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Abstract. We consider a collision channel, shared by a finite number
of self-interested users with heterogenous throughput demands. It is as-
sumed that each user transmits with a fixed probability at each time slot,
and the transmission is successful if no other user transmits simultane-
ously. Each user is interested in adjusting its transmission rate so that its
throughput demand is met. When throughput requirements are feasible,
we show that there exist two equilibrium points where users satisfy their
respective demands. In one equilibrium all users transmit at lower rates,
compared to their transmission rates at the other equilibrium. This fact is
meaningful in wireless systems, where lower transmission rates translate
to power savings. Subsequently, we propose a distributed scheme that
ensures convergence to the lower-rate equilibrium point. We also provide
some lower bounds on the channel throughput that is obtained with
self-interested users, both in the symmetric and non-symmetric case.

1 Introduction

1.1 Background and Motivation

As wireless networks become larger, it may be impractical to have a central
authority (such as a base station) coordinate between wireless stations (which
share the same communication medium) for better network utilization. Thus,
random access, ALOHA-like protocols are often used (for example in the 802.11x
standards). The incorporation of such protocols in wireless systems raises some
novel challenges, as these protocols should consider additional wireless-specific
items such as power control and varying channel conditions (an effect known
as channel fading [1]). Hence, a major research challenge is to examine whether
the distributed nature of random access protocols may lead the network to rea-
sonable working points, thereby coping with additional complexity of wireless
systems.

Since wireless nodes usually do not coordinate in establishing their trans-
mission policies, non-cooperative game theory becomes a natural framework for
analyzing their interaction. Game theoretic tools have been recently applied for
analyzing selfish behavior of users (a “user” stands for a single node or sta-
tion) in Aloha-like random access networks [2–6]. A common ground of most of



these papers, is that users are identical (or symmetric), both in their physical
parameters (such as the arrival rate of packets [4]) and also in their underlying
objective (such as maximizing throughput [4], or minimizing the number of at-
tempted transmissions before success [3]). In practice, however, network users are
heterogenous in nature. For example, video, voice, ftp and e-mail applications,
all have fundamentally diverse QoS requirements. A paper by Jin and Kesidis
[2] does incorporate user heterogeneity, by studying an Aloha-like network with
users who have fixed (and different) throughput demands. Users dynamically
adapt their transmission rates in order to obtain their required throughput de-
mands. It was shown by means of an example that the equilibrium point may
not be unique. Additionally, the authors suggested a dynamic scheme that could
lead to an equilibrium point.

1.2 Paper Organization and Contribution

In this paper we reconsider the model suggested in [2]. A description of the model
is given in Section 2. A detailed equilibrium analysis (complementing missing
analysis in [2]) is provided in Section 3. Our equilibrium analysis reveals, in
particular, that when the rate requirements are within the sustainable region,
there exist exactly two equilibrium points in the resulting game, and that one of
them is strictly better than the other, in the sense that all users transmit at lower
rates (in comparison to their transmission rates at the other equilibrium). This
fact is meaningful in terms of power consumption in wireless systems. We also
show that the equilibrium points can be computed in polynomial time. In the
context of wireless systems, we examine in Section 4 how self-optimizing behavior
affects the network performance. Specifically, we show that the performance gap
(in terms of the total power consumption) between the equilibrium points is
potentially unbounded, and that the better equilibrium point coincides with the
socially-optimal operating point. In Section 5 we present a distributed algorithm
which converges to the better equilibrium. Finally, we provide in Section 6 a
simple lower bound on the channel throughput that can possibly be obtained
with selfish users.

2 Model Description

We consider an ALOHA-like network, shared by a finite set of users I = {1, . . . , n}
who transmit data over a shared collision channel (e.g., wireless stations who
transmit to a common base station). Time is slotted, in the sense that all trans-
mitted packets have the same length and require the same time interval (a slot)
for transmission. Moreover, all transmissions start at the beginning of a slot and
end before the next slot. We assume that a transmission is successful only if no
other user attempts transmission simultaneously.

