possibly not relevant, v is not the value of
any concrete game.

We assume that there are “signals” that are received by P1 after each stage
of the game. These signals carry some information regarding P2’s last action. Let
S = {1, . . . , S} denote the (finite) set of possible signals. Given that actions a and
b were played at a given stage t, the observed signal st is a random variable with
a given distribution P (s|a, b). We further denote by s(p, q) the expected signal
frequency vector in ∆(S) which is generated when P1 plays p and P2 plays q.
That is, if π = s(p, q) then π(s) =

∑
a,b P (s|a, b)p(a)q(b) for every s ∈ S.

Let P2’s empirical strategy by time t be denoted by qt. That is, qt(b) =
1
t

∑t
τ=1 1{bτ=b}. The Bayes envelope with respect to qt(b) is defined as r∗BE(qt)

4
=

maxp∈∆(A) r(p, qt) . If P1 knew qt in advance, then P1 could have played the
maximizing (one-shot game) action against qt repeatedly, and attain an aver-
age reward as high as r∗BE(qt). Since qt is not known in advance, an adaptive
framework is needed. Even if we suppose that qt is estimated as the repeated
game is played, one must limit the performance comparison to qt which are
distinguishable. For that purpose we define the follows congruence class of q:

Q(q) = {q′ ∈ ∆(B) : for every p ∈ ∆(A) s(p, q′) = s(p, q)} . (1)

It can be shown that it suffices to examine the set of pure actions for P2 in
(1). Essentially, P1 cannot distinguish between different q in Q(q), therefore any
scheme cannot strive to achieve more than:

r∗(q)
4
= max

p∈∆(A)
min

q∈Q(q)
r(p, q) . (2)

We call (2) the Partial Observation Bayes Envelope (POBE) and consider it as
the target to be achieved. Note that r∗(q) depends on the actual unobserved
strategy of P2. Formally, our goal is to attain envelopes in the sense of the
following definition:

Definition 1. A function r : ∆(B) → IR is attainable by P1 if there exists a
strategy σ of P1 such that for every strategy ρ of P2:

lim inf
t→∞

(r̂t − r(qt)) ≥ 0 Pσ,ρ a.s.

where Pσ,ρ is the probability measure induced by σ and ρ.

3 P2 Determines the Signals

This section discusses the case where P2 alone determines the signal probability
that is P (s|a, b) = P (s|b). As a result one can write s(q) for the expected signal



frequency when q is played (rather than s(p, q)). We will show that for the
sake of consistency it suffices to consider the empirical signal frequency vector
πt ∈ ∆(S) which is defined as πt(s)

4
= 1

t

∑t
τ=1 1{sτ=s}. With some abuse of

notation, let Q(π) = {q ∈ ∆(B) : π = s(q)} denote the set of all possible
stationary strategies (or, equivalently, mixed single stage strategies) that can
possibly result in the observation π. Furthermore, we define the set of “possible”
observations as Π

4
= {π ∈ ∆(S) : Q(π) 6= ∅}. Observe that Π is a convex set.

Since every q induces a single π it stands to reason to define a Bayes-like envelope
as a function of the signal frequency π:

r∗(π)
4
= min

q∈Q(J(π))
r∗(q) = max

p∈∆(A)
min

q∈Q(J(π))
r(p, q), (3)

where we define J(π) : ∆(S) → Π to be the Euclidean projection to of ∆(S) to
Π. The following proposition provides the basic property of the POBE in the
special case considered in this section.

Proposition 1. If P1 does not affect the signals then r∗(π) is a convex function
of π on Π.

Proof. Let π1, . . . , πk be probability vectors in Π. We have to show that for
a convex combination α1, . . . , αk we have that r∗(

∑k
i=1 αiπi) ≤

∑k
i=1 αir

∗(πi).
Since P1 does not affect the signal probability we can write Q(π) = {q : Hq = π}
for the signalling matrix H (Hbs = P (s|b)). Let qi denote a minimax mixed
action in the stage game that agrees with πi, that is r∗(πi) = maxp r(p, qi) (such
a mixed action exists by the minimax theorem since Q(π) is convex for every π.)

