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Abstract

We consider reinforcement learning in a parameterized setup, where the model is known
to belong to a finite set of Markov Decision Processes (MDPs) under the discounted return
criterion. We propose an on-line algorithm for learning in such parameterized models, the
Parameter Elimination (PEL) algorithm, and analyze its performance in terms of the total
mistakes. The algorithm relies on Wald’s sequential probability ratio test to eliminate un-
likely parameters, and uses an optimistic policy for effective exploration. We establish that
with high probability the total mistakes of the algorithm is linear (up to a logarithmic term)
in the size of the parameter space, and is independent of the cardinality of the state and
action spaces. We further introduce a notion of a decomposable model, which is roughly a
system consisting of several independently parameterized subsystems coupled through ob-
served variables. We introduce a version of the PEL algorithm that learns the parameters of
each subsystem separately leading to drastic enhancement of the guaranteed learning rate as
expressed by the bound on the number of mistakes.
Keywords: Reinforcement Learning, Model–based algorithms, SPRT

1. Introduction

Reinforcement Learning (RL) concerns a learning agent that interacts with a (partially) un-
known and possibly stochastic environment, in order to learn optimal control policies (Sutton
and Barto, 1998). An obvious goal for efficient learning is fast convergence to the optimal pol-
icy. Moreover, in an online setting, the total number of suboptimal decisions made throughout
the learning period is of major concern. We shall refer to the latter as the total mistake count,
and define it more precisely later on.

Several on-line RL algorithms have recently been introduced and shown to provide polyno-
mial bounds (in a PAC sense) on the total mistake count. Such algorithms depend on efficient
resolution of the exploration-exploitation tradeoff and include the E3 algorithm (Kearns and
Singh, 2002), the R-max algorithm (Brafman and Tennenholtz, 2002; Kakade, 2003), MBIE
(Strehl and Littman, 2005), and Delayed Q-learning (Strehl et al., 2006b, 2009). Since these
algorithms make no structural assumptions on the model involved, they essentially rely on
the empirical estimation of the model parameters (or value function) for each state and ac-
tion independently. Consequently, their convergence-rate bounds are at least proportional to

∗. S.Mannor is also with Department of Electrical and Computer Engineering, McGill University, Montreal,
Canada H3A-2A7.

1



Dyagilev, Mannor and Shimkin

the cardinality of the state and action spaces; this may be unacceptable for large problems.
Possible approaches to reduce the complexity of learning in large problems include various
approximation schemes, such as parametric representations of the value function (Bertsekas
and Tsitsiklis, 1996), and state aggregation methods (e.g., Bernstein and Shimkin (2008)).
A recent overview may be found in Powell (2007). The effective use of structural knowledge
regarding the system was demonstrated for factored MDPs in Kearns and Koller (1999).

In this paper we consider the situation where a parameterized model of the system in
question is available. The potential simplification offered by such a model in an RL setting
can be best demonstrated through a simple example.

Example 1 Consider a discrete time queue, with an input buffer of size K and a single server.
The control decision may be whether to admit an arriving customer to the queue, or perhaps
idle the server; the specifics are not important here. Without prior knowledge, estimating
the system transition structure would require independent sampling at each of the possible B
states. However, if we know that the arrival and service processes are geometric with rates
that do not depend on the buffer occupancy, then two parameters are sufficient to describe
the state dynamics, and these parameters can be estimated by monitoring the arrivals and
departures at any system state. We will return to this example in Section 5.

The above example becomes even more distinctive when we consider N queues in parallel
(say, with a joint routing controller). Here the state space increases exponentially in N , while
the number of parameters increases linearly in N . Obviously, simple-minded learning of the
transition probabilities at each state separately makes no sense in this case.

Parameterized control models have been extensively studied in the adaptive control litera-
ture (Astrom and Wittenmark, 1995), as well as in the particular context of Markov Decision
Processes (MDPs) (Kumar and Varaiya, 1986). However, the results of that line of research
are focused mainly on asymptotic convergence, rather than on PAC-like convergence bounds,
which are our main concern here.

Our focus in this paper is on parameterized system models with a finite parameter space,
under the discounted reward criterion. We present an efficient RL algorithm for this problem,
called the Parameter Elimination (PEL) algorithm, and show that its total mistake bound
grows linearly (up to logarithmic terms) in the size of parameter space, and independently of
the size of the state and action spaces.