Each user i is characterized by a throughput ρi (in packets per slot) which
it wishes to deliver over the network. We assume that a user always has packets
to send, yet it may postpone transmission, due to the following reasons. First, a



user need not transmit in every slot when its average throughput is already met,
since it unnecessarily wastes additional resources, such as transmission power.
Second, assume a user transmits at every slot; then other users would raise their
transmission rates as well, and as a consequence packets will endlessly collide.
Hence, each user i chooses a transmission probability pi, which could be regarded
as the transmission rate.

The underlying assumption of our user model is that users are selfish and
do not cooperate in any manner in order to obtain their required throughput
demands. Define ri as user i’s average throughput. Then

ri = pi

∏

j 6=i

(1− pj). (1)

Note that the transmission probability of each user affects the throughput of
all other users through the collision channel. This situation establishes a non-
cooperative game [7] between the users. We are interested in the Nash equilib-
rium point of that game. In our context, a Nash equilibrium point is a vector of
user probabilities p = (p1, . . . , pn), such that

ri = pi

∏

j 6=i

(1− pj) = ρi, i ∈ I. (2)

We shall refer to the above set of equations (2) as the equilibrium equations.

3 Equilibrium Analysis

In this section we analyze the Nash equilibrium point (2) of the network. We
start our analysis by considering the number of equilibria.

3.1 Two Equilibria or None

Obviously, if the users’ throughput requirements are too high there would not
be an equilibrium point, since the network naturally has limited capacity. In
case that an equilibrium point does exist, we establish that, generically, there
are exactly two equilibria (which can be computed efficiently). In addition, we
assert that the existence of an equilibrium point could be verified through a
computationally efficient procedure. The main result of this section is presented
below.

Theorem 1. Consider the non-cooperative game whose Nash equilibrium point
is defined in (2). There are either one, two Nash equilibrium points or none for
that game. The case of a single equilibrium point is non-generic (i.e., occurs only
for a set of rate vectors ρ of measure zero).

Proof. See Appendix.
We summarize certain computability properties in the next proposition (proof

is omitted due to lack of space).



Proposition 1. The existence of an equilibrium point can be verified in polyno-
mial time (in the number of users). Additionally, in case an equilibrium exists,
both equilibria can be computed in polynomial time (in the number of users).

3.2 Efficiency and Fairness

Besides the existence and the number of equilibrium points, we wish to char-
acterize the equilibrium points. In particular, we are interested in the following
questions:

1. How do the two equilibrium points compare: is one “better” than the other?
2. Is an equilibrium point fair in some sense?

The next theorem addresses the first question raised above. It shows that one
equilibrium point is better for all users in the sense that all users transmit at
lower rates.

Theorem 2. Assume there exist two equilibria for the non-cooperative game,
whose Nash equilibrium is defined in (2). Let p and p̃ be these two equilibrium
points. If pi < p̃i for some user i, then pj < p̃j for every j ∈ I.

Proof. Define aik
4
= ρi

ρk
. For every user k 6= i divide the ith equation in the set

(2) by the kth one. We obtain

aik =
pi(1− pk)
pk(1− pi)

<
p̃i(1− pk)
pk(1− p̃i)

. (3)

Now since
p̃i(1− p̃k)
p̃k(1− p̃i)

= aik, (4)

it follows that
p̃i(1− p̃k)
p̃k(1− p̃i)

<
p̃i(1− pk)
pk(1− p̃i)

. (5)

We conclude from the last inequality that pk < p̃k. ut
The last result is significant from the network point of view. Assuming that

each transmission is costly (e.g., each transmission consumes a fixed power), we
are interested in a network mechanism which will exclude the inferior equilibrium
point. This would be our main concern in Section 5. Henceforth, we identify the
better equilibrium point as the Energy Efficient Equilibrium (EEE).

We now compare the user effort in a given equilibrium point. Our next result
suggests that at every equilibrium, the transmission probabilities are ordered in
the same order as the throughput demands ρi, i.e., users with a larger demand
transmit more aggressively.

Theorem 3. Let p be an equilibrium point of (2). Then if ρi ≥ ρj it follows
that pi ≥ pj.