Let qα
4
=

∑k
i=1 αiqi, we have that Hqα =

∑k
i=1 αiHqi =

∑k
i=1 αiπi. Recalling

the definition:

r∗(
k∑

i=1

αiπi) = min
q∈Q(

∑k

i=1
αiπi)

max
p∈∆(A)

r(p, q) = max
p∈∆(A)

min
q∈Q(

∑k

i=1
αiπi)

r(p, q)

≤ max
p∈∆(A)

r(p, qα) = max
p∈∆(A)

k∑

i=1

αir(p, qi)

≤
k∑

i=1

max
p∈∆(A)

αir(p, qi) =
k∑

i=1

αir
∗(πi) .

The second equality follows from the minimax theorem and the convexity of
Q(π). The first inequality holds since we fixed a specific q that agrees with the
signals αiπi. The third equality is a result of the linearity of the reward r in q.
The second inequality is justified by the convexity of the max operator. ut

Since P2 alone affects the signals probability, and by the continuity of r∗(π)
and r∗(q) we next claim that r∗(qt) → r∗(πt) almost surely.

Proposition 2. Suppose P1 does not affect the signals. Then for every pair of
strategies σ, ρ

lim
t→∞

r∗(qt)− r∗(πt) = 0 Pσ,ρ-a.s.



Proof. Since Q(q) is convex and r is bilinear it follows that there exists q̃t ∈ ∆(B)
such that r∗(qt) = maxp r(p, q̃t). Let π̃t = s(q̃t). It follows by our definitions so
far that r∗(π̃t) = r∗(qt). If the signals were deterministic then π̃t = πt and the
result follows. Generally, the signals are random so we need a more complicated
argument. By Proposition 1, r∗(π) is convex and therefore Lipschitz continuous
over Π. It is therefore enough to show that ‖πt − π̃t‖ → 0 almost surely. Note
that the strategy ρ which governs the distribution of qt and πt is not assumed
stationary so standard large deviation bounds cannot be immediately applied.
Let nt(b) be the number of times action b was played by time t (i.e. tqt(b)),
and similarly let nt(b, s) =

∑t
τ=1 1{bτ=b&sτ=s} count how many times action b

was used by P2 and signal s observed. Define the event Et(b, s) = {|nt(b, s) −
nt(b)P (s|b)| ≥ δt}. By the union bound we have that:

P(‖πt − π̃t‖ ≥ ε) ≤
∑

b,s

P(Et(b, s)),

with δ = ε/SB. To bound the probability of Et(b, s) define the events F`(b, s) =
{|f`(b, s) − `P (s|b)| ≥ δt} where f` is the sum of ` independently distributed
Bernoulli random variables with bias P (s|b). Let F (b, s) =

⋃
1≤`≤t F`(b, s). We

will now reason in terms of a single probability space on which the controlled
process can be defined, under any strategy. Formally speaking, we need to define
a joint probability space, but as this is standard we omit it for the sake of brevity.
It follows that

P(Et(b, s)) ≤ P(F (b, s)) ≤
t∑

`=1

P(F`(b, s)) ≤
t∑

`=1

2e−( δt
` )2`c(b,s) ≤ 2te−δ2tc′(b,s),

where the third inequality is due to Hoeffding’s inequality, and c(b, s), c′(b, s)
are some constants. Applying the union bound again gives P(‖πt − π̃t‖ ≥ ε) ≤
cte−tε2c′ for some constants c, c′. By the Borel-Cantelli Lemma it follows that
P (‖πt − π̃t‖ ≥ ε i.o) = 0. ut

We can therefore term r∗(π) the POBE as well. We start with discussing the
case where the reward is observed in Section 3.1. We then discuss the case where
the reward is not observed and a refined scheme is required. An example for a
game where P2 determines the signals is presented in Section 3.3

3.1 Reward is observed

When the reward is observed, the Bayes envelope itself is attainable, as in, e.g.,
[4]. We now provide some insight to the case where the reward is not observed,
using the proof technique of [3] for the perfect monitoring case. Let us recall the
following definition. The setup is a repeated game with vector-valued reward
vector mt which average by time t is denoted by m̂t = 1

t

∑t
τ=1 mτ ; see [7].