Essentially, the PEL algorithm is based on eliminating “unlikely” parameters from the list
of plausible parameters, J , using Wald’s Sequential Probability Ratio Test (SPRT) (Wald,
1952). As for action selection, at every step t an optimistic parameter is selected from the set
J . This parameter is the one that maximized the (discounted) value function from the current
state. The current action is then selected as the optimal one for the optimistic parameter.

The linear dependence of the mistake count on the cardinality of the parameter set is the
best that can be attained by any learning algorithm, as demonstrated in Example 2. However,
as the system becomes more complicated, this number may become unwieldy. In particular,
when the overall system is composed of several interconnected subsystems, the parameter car-
dinality typically increases exponentially in the number of subsystems involved. We address
this issue in this paper by considering a decomposable model, that consists of several inde-
pendently parameterized subsystems, which are coupled through observable (input/output)
variables. This system is described by a composite parameter vector, with each component
of this vector pertaining to a single subsystem. As the size of the composite parameter vector
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grows exponentially fast in the number of subsystems, the basic PEL algorithm might perform
poorly. However, by exploiting the decomposable model structure, the learning rate bounds
may be drastically reduced.

Our definition of decomposable models refines the notion of factored models introduced
in Kearns and Koller (1999) in the following way. In addition to the factored state transition
structure, we assume the existence of fully observed coupling variables that determine the
interdependencies of the subsystems. Additional observation of the coupling variable allows
obtaining separate statistical information on each component of the parameter vector. We
provide a variant of the PEL algorithm, the D-PEL algorithm, that is adjusted to decom-
posable models and has a lower computational and memory complexity that the basic PEL
algorithm. We then establish an error bound for the new algorithm that essentially grows
linearly in the number of subsystems rather than exponentially.

We conclude our paper by presenting simulation results for a simple queueing model with
decomposable service and arrival structure. We show, that the number of mistakes the D–
PEL algorithm makes is comparable to (or even slightly smaller than) that made by the PEL
algorithm. The number of total mistakes of both algorithms turns out to be significantly
(times 70) smaller than that of the RTDP-IE algorithm (Strehl et al. (2006a)), which is a
state-of-the-art model-based learning algorithm that does not assume any prior knowledge on
the model.

The current paper focuses on the case of a finite parameter set. While this case is of
interest on its own, it may also serve as an intermediate step for treating the continuous
parameter case via discretization. A detailed treatment of this approach is beyond the scope
of the present paper and is presented in Dyagilev (2009).

The rest of the paper is organized as follows. In Section 2.1 we present the model along
with some definitions and notations. Section 2.2 defines the main performance metrics con-
sidered in this paper. In Section 3 we present the PEL algorithm and provide our main
performance bounds for this algorithm. Section 4 is devoted to the proof of these results and
discusses several aspects of the obtained error bound. In Section 5 we introduce the concept
of decomposable models and describe the D-PEL algorithm. In Section 6 we show simulation
results. We conclude with a summary and discussion of future work in Section 7.

2. Preliminaries

In this section we provide a rigorous definition of the MDP and quote several of its basic
properties. We further introduce algorithm performance metrics that is used in this paper.

2.1 Model Formulation

An MDP M is specified by a five-tuple 〈S, A,R, p, η〉, where S is a finite state space, A is
a finite action space, R is a finite reward set, p : S × A → ∆(S) is the transition kernel
and η : S × A → ∆(R) is the reward distribution function. Here ∆(S) denotes the set of
probability vectors over the set S, and similarly for ∆(R). Given that at the time step t the
state is st ∈ S and the action is at ∈ A, the agent receives a reward rt ∈ R generated via
probability distribution η(·|st, at) and moves to state st+1 ∈ S with probability p(st+1|st, at).

The observed history until time t is the sequence ht
4
= {s0, a0, r0, ..., st−1, at−1, rt−1, st}.

A (deterministic) decision rule is a mapping from history to action, namely πt : Ht → A,
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where Ht = (S × A × R)t × S. A policy A is a collection of decision rules {πt}∞t=0 so that
at = πt(ht). Note that a (deterministic) learning algorithm is such a policy. Given an initial
state s, the policy A induces a stochastic process (st, at, rt)∞t=0 with probability measure PA,s·.
The expectation operator corresponding to this measure is denoted by EA,s.