Proof. Follows easily from eq. (4). Details are omitted.
The above result indicates that despite user selfishness, some notion of fair-

ness is maintained at equilibrium: The higher the throughput requirement, the
higher the transmission rate (and consequently, the higher is the power con-
sumption).

4 Efficiency Loss

We now turn to examine the extent to which selfish behavior affects system
performance. That it, we are interested in comparing the quality of the obtained
equilibrium points to the theoretical case where a central authority can set the
users’ transmit policies. Recently, there has been much work in quantifying the
“efficiency loss” incurred by the selfishness of users in networked systems (see
[8] for a comprehensive review). The two concepts which are most commonly
used in this context are the “price of anarchy”, which is the performance ratio
(of a relevant social performance measure) between the global optimum and the
worst Nash equilibrium, and “price of stability”, which is the performance ratio
between the global optimum and the best Nash equilibrium.

We focus in this section on a wireless system, where Wi represents a (fixed)
energy which user i utilizes per transmission. The average power of user i is
then given by Ji(pi)

4
= piWi. A natural performance criterion for evaluating

the quality of an equilibrium is given by
∑

i Ji(pi), which represents the total
power consumption in the network. We next show that the price of anarchy with
respect to this criterion is unbounded, while the price of stability is always one.

Theorem 4. Consider the non-cooperative game whose Nash equilibrium point
is defined in (2). Define

∑
i Ji(pi) as the social performance criterion. Then (i)

the price of stability is always one, i.e., the better equilibrium point coincides
with the social optimum, and (ii) the price of anarchy is generally unbounded.

Proof. (i) immediate, as a social optimum obeys the equilibrium equations (2).
(ii) we establish that the price of anarchy is unbounded by means of an exam-

ple. Consider a network with two identical users with a throughput requirement
of ρi = ε → 0 (i = 1, 2), and an average power function given by J(p) = Wp,
where p is the user’s transmission probability (user indexes are omitted in this
example, as users are identical). By symmetry, we obtain a single equilibrium
equation, namely p(1− p) = ε. As ε goes to zero, the two equilibria are pa → 1
and pb → 0. Obviously, the latter point is also a social optimum; it is readily
seen that the price of anarchy equals at the limit to 2J(1)

2J(0) = ∞.

5 A Distributed Algorithm

5.1 The Algorithm

We have shown so far that when an equilibrium point exists, there are two
equilibria, where one obtains lower transmission rates for all users. Moreover,



the performance gap between the equilibria could be significantly large. This
leads us to find a mechanism which will converge to the better equilibrium. We
next suggest a simple distributed algorithm for that purpose.

Let xi =
∏

j 6=i(1− pj) denote the current idle probability of all users but the
ith one. Each user i iteratively updates its transmission probability through the
following rule:

pi := pi + εi

(
ρi

xi
− pi

)
, (6)

where 0 < εi ≤ 1 is the update gain of user i. The motivation for using the above
rule follows directly from the equilibrium equations (2).

A synchronized version of the above algorithm (where all users iteratively
update their transmission probabilities at the same slots) is considered in [9] pp.
347–349. It was shown there that when εi = 1 for every i ∈ I, the algorithm
asymptotically converges to the better equilibrium point.

5.2 Practical Considerations and Stability

We pause here to address certain practical implementation issues which are re-
lated to the presented algorithm. The quantity xi required for the probability
updates can be obtained by each user through dividing the overall idle probabil-
ity by its own idle probability. In practice, the channel’s idle probability should
be estimated by each user by measuring the percentage of idle slots, where the
more slots sensed, the better is the estimate. If the transmission probabilities
are to be updated on a slow time-scale, users would be able to obtain good
estimates of the idle probability. For the sake of our analysis, we assume that
the estimation is perfect. Indeed, the frequency of the updates is an important
issue. There is obviously a tradeoff between the estimation accuracy of xi and
the wish to enforce the required equilibrium as fast as possible. We leave the
quantification of this tradeoff to future research.

We now consider some stability properties of the algorithm. In particular, we
wish to verify whether the better equilibrium point is locally stable. Indeed, even
when the network operates near a stationary working point, users continuously
adjust their probabilities according to (6) (e.g., due to perturbations in their idle
estimation). We then have the following stability result.