Definition 2. A set B ⊆ IRk is approachable by P1 if there exists a B-approaching
strategy σ∗ of P1 such that

d(m̂t, B) → 0 Pσ∗,ρ-a.s., for every ρ



where d is the Euclidean point to set distance.

If the reward itself is observed then a straightforward application of approach-
ability theory would result in attaining r∗(qt).

Theorem 1. If the reward is observed then the set

B = {(r̂, π) : π ∈ Π ; r̂ ≥ r∗(π)} ⊆ IR×Π . (4)

is approachable. Consequently, every B-approaching strategy attains the POBE.

Proof. We apply approachability theory for repeated matrix games (e.g., [7]).
r∗(π) is convex on Π and therefore continuous (e.g., [8]). In order to apply
approachability arguments, we construct the following game with vector-valued
payoffs. Define the 1 + S dimensional reward vector m = (r̂, π) ∈ IR × ∆(S),
indexed by k ∈ {0}∪S. When the observed signal was s and the observed reward
was r,

m(k)
4
=





r if k = 0
0 if k ∈ S, k 6= s
1 if k ∈ S, k = s .

(5)

Thus, the first coordinate of the vector-valued average payoff vector is the average
reward, the other coordinates are the relative frequencies of the signals. We note
that m is generally a random vector, and is observed by P1 according to our
assumptions. For a pair of mixed strategies p ∈ ∆(A) and q ∈ ∆(B), let

m(p, q)
4
=

∑

a∈A
p(a)

∑

b∈B
q(b)m(a, b) , (6)

where m(a, b) is the entry of the vector-valued game defined in Eq. (5). Since B is

convex it suffices to prove that ∀q ∈ ∆(B) the set M(A, q)
4
= co

({m(a, q)}a∈A
)

(co is the convex hull operator) intersects B (m(a, q) denotes the expected re-
ward vector in the one shot game when P1 plays the action a and P2 plays the
strategy q). Fix q, in the original game P1 has an optimal deterministic action
a∗ ∈ A against q. Consider the signal π that satisfies π(s) =

∑
b∈B P (s|a∗, b)q(b)

for every s ∈ S. By definition q ∈ Q(π). r∗ satisfies r∗(π) = maxp∈∆(A) minq∈Q(π) r(p, q)
but since the pure strategy a∗ is optimal against q, we have that ∀p ∈ ∆(A),
r(p, q) ≤ r(a∗, q) so at π we have that r∗(π) ≤ r(a∗, q). We conclude that B
is approachable since (r(a∗, q), s(q)) ∈ B holds for every q ∈ ∆(B). Since B is
approachable and since r∗ is continuous it follows that by our definitions that
by approaching B the first coordinates difference decreases to 0 so the result
follows. ut

It follows by [7] that the approaching strategy is to play at time t a minimax
mixed action in the one shot matrix game defined by the projection of the vector
reward, defined in Eq. (5), on the direction from (r̂t, πt) to a closest point in B
(defined in Eq. (4)).



3.2 Unobserved reward

In this section we discuss the case where the reward is not observed. Surprisingly,
we are still able to attain the POBE when P1 does not affect the signaling
structure.

The following strategy attains the POBE in the case where the reward is
not observed by approaching the set B. The strategy advances is stages. In each
stage, the same mixed action is used repeatedly. A note about the notations is
due. We use superscripts for stage indices and subscript for time indices.

Algorithm 1 : An Attaining Strategy when the Reward is Unobserved
1. Start: t = 0, i = 1, t0 = 0.
2. Choose an arbitrary p1, Goto 6.
3. If r̃t ≥ r∗(πt) let pi be arbitrary, Goto 6.
4. If r̃t < r∗(πt) find the direction ui from the point (r̃t, πt) to the closest

point in the set B defined in Eq. (4).
5. Let pi be a maximizer of maxp∈∆(A) minq∈∆(B) m(p, q) · ui, where m(p, q)

is given in (6), and · is the standard dot product.
6. Repeat T i times:

t = t + 1.
Pick a random action at according to pi, play at and observe st.