Let V A(s)
4
= EA,s

{∑∞
t=0 γtrt

}
denote the discounted return for policy A from state s.

Here 0 < γ < 1 is the discount factor, which we fix from now on. We refer to V A(s) as the
value function for policy A. A policy A = {πt}∞t=0 is called stationary if πt = π for all t,
where π : S → A is a function of the current state only. It is well known (e.g., Puterman
(1994)) that there exists a deterministic stationary policy π∗ that is optimal in sense that
V π∗(s) ≥ V A(s) for any state s and any policy A. Denote the corresponding optimal value
function by V ∗(·). Further define the action-value function (or Q-function) for state-action

pair (s, a) as Q∗(s, a) = r̄(s, a) + γ
∑

s′∈S p(s′|s, a)V ∗(s′), where r̄(s, a)
4
=

∑
r∈R rη(r|s, a).

The following equality, known as Bellman equation, holds for any stationary policy π and
state s ∈ S:

V π(s) = r̄(s, π(s)) + γ
∑

s′∈S

V π(s′)p(s′|s, π(s)),

while the optimal value function of policy π∗(s) satisfies

V ∗(s) = max
a

Q∗(s, a) = Q∗(s, π∗(s)).

Let Rmax denote an upper bound on the expected one-step reward, so that r̄θ(s, a) ≤ Rmax

for all θ ∈ Θ, s ∈ S and a ∈ A. Let Rmax denote an upper bound on the one-step reward,
that is r(s, a) ≤ Rmax for all s ∈ S and a ∈ A.

In this paper we assume that there is a known family {Mθ}θ∈Θ of parameterized models,
where Θ = {θ0, θ1, ..., θ|Θ|−1} is a finite set of representative parameter values. All models
in the given family share the same action, reward and state spaces, while their transition
and reward probabilities depend on the parameter θ ∈ Θ, i.e., Mθ =< S, A, R, pθ, ηθ >.
For each MDP Mθ we denote by π∗θ , V ∗

θ and Qθ an optimal stationary policy, the optimal
value function and the Q-function, respectively. In case the optimal policy is not unique, we
henceforth fix one (arbitrary) selection. For brevity of exposition, we define θ̂ to be the true
parameter, namely, the actual model M is given by M =< S,A, R, pθ̂, ηθ̂ >≡ Mθ̂. In the
discrete parameter case we assume that θ̂ ∈ Θ. In the mismatched case the true parameter θ̂
need not belong to Θ, however, there exists a representative θ ∈ Θ so that models Mθ and Mθ̂
are sufficiently close in their properties. We denote by π∗

θ̂
, V ∗

θ̂
and Qθ̂ an optimal stationary

policy, the optimal value function and the Q-function for the true model Mθ̂, respectively.

2.2 Performance Metrics

An effective measure of on-line learning efficiency is the number of time steps the algorithm
prescribes sub-optimal action. Recall that an optimal action a∗ = π∗(s) in state s satisfies
Q∗(s, a∗) = V ∗(s). Hence the difference V ∗(s)−Q∗(s, a) quantifies the effect of taking a single
suboptimal action a at state s, and thereafter proceeding optimally. The action mistake count
is defined as follows:
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Definition 1 We define the action mistake count (AMC) as a total number of ε-suboptimal
state-action pairs visited by the algorithm during its operation, namely,

AMC(ε)
4
=

∞∑

t=0

I {Q∗(st, at) < V ∗(st)− ε} .

Note that for ε small enough AMC(ε) = AMC(0) (due to the finiteness of the state and
action spaces), so that all non-optimal actions are counted.

We further introduce a more elaborated performance criterion relies on a quantification
of “sub-optimality” of a policy rather than a single action. Denote by A the policy of the
learning algorithm. Let hτ be the observed history up to time τ , and denote by V A(hτ )

4
=

EA,s0

{∑∞
j=τ γj−τrj

∣∣∣hτ

}
the value of the policy A starting from time τ . The policy mistake

count is defined as follows:

Definition 2 Let ε be a positive number. The time step t in said to be an ε-suboptimal step
if V A(ht) < V ∗(st)− ε. Equivalently, we say that the learning agent follows an ε-suboptimal
policy at time t. The policy-mistake count (PMC) of a learning algorithm is defined as

PMC(ε)
4
=

∞∑
t=0
I
{
V A(ht) < V ∗(st)− ε

}
.