Theorem 5. Assume users update their transmission probabilities according to
(6). When each εi is small enough, the EEE is locally stable.

Proof. (outline) Let εi = λiε, with ε-small. The continuous-time limit of (6) as
ε → 0 is

ṗi = λi

(
ρi

xi
− pi

)
. (7)

We next apply Lyapunov’s indirect method (linearization) to study the stability
of (7). Consider first the case where λi = λj for every i, j ∈ I. Let Z be the



corresponding Jacobian matrix of (7) for this symmetric case. It can be shown
that the elements of Z are given by

zij =

{
−1 i = j

pi

1−pj
i 6= j

. (8)

It can be further shown that the matrix Z is strictly diagonally dominant (see,
e.g., [10]) for the better equilibrium point. As such, all eigenvalues of Z have a
negative real part ([10], pp. 349). Consider now a general asymmetric case. Let
λ = diag(λ1, . . . , λn). Then the corresponding Jacobian matrix of (7) is given
by λZ. It is known that if all eigenvalues of Z have a negative real part, then
the same property holds for RZ, where R is any positive diagonal matrix (see
[11], pp. 112–121). Consequently, we may conclude that the equilibrium point is
asymptotically stable. The local stability of the discrete-time model follows now
by continuity argument. ut

6 Achievable Throughput

The aim of this section is to provide a lower bound for the maximal throughput
which can be obtained in the network.

The theorem below establishes the conditions for the existence of an equilib-
rium point in the symmetric case.

Theorem 6 (Symmetric users). Let ρi = ρ for every 1 ≤ i ≤ n. Then an
equilibrium exists if and only if

n∑

i=1

ρi = nρ ≤ (1− 1
n

)n−1. (9)

Proof. In every equilibrium of the symmetric case pi = pj = p, for every i, j
(immediate by Theorem 3). Thus, the equilibrium equations (2) diminish into a
single (scalar) equation:

h(p)
4
= p(1− p)n−1 = ρ. (10)

We next investigate the function h(p). The derivative of h(p) is given below.

h′(p) = (1− p)n−2
(
1− p− (n− 1)p

)
= (1− p)n−2(1− np). (11)

It can be seen that the maximum value of the function h(p) is obtained at
p = 1/n. An equilibrium exists if and only if the maximizer of the function
obtains a value which is greater than ρ. We assign the maximizer p = 1/n of
h(p) in (10) and the result immediately follows. ut

The next corollary provides a sufficient condition for the existence of an
equilibrium for any number of symmetric users.



Corollary 1. Let ρi = ρ for every 1 ≤ i ≤ n. Then an equilibrium exists if∑n
i=1 ρi ≤ e−1.

Proof. Observe that the left hand side of (9) is the total throughput demand.
It may be easily verified that the right hand side of (9) decreases with n. Since
limn→∞(1 − 1

n )n−1 = e−1, a total throughput demand which is less or equal
than this quantity guarantees the existence of an equilibrium. ut

It can be shown that the simple bound obtained above holds for non-symmetric
users as well, implying that the symmetric case is worst in terms of system uti-
lization. Our result is summarized below. Due to lack of space the (somewhat
lengthy) proof is omitted.

Theorem 7 (Asymmetric users). For any set of n users, an equilibrium point
exists if

n∑

i=1

ρi ≤ (1− 1
n

)n−1. (12)

The quantity e−1 is also the well-known maximal throughput of a slotted Aloha
system with Poisson arrivals and an infinite set of nodes [9]. In our context, if the
throughput requirements do not exceed e−1, an equilibrium point is guaranteed
to exist. Thus, in a sense, we may conclude that user heterogeneity does not
deteriorate the capacity (i.e., the maximal throughput) of the collision channel.