7. ti = t. Set: πi(s) = 1
T i

∑ti

τ=ti−1+1 1{sτ=s}; r̃i = minq∈Q(J(πi)) r(pi, q);
r̃ti = 1

ti

∑i
j=1 T j r̃j .

8. i = i + 1. Goto 3.

Theorem 2. By playing Algorithm 1 with T i = i2 the POBE is attained.

Proof. The proof is deferred to the Appendix.
The basic idea behind Algorithm 1 is that the fictitious reward r̃ replaces

the true (unobserved) reward. For large t the average reward and the observed
signals frequency change slowly, so that by choosing T i small enough the same
strategy is almost optimal during the i-th interval. By choosing T i large enough
we guarantee that the average reward is asymptotically not lower than the fic-
titious reward. We also note that any polynomial T i would lead to a similar
convergence result.

3.3 An Example

We now provide an example to the case where the signals depend only on P2’s
actions. This example is related to the field of Internet Protocols and is motivated
by source routing and the ability of modern routers to supply information to the
sending machine. In TCP communication protocol a node (e.g., a computer)
sends a packet and receives an acknowledgement signal from the destination
node. It may happen that a packet gets lost in the way and should be resent.
The packet is resent if there is an indication that the packet is lost (i.e., after
enough time). Suppose a node sends packets with not only destination address
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but also route of the packet (this is called source routing). The router sends
the packet in the route required by the node, however since the router has a
better picture of the network it may know if the packet has a good chance to get
lost. The router may be able to return a small message containing some limited
information (this is not an acknowledge - just an indication). See [9] for an
example of a scheme where a single bit is used to provide information regarding
congestion. The following example demonstrates such a situation. Suppose that
there are three links, out of which only one is operative. The node does not
know which link is operative. The router may use only a single bit to hint the
node which of the three links was working. The performance measure is to get
as many packets across. Let P1 be the node that sends packets (the row player)
and P2 is the network (the column player), P1’s reward-signal matrix is (each
entry is denoted by (r, s)):

Link 1 up Link 2 up Link 3 up
Send via link 1 (1, a) (0, a|b) (0, b)
Send via link 2 (0, a) (1, a|b) (0, b)
Send via link 3 (0, a) (0, a|b) (1, b)

The available signals are {a, b}. The signals generating probability P (s|b) satisfies
P (a|1) = P (b|3) = 1 and P (a|2) = P (b|2) = 1/2. This means that when P2 plays
action 1 or 3 P1 observes signals a, b deterministically (respectively), and when
action 2 is played a random signal is observed with equal probabilities. Observe
that this example cannot be cast into the model of [6], and that the Bayes
envelope (rather than the POBE) cannot be attained. To see that consider two
strategies of P2, the first is to always play action 2, and the second to always
play actions 1 and 3 with equal probability. P1 cannot distinguish between the
two strategies. The POBE of either strategies is 1/3, however the best response
reward against the first is 1 and against the second is 1/2. It follows that if
P2 throws a coin before the game begins and with probability 1/3 plays the
first strategy and with probability 2/3 plays the second, then no matter what
strategy P1 employs a reward of no more than 1/3 can be guaranteed. Let α
be the frequency of signal a. We identify the signal frequency with 0 ≤ α ≤ 1.
Obviously, r∗(α) is symmetric around 1/2. The possible stage game strategies
that agree with α satisfy Q(α) = co{(α, 0, 1 − α), (0, 2α, 1 − 2α)}, which leads



to the conclusion that r∗(α) = 1− 2α for α ≤ 1/4. For 1/4 ≤ α ≤ 1/2 a straight
forward calculation shows that r∗(α) = min0≤β≤1 max{αβ, 2α − 2αβ, 1 + αβ −
2α} = 2

3 − 2α
3 . The graph of r∗(α) is given in Figure 2. The value of the game

is v = 1/3 which is the result of the unique single stage game minimax strategy
q∗ = (1/3, 1/3, 1/3). Note that r∗(π) > v for every π for which q∗ 6∈ Q(π). This
behavior is typical, as explained in Remark 1.