The PMC criterion was suggested by Kakade (2003) and originally called the “sample com-
plexity of exploration”.

It is easily verified that for any ε > 0 and learning algorithm AMC is dominated by PMC
(see Lemma 2.3 in Dyagilev (2009)), i.e., AMC(ε) ≤ PMC(ε). It follows that any upper
bound on the PMC also applies to the AMC. For this reason we shall focus in the following
on PMC alone. We now define the corresponding notion of a PPAC algorithm.

Definition 3 A learning algorithm A is called polynomial PMC-PAC (or just PPAC) if, for
any positive ε and δ, its policy-mistake count (and hence action-mistake count) is polynomial
in (ε−1, δ−1, (1− γ)−1, |Θ|) with probability of at least (1− δ).

3. The Parameter Elimination Algorithm

In our discrete–parameter setting, the learning problem may be reduced to the identification
of the true parameter or, at least, a parameter that leads to an ε-optimal control policy for
the true model. Equivalently, one may try to eliminate all other parameters from the set of
optional parameters.

Define the log-likelihood function of the observation (st−1, at−1, rt−1, st) at time step t as

lt(θ) = log pθ(st|st−1, at−1) + log ηθ(rt−1|st−1, at−1). (1)

The cumulative log-likelihood is then Gt(θ) =
∑t

i=1 lt(θ).
The PEL algorithm proceeds as follows (see Algorithm 1 for details). As an input, the

algorithm requires the finite family of possible MDPs {Mθ}θ∈Θ, with common state, reward
and action spaces. The value function V ∗

θ (·) and the optimal policy π∗θ(·) for each model can
be calculated using one of the standard algorithms, i.e., value iteration, policy iteration or
linear programming (see Puterman (1994)). An allowed probability of error δ is also provided
as input.
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Algorithm 1 Parameter ELimination
Input: {Mθ}θ∈Θ – the finite family of possible MDPs, δ – an allowed probability of error.
Initialize: Initialize the list of plausible parameter values to J0 = Θ. Initialize the array of
cumulative log-likelihood to G0(θ) = 0 for all θ ∈ Θ.
For t = 0, 1, ... do
1. Stopping condition: If Jt is a singleton, namely Jt = {θ}, then use the corresponding
policy π∗θ indefinitely and skip items (2)-(5) below.
2. Find an optimistic parameter: Select a parameter value that maximizes the value
function among plausible parameter values: θ(t) = arg maxθ∈Jt V ∗

θ (st).
3. Act: Execute the action according to the optimal policy for the optimistic parameter:
at = π∗θ(t)(st).
4. Update: Observe the reward rt and the next state st+1. Update for all θ ∈ Jt: Gt+1(θ) =
Gt(θ) + lt+1(θ) where lt+1 is defined in (1).
5. Eliminate: Set Jt+1 = Jt and do:

a. For all θ ∈ Jt+1 so that Gt+1(θ) = −∞, let Jt+1 = Jt+1 \ {θ}.
b. Find the most likely parameter in the plausible set θ̂ = arg maxθ∈Jt+1 Gt+1(θ).

c. For all θ ∈ Jt+1 so that Gt+1(θ̂)−Gt+1(θ) > log
[

3(|Θ|−1)
δ

]
, let Jt+1 = Jt+1 \ {θ}.

The algorithm maintains a list of plausible parameters Jt throughout its execution. Ini-
tially, all parameter values are considered plausible and then they are eliminated one by one.
The elimination step is based on the Sequential Probability Ratio Test (SPRT), namely, com-
paring the log-likelihood ratio Gt(θi)−Gt(θj) to a given threshold Gth > 0. If at time step t
there exist parameters θi, θj ∈ Jt so that G(θi)−G(θj) > Gth then θj is eliminated. Equiva-
lently, we first find θ̂, the most likely parameter in the set Jt, and then compare the likelihood
of all other plausible parameters to G(θ̂). As the error probability of each elimination can
be upper bounded by e−Gth , the selection of Gth = log [3(|Θ| − 1)/δ] yields cumulative error
probability of all eliminations less than δ