7 Conclusions and Model Extensions

We have investigated in this paper the interaction between heterogenous users,
who adjust their transmission rates in order to obtain their individual through-
put demands. We established that the network possesses either two Nash equi-
libria or none. In case that two equilibria exist, in one of the equilibria all users
transmit at lower rates compared to the transmission rates at the other equilib-
rium. Translating this fact to power-related terms (which are relevant in wireless
systems), we further demonstrated that the performance gap between the two
equilibria (in terms of power consumption) could be arbitrarily large. Conse-
quently, network users should be willing to accept a mechanism which ensures
convergence to the better equilibrium. We have suggested such a mechanism,
and studied some stability properties thereof.

In an ongoing work, we consider a more general scenario of a block fading
channel [1], where the channel state of each user varies over time, and affects
the data rate. Users, who measure their channel state, base the transmission
decision at each time slot on the current measurement of their channel state.
Our analysis so far indicates that many of the results of the present paper carry
over to this general setup.

Several additional directions remain for future research. Among which are:
(i) Further analyzing asynchronous versions of the distributed algorithm. (ii)
Incorporating the transmit power as an additional decision variable (as in [5, 6]).
In some models of practical interest, the transmission power not only affects the



data rate, but also the reception chances of the packet. In this context, we plan
to include capture models (which sometimes better represent WLAN systems)
and multi-packet reception models [12] (as in CDMA systems) in our future
work.
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Appendix – Proof of Theorem 1

We start with the following lemma, which relates the user probabilities in equi-
librium.

Lemma 1. In every equilibrium point the following relation holds for every i, j ∈
I.

pj =
ajipi

1− pi + ajipi
, (13)

where aji
4
= ρj/ρi.

Proof. Immediate by dividing the equilibrium equation of the ith user by the
equation of the jth one. ut

The idea behind the proof of the theorem is to represent the equilibrium
conditions through a single scalar equation. The result then follows by showing
concavity of this equation.



The equilibrium point p (if exists) is by (2) such that

pi = ρi/
∏

j 6=i

(1− pj), 1 ≤ i ≤ n. (14)

Fixing the ith user and substituting (13) into (14) for every j 6= i we obtain the
following equation in pi only.

pi

∏

j 6=i

(
1− ajipi

1− pi + ajipi

)
= pi

∏

j 6=i

(
1− pi

1− pi + ajipi

)
= ρi. (15)

Taking log from both sides we have

log pi +
∑

j 6=i

log
(

1− pi

1− pi + ajipi

)
= log ρi. (16)

Let

g(pi)
4
= log pi +

∑

j 6=i

log
(

1− pi

1− pi + ajipi

)
. (17)

We next investigate the properties of the function g(pi). Specifically, we con-
centrate on the user with the maximal demand. Without loss of generality, let
user i be the one with the maximal demand, i.e., ρi ≥ ρj for every j 6= i. Thus,
aji ≤ 1. The derivative of g(pi) is calculated below.

g′(pi) =
1
pi

+
∑

j 6=i

1− pi + ajipi

1− pi
· −(1− pi + ajipi) + (1− aji)(1− pi)

(1− pi + ajipi)2

=
1
pi
−

∑

j 6=i

aji

(1− pi)(1− pi + ajipi)
. (18)

We focus our analysis on pi ∈ [0, 1]. Observe that g(0) = g(1) = −∞. Addi-
tionally, g′(0) = ∞, g′(1) = −∞. Hence, if the derivative g′(pi) is monotonously
decreasing in pi ∈ [0, 1], then there are either two roots (which may coincide) or
none for the equation (16). Indeed, deriving g′(pi) yields

g′′(pi) = − 1
p2

i

+
∑

j 6=i

aji

[
(1− pi)(−1 + aji) + (−1 + pi − ajipi)

]
(
(1− pi)(1− pi + ajipi)

)2 . (19)

Noting that aji ≤ 1, it may be easily verified that (1 − pi)(−1 + aji) < 0 for
pi ∈ [0, 1); additionally (−1 + pi − ajipi) = −1 + pi(1 − aji) < 0 for pi ∈ [0, 1),
so overall g′′(pi) < 0 for pi ∈ [0, 1]. We conclude that there are either two roots
or none for the equation (16). Hence, there are either two equilibrium points or
none for the game. There is a single equilibrium point in the non-generic case
where the maximum of g(pi) equals log ρi. ut