4 The General Case

In this section we study the general model (i.e., both players affect the signals).
We suggest a simplified target which is fairly easy to attain, though it does not
promise a reward as high as r∗(qt).

The idea is to define a function of the signal frequency, which is attainable.
Redefine

Q(π)
4
= {q ∈ ∆(B) : there exists p ∈ ∆(A) such that π = s(p, q)}.

Q(π) is the set of all possible stationary strategies (or, equivalently, mixed ac-
tions) that can possibly result in the observation π. As before, let Π = {π :
Q(π) 6= ∅}. Note that in this case Π may be not convex. We can now formulate
the empirical Bayes envelope in the reward signal space, r∗E(π) : ∆(S) → IR, as

r∗E(π)
4
= max

p∈∆(A)
min

q∈Q(J(π))
r(p, q),

with J(π) being the projection onto Π (with ambiguities resolved in arbitrary
manner). This definition coincides with Eq. (3) for games where P1 does not
affect the signalling structure. It turns out that in general r∗E is not attainable
([10]). This may be the case even if r∗E is well defined for all π and Q(π) 6= ∅ for
all π. An attainable solution concept we suggest is the convex Bayes envelope
that is defined as the lower convex hull of r∗E(π) on Π and is denoted by rc

(where rc(π) = rc(Jc(π)) for π 6∈ co(Π), and Jc(π) is the projection of ∆(S)
onto co(Π).) Let C as the set {(r, π) : r ≥ rc(π)}.
Theorem 3. Suppose that Algorithm 1 is used with C replacing B. Then for
every strategy of P2:

lim inf
t→∞

r̂t − rc(πt) ≥ 0 a.s.

Proof. (Outline) The set C is convex by definition. Showing that C is approach-
able in a game were both signals and reward are observed follows exactly as in
Theorem 1. When the reward is not observed, an analogue algorithm to Algo-
rithm 1 may be suggested with replacing B with C and the analysis of Theorem
2 still holds. ut
Remark 1. By attaining rc(πt) instead of r∗(qt) the performance guarantees de-
teriorate. Obviously rc(π) ≥ v where v is the value of the one shot zero-sum
game. It can be shown ([10]) that if P2 has a unique minimax strategy q∗ then
rc(π) > v for every π for which q∗ 6∈ Q(π).



Recall the treatment game from the introduction. In this game both players
affect the signals. As shown in Figure 1, r∗ is not convex. Moreover, it is not even
continuous near the point (πa, πb) = (1, 0). The difference between the attainable
envelope, rc and the r∗ is plotted in Figure 1c. In this game rc(π) > v for every
π that does not agree with the unique minimax strategy (1/2, 1/2) of Nature.

The main question which remains open is how to attain the POBE (from
Definition 1) in the general case where both players affect the signalling proba-
bilities. We believe that combining the idea of fictitious reward with a prediction
with expert advice framework may be used for attaining the POBE.
Acknowledgements This research was supported by the fund for the promo-
tion of research at the Technion.
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A Proof of Theorem 2

Let ri = 1
T i

∑ti

τ=ti−1+1 rτ be the actual (unobserved) reward in the i-th interval.
The actual (unobserved) average reward can be written as

r̂ti =
1
ti

i∑

j=1

T jrj . (7)



First, let us bound the probability that the worst case estimate is too opti-
mistic:

Lemma 1. There exist constants C and D such that for every i:

P(r̃i ≥ ri + ε) ≤ CT ie−Dε2T i

.