3 (see Dyagilev et al. (2009) for details).
The exploration-exploitation tradeoff is addressed using the so-called “optimism in face of

uncertainty” principle. At each time step t, the PEL algorithm selects an “optimistic” action
in the following sense. First, the algorithm selects the parameter θ(t) ∈ Jt that maximizes
the value function V ∗

θ (st) for the current state st. The selected action is then the optimal one
given θ(t), i.e., at = π∗θ(t)(st). We note that the selected action may correspond to a different
parameter θ at each state, even if the set Jt does not change.

The high probability bound on the mistake count of the PEL algorithm is given by the
following theorem:

Theorem 4 Consider the PEL algorithm with parameter 0 < ε < Rmax
(1−γ) and 0 < δ < 1. With

probability of at least 1− δ, PEL’s policy-mistake count is upper bounded by

PMC(ε) ≤ L(|Θ| , ε, δ, γ) |Θ| R3
max

ε3(1− γ)6
log

(
3 |Θ|

δ

)
, (2)

where L(|Θ| , ε, δ, γ) = 1000 log 4Rmax
ε(1−γ) .
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This theorem implies that the PEL algorithm is PPAC in terms of the total mistake bound,
and its PMC is linear (up to the logarithmic term L(·)) in the size of the parameter set. Note
that the bound is independent of the cardinality of the state and action spaces.

Remark 5 As in Strehl and Littman (2005) and Strehl et al. (2009), Theorem 19 provides
a bound on the total number of mistakes the algorithm makes rather than on the number of
time steps until convergence to the optimal policy. Hence, notion of mixing time, which is
roughly the number of time steps it takes to reach some recurrent state of the MDP (e.g., see
Kearns and Singh (2002)), are irrelevant for our analysis.

4. Proof of the Main Result

An outline of the proof of Theorem 4 is as follows. We begin in Section 4.1 by introducing an
optimistic auxiliary model that will prove useful later on. In Section 4.2 we define informative
state-action pairs (Definition 9) that are roughly state-action pairs that distinguish the true
MDP and the auxiliary model. We next show in Lemma 10 that there is a positive probability
to reach an informative state-action pair within a finite time interval following an ε-suboptimal
time step (Definition 2). Moreover, Lemma 11 (Section 4.3) implies that the number of ε-
suboptimal steps encountered can be bounded with high probability in terms of number of
actual visits to informative state-action pairs. Hence, once we show that the number of visits
to informative state-action pairs is bounded, we can conclude that the policy-mistake count
is bounded as well. To show the former, we bound in Section 4.5 the stopping time of the
SPRT test (for any fixed parameter θ 6= θ0) using a non-decreasing measure of accumulated
statistical information related to Bhattacharyya’s information coefficient. In Section 4.6 we
show that each visit to an informative state-action pair adds some strictly positive amount
of information to one parameter at least. Hence the number of visits needed for SPRT to
trigger is bounded. Using the pigeon-hole principle, we obtain that the number of visits to an
informative state action pairs until convergence to an ε-optimal policy is also bounded, thus
concluding the proof.

Note that from this point on all the probabilities and expectations refer to the stochastic
process induced by the PEL algorithm on the actual MDP Mθ0 , unless mentioned otherwise.

4.1 An Auxiliary Model

Consider a fixed subset of parameters J ⊆ Θ. For every s ∈ S, define the optimistic parameter
in J as θ(J, s) = arg maxθ∈J V ∗

θ (s) (with ties decided arbitrarily). Define an auxiliary MDP
MJ = 〈S,A, R, pJ , ηJ〉, where pJ(s′|s, a) = pθ(J,s)(s′|s, a) and ηJ(r′|s, a) = ηθ(J,s)(r′|s, a).
Further, define the following stationary policy: πJ(s) = π∗θ(J,s)(s). This policy picks at each
state the optimal action according to the parameter θ(J, s) that is optimistic for that state.
(In the context of the PEL algorithm, it is evident that as long as the set Jt is equal to J , the
algorithm follows this stationary policy.) Denote the value function of the MDP MJ under
the policy πJ as V πJ

J . For notational convenience we use the abbreviated notation VJ . Then
the auxiliary model is optimistic in the following sense (see Appendix A for the proof):

Lemma 6 For any s ∈ S and θ ∈ J it holds that1 VJ(s) ≥ V ∗
θ (s).

1. Note that the auxiliary model MJ need not be in the family {Mθ}θ∈Θ. Hence, it may even hold that
VJ(s) > V ∗

θ (s) for every θ ∈ Θ and s ∈ S.
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4.2 Implicit Explore or Exploit

We next prove that the PEL algorithm implicitly provides a tradeoff between exploration and
exploitation. In other words, the agent either follows an ε-optimal policy or otherwise gains
some information with a positive probability.

The proof is partially based on results from Strehl and Littman (2005) and Kearns and

Singh (2002). For a stationary policy π denote the H-step value function by V π(s,H)
4
=

Eπ,s
{∑H−1

t=0 γtrt

}
. The first lemma addresses the sensitivity of the value function to the time

horizon.

Lemma 7 If H ≥ 1
1−γ log Rmax

ε(1−γ) then |V π(s, H)− V π(s)| ≤ ε for all policies π and states s.

Proof The result follows easily by bounding the tail of sum of rewards in the definition of
the value function; see, e.g., Lemma 2 in Kearns and Singh (2002).

In the following we use Teff = 1
1−γ log 4Rmax

ε(1−γ) as an effective horizon length, beyond which
the effect on the discounted return is smaller than ε/4.

The following lemma bounds the sensitivity of the discounted reward function to per-
turbations in the transition and reward probabilities. For two probability distributions p
and q on a finite set A, we use the l1 norm to measure their separation: ‖p(·)− q(·)‖1 =∑

a∈A |p(a)− q(a)|.

Lemma 8 Let M1 =< S,A, R, p1, η1 > and M2 =< S,A, R, p2, η2 > be two MDPs with non-
negative rewards bounded by Rmax. Let π be some stationary policy and let ε be a positive
number. If ‖η1(·|s, a)− η2(·|s, a)‖1 ≤ ε(1−γ)2

Rmax
and ‖p1(·|s, a)− p2(·|s, a)‖1 ≤ ε(1−γ)2

Rmax
for all

states s and actions a, then maxs∈S

∣∣V π
M1

(s)− V π
M2

(s)
∣∣ ≤ ε.

Proof The lemma follows from Lemma 4 in Strehl and Littman (2005), after noting that

|r̄1(s, a)− r̄2(s, a)| ≤ Rmax ‖η1(·|s, a)− η2(·|s, a)‖1 .

To state the central result of this subsection, we define informative state-action pairs as those
pairs for which either the state transition or the reward distribution are distinct under the
true and optimistic models. More precisely:

Definition 9 Recall that θ0 is the true parameter. Let θ(J, s) be defined as in Section 4.1.
For t ≥ 0, let Kt be the set of state-action pairs (s, a) for which∥∥ηθ(Jt,s)(·|s, a)− ηθ0(·|s, a)

∥∥
1
≤ ε(1−γ)2

4Rmax
, and

∥∥pθ(Jt,s)(·|s, a)− pθ0(·|s, a)
∥∥

1
≤ ε(1−γ)2

4Rmax
. We say

that the PEL algorithm visited an informative state-action pair at time t, if (st, at) /∈ Kt.

The following proposition asserts that occurrence of an ε-suboptimal step leads to an explo-
rative interval, where an informative state-action pair is visited with probability of at least
ε(1−γ)
2Rmax

. Recalling the definition of an ε-suboptimal time step in Definition 2, let

E1(t)
4
= {θ0 ∈ Jt} ∩ {V At(ht) < V ∗

θ0
(st)− ε}, t ≥ 0 (3)
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denote the event that the action at time step t is ε-suboptimal and the true parameter was
not eliminated before time t. Let

E2(t)
4
= {(st−1, at−1) /∈ Kt−1} ∪ {Jt 6= Jt−1}, t ≥ 1 (4)

be the event that at time step (t − 1) either an informative state-action pair was visited or
some parameter was eliminated from the set Jt−1 of plausible parameters at time t. Denote

by E3(t)
4
=

⋃t+Teff
τ=t+1 E2(τ) the event that the informative event E2(τ) occurred for τ between

(t + 1) and (t + Teff). Let Ft
4
= σ{ht} be the sigma algebra of the history sequence until time

step t. Then E1(t), E2(t) ∈ Ft, while E3(t) ∈ Ft+Teff
.