Proof. Let qi denote P2’s true unobserved empirical frequency by the ith inter-
val. That is, qi(b) = 1

T i

∑ti

τ=ti−1+1 1{bτ=b}. We have that:

P(r̃i ≥ ri + ε) ≤ P(r(pi, qi)− ri ≥ ε/2) + P(r̃i − r(pi, qi) ≥ ε/2) . (8)

Recall that r(pi, qi) is the expected reward in the one shot game when P1 plays
pi and P2 plays qi. We now bound each of the terms in Eq. (8). As in the proof
of Proposition 2 we cannot assume stationarity of the strategy of P2, so we will
use a similar technique. One can use the results of [11], however, this is at the
expense of finite time bounds. Let us reset the time of the beginning of the ith
interval to 1. Consider the event

E(a, b) = {|
T i∑

τ=1

1{aτ=a,bτ=b}rτ − nT i(a, b)r(a, b)| > δT i},

where r(a, b) is the expected reward when P1 plays a and P2 plays b, and
nT i(a, b) =

∑T i

τ=1 1{aτ=a,bτ=b} counts the number of time P1 played a and P2
played b. It follows by the union bound that

P(r(pi, qi)− ri ≥ ε/2) ≤
∑

a,b

E(a, b),

with δ = ε
2AB . Consider the event F`(a, b) = {|∑`

k=1 fk(a, b)− `r(a, b)| > δT i}
where fk(a, b) is an I.I.D. random variable with the same distribution as r when
a and b are played by P1 and P2, respectively. Reasoning in terms of a single
probability space we get that:

P(E(a, b)) ≤
T i∑

`=1

P(F`(a, b)) ≤
T i∑

`=1

2e−c(a,b)( δT i

` )2` ≤ 2T ie−c′(a,b)ε2T i

,

where the second inequality follows by Hoeffding’s inequality, and c(a, b), c′(a, b)
are some constants. Summing over a, b and using the union bound we get that
P(r(pi, qi) − ri ≥ ε/2) ≤ C1T

ie−D1T iε2 for every pi and qi. Note that the
inequality holds with the same constants for all pi and qi since r is bounded for
every a and b and therefore for all a and b (A and B are finite.)

To bound the second term of Eq. (8) let π̃i = s(qi). In Proposition 2 we proved
that there are constants c and c′ such that: P(‖πi− π̃i‖ > ε) ≤ cT ie−c′T iε2 . Con-
sider the function rpi(π) = infq∈Q(J(π)) r(pi, q). It follows that rpi(π) : ∆(S) →
IR is a continuous function. Moreover, it is easily verified that {rpi}pi∈∆(A)



are Lipschitz continuous, and that the Lipschitz constant of all {rpi}pi∈∆(A) is
bounded by some K. By our definitions, we have that rpi(π̃i) ≤ r(pi, qi). Using

the uniform continuity it follows that with probability of at least 1−cT ie−
c′

4K2 T iε2

we have that ‖π̃ − πi‖ ≤ ε
2K so that |rpi(π̃i) − rpi(πi)| ≤ ε/2. Recalling that

r̃i = rpi(πi), it follows that the probability of the event {r̃i − r(pi, qi) ≥ ε/2} is

at most cT ie−
c′

4K2 T iε2 . The lemma follows by combining the bounds for the two
terms. ut

The asymptotical relation between r̃ and r̂ is given in the following lemma.

Lemma 2. For every strategy of P2 lim infi→∞ r̂ti − r̃ti ≥ 0 almost surely.

Proof. By our choice of T i = i2 we can apply the Borel-Cantelli Lemma to
deduce that for every ε > 0 we have that P(r̃i ≥ ri + ε i.o) = 0. Recalling our
definitions we have that r̂ti− r̃ti = 1

ti

∑i
j=1 T j(rj− r̃j). Since after some random

index k we have that rj − r̃j > −ε/2 for every j > k, and since the reward is
bounded until tk we have that for some random ` for all j > ` we have that
r̂tj − r̃tj ≥ −ε. The lemma follows since this is true for every ε > 0. ut

We can now imitate the proof of Blackwell’s theorem. In order to provide a
Blackwell like theorem we need to provide a geometric condition regarding the
behavior of the fictitious reward in every interval. Let Ci be the closest point in B
to the point (r̃ti−1 , πti−1) in the S+1 dimensional space (using Euclidean norm).
That is Ci = argminc∈B d(c, (r̃ti−1 , πti−1)). Note that Ci is well defined by the
convexity of B. When r̃ti−1 < r∗(πti−1) (step 4 of the algorithm) the direction

ui is set as ui = Ci−(r̃ti−1 ,πti−1 )

‖Ci−(r̃ti−1 ,πti−1 )‖ . Though not critical to the following when
r̃ti−1 ≥ r∗(πti−1) we define ui = 0. Finally, we set m̃i = (r̃i, πi) ∈ IR×∆(S) the
S+1 dimensional vector whose first coordinate is the added fictitious reward, and
whose remaining S coordinates are added to the observation frequency vector
(normalized by the length of the ith stage.)

Lemma 3. When Algorithm 1 is used then for every strategy ρ of P2 we have
that

lim inf
i→∞

ui · (m̃i − Ci) ≥ 0 a.s.

Proof. Fix ε > 0, we will show that lim infi→∞ ui · (m̃i−Ci) ≥ −ε almost surely.
If r̃ti−1 ≥ r∗(πti−1) then ui = 0 and equality holds. Assume r̃ti−1 < r∗(πti−1). By
Proposition 1 the set B is approachable in the original game when the reward
is observed. It follows from Blackwell’s theorem that in the original game by
choosing pi we have that for every q ∈ ∆(B)

ui · (m(pi, q)− Ci) ≥ 0, (9)

where m(p, q) is given in Eq. (6). Suppose first that πi ∈ Π. Recalling our
definitions, there exists q′ ∈ ∆(B) such that r̃i = r(pi, q′) and πi = s(q′). Now,
Eq. (9) holds for q′, so that ui·(m(pi, q′)−Ci) ≥ 0, and therefore ui·(m̃i−Ci) ≥ 0.
As in the proof of Lemma 1, we can show that P(‖πi − π̃i‖ ≥ ε) ≤ cT ie−c′T iε2 ,



so that by our choice of T i and using the Borel-Cantelli lemma P(‖πi − π̃i‖ ≥
ε i.o) = 0. Let q̃i be the minimizer of minq∈J(πi) r(pi, q). we have that:

ui · (m̃i − Ci) = ui · ((r̃i, J(πi))− Ci) + ui · ((r̃i, πi)− (r̃i, J(πi))
)

≥ −‖πi − J(πi)‖,
where we used Eq. (9) for the first term and the Cauchy-Schwartz inequality for
the second. The result follows from some random time on since from some time
on ‖πi − π̃i‖ ≤ ε. ut

We can now use Lemma 3 to show that (r̃ti , πti) converge to B.

Lemma 4. Suppose that Algorithm 1 is used. Then for every strategy of P2:

lim
i→∞

d ((r̃ti , πti),B) = 0 a.s.

Proof. Let Bη be the η-expansion of B (i.e. the union of all the points whose

distance from B is η or less). Let m̃ti
4
= (r̃ti , πti) be the S + 1 vector whose first

coordinate is the fictitious reward and whose remaining S coordinates are the
empirical signal frequency. We will show that d (m̃ti ,Bη) → 0.
Fix η > 0. By our choices of T i we have that ti = i(i+1)(2i+1)

6 . By Lemma 3 we
have that after some finite random time either m̃ti−1 ∈ Bη or that there is an
advancement in direction ui, i.e.:

m̃i · ui ≥ ui · Ci − η ,

where Ci is the closest point to m̃ti−1 in B. Let yti be the closest point to m̃ti

in Bη. It follows that if m̃ti 6∈ Bη then yti = Ci+1 − ηui+1. We therefore have
that after some finite (a.s.) random time

m̃i+1 · ui+1 ≥ ui+1 · Ci − ηui+1 · ui+1 = ui+1 · yti . (10)

Let di denote the distance from m̃ti to Bη, i.e., di = d((r̃ti , πti),Bη).
Consider the square of the distance, d2

i . It follows that:

d2
i+1 = ‖m̃ti+1 − yti+1‖22 ≤ ‖m̃ti+1 − yti‖22 = ‖m̃ti+1 − m̃ti + m̃ti − yti‖

= ‖m̃ti − yti‖22 + ‖m̃ti+1 − m̃ti ||22 + 2(m̃ti − yti) · (m̃ti+1 − m̃ti).

The first element is simply d2
i . Since ti = O(i3) and the reward is bounded, the

second element can be bounded by D
i2 . The third element is more tricky. Since

m̃ti+1 − m̃ti = (
1

ti+1
− 1

ti
)tim̃ti +

T i+1

ti+1
m̃i+1 =

ti − ti+1

ti+1
m̃ti +

T i

ti+1
m̃i+1

we have that:

(m̃ti − yti) · (m̃ti+1 − m̃ti) = (m̃ti − yti) · (m̃ti+1 − ti − ti+1

ti+1
yti +

ti − ti+1

ti+1
yti − m̃ti)

=
ti − ti+1

ti+1
(m̃ti − yti) · (m̃ti − yti) (11)

+
ti − ti+1

ti+1
(m̃ti − yti) · (m̃i+1 − yti

)
.



Since i3c ≥ ti (for some c) and recalling that T i = i2, we can bound the fraction
ti+1−ti

ti+1 ≥ C/i. The first term (Eq. (11)) is therefore bounded by −d2
i

C1
i . We get

the following inequality:

d2
i+1 ≤ (1− C1

i
)d2

i +
C2

i2
+ 2C3

(m̃ti − yti) · (m̃i+1 − yi)
i + 1

, (12)

where C1,C2, and C3 are positive constants. Now according to Eq. (10) the
last term in (12) is negative after some random time. We therefore have that
d2

i+1 ≤ (1− C1
i )d2

i + C2
i2 from some point on. It now follows that d2

i+1 → 0 almost
surely using, e.g., [12, Page 117]. ut

Using Lemma 4 we have that d
(
(r̃ti , πti),B

) → 0 almost surely. By Lemma 2
we have that lim infi→∞ r̂ti − r̃ti ≥ 0. Since B is the epigraph of r∗ we therefore
have that also d(m̂ti ,B) → 0 almost surely, where m̂t = (r̂ti , πti). To conclude
the proof we need to show that the above bound holds for all t and not just for
ti. Let i(t) denote the maximal ti smaller than t (i.e. i(t) = max{i : ti ≤ t}). By
the triangle inequality

d(m̂t,B) ≤ d(m̂ti(t) ,B) + ‖m̂ti(t) − m̂t||2 .

The first term converges to 0 by the above. To bound the second term we let
mτ = (rτ , πτ ).

‖m̂ti(t) − m̂t||2 =
∥∥1

t

t∑
τ=1

mτ − 1
ti(t)

ti(t)∑
τ=1

mτ

∥∥
2

=
∥∥1

t

t∑

τ=ti(t)+1

mτ +
ti(t) − t

tti(t)

ti(t)∑
τ=1

mτ

∥∥
2

≤ 1
t

∥∥
t∑

τ=ti(t)+1

mτ

∥∥
2

+
t− ti(t)

tti(t)

∥∥
ti(t)∑
τ=1

mτ

∥∥
2

=
t− ti(t)

t


 1

t− ti(t)

∥∥
t∑

τ=ti(t)+1

mτ

∥∥
2

+
1

ti(t)

∥∥
ti(t)∑
τ=1

mτ

∥∥
2


 , (13)

where the inequality is due to the triangle inequality. By our construction of
ti it follows that limt→∞ t−ti(t)

t = 0. By the boundedness of mt it follows that
both terms inside the parenthesis of Eq. (13) are contained in some ball of finite
radius. Consequently, Eq. (13) converges to 0 almost surely.

Since d(m̂t,B) converges to 0 almost surely it follows using the same con-
tinuity argument in Theorem 1 that lim inft→∞ r̂t − r∗(πt) ≥ 0 almost surely.
Finally, using Proposition 2 we have that limt→∞ r∗(πt) − r∗(qt) = 0 almost
surely. The result follows by combining the two limits. ut