Proposition 10 For every t and history ht that satisfies E1(t), PA,s0 {E3(t)|ht} > ε(1−γ)
2Rmax

.

Proof See Appendix B for the proof.

4.3 A Discovery Lemma

Proposition 10 shows that in the Teff steps following an ε-suboptimal step there is a probability
of at least ε(1−γ)

2Rmax
to reach some informative state-action pair or eliminate some parameter from

Jt. Based on that, Lemma 11 below bounds the number of ε-suboptimal steps in terms of the
number of actual visits to informative state-action pairs and parameter eliminations.

Let Kt be as in Definition 9 and let N2 be a positive integer. Recall the definitions of
E1(t), E2(t), E3(t) and Ft from the previous section.

Lemma 11 For any positive integer N2, let T2(N2) be the time step on which the event E2(t)
occurred for the N2-th time, namely,

T2(N2) = inf

{
n ≥ 1

∣∣∣∣∣
n∑

k=1

I {E2(k)} = N2

}
(5)

(with T2(N2) = ∞ is such n does not exist). Then, for all ε > 0 and 0 < δ < 1,

PA,s0

{∑T2(N2)
k=0 I {E1(k)} ≤ N1

}
≥ 1− δ,where N1

4
= 4RmaxTeff

ε(1−γ)

[
N2 + 8Rmax

ε(1−γ) log Teff

δ3

]
.

Proof See Appendix C for the proof.

4.4 Sequential Hypothesis Testing

The sequential hypothesis test we use in our algorithm was originated by Wald (1952) and
is defined in the following way. Consider a discrete-time stochastic process {xt}∞t=0 taking
values in a finite set S. Denote by xn

0 = {x0, ..., xn} the observations obtained by time n. Let
the probability of such observations under hypothesis H0 be denoted by p0(xn

0 ), and under
H1 by p1(xn

0 ). Note that the discussion here is not limited to Markov processes.

Definition 12 For any 0 < δ < 1 define the stopping time

NW (δ) = inf
{

n ≥ 1 :
∣∣∣∣log

p1(xn
0 )

p0(xn
0 )

∣∣∣∣ ≥ − log δ

}
,

9
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and the decision rule dW (δ) that chooses upon stopping a more likely hypothesis. Then the
pair

(
NW (δ), dW (δ)

)
is called the Sequential Probability Ratio Test (SPRT).

It was shown by Wald (1952) that the error probability of the SPRT is bounded by δ:

Theorem 13 (Wald) P
{

dW (δ) = H0

∣∣H1

} ≤ δ and P
{

dW (δ) = H1

∣∣ H0

} ≤ δ.

We next establish a useful bound on the stopping time of SPRT, using an auxiliary stopping
time for the same process based on the Bhattacharyya coefficient rather than the likelihood
ratio. We begin by defining the Bhattacharyya coefficient (Kailath, 1967).

Definition 14 Let p and q be probability distributions on a finite set S. Then the Bhat-

tacharyya coefficient is ρ
4
=

∑
s′∈S

p1/2(s′)q1/2(s′).

Note that ρ ≤ 1 by the Cauchy-Schwarz inequality. The Bhattacharyya distance (or informa-
tion) is defined as − log ρ. This metric is related to the l1-norm of (p − q) in the following
way (see Appendix D for the complete proof):

Lemma 15 Let p and q be probability distributions on a finite set S. Then,
− log ρ ≥ 1

8 ‖p− q‖2
1.

Definition 16 Consider the same processes and hypotheses as in Definition 12. Denote
by ρ(xn

0 ) =
∑

x′∈S

p
1/2
0 (x′|xn

0 )p1/2
1 (x′|xn

0 ) the Bhattacharyya coefficient between p0(·|xn
0 ) and

p1(·|xn
0 ). Then the Bhattacharyya stopping time with parameter 0 < δ < 1 is defined

as:

NB(δ) = inf

{
n ≥ 1

∣∣∣∣∣
n−1∏

t=0

ρ(xt
0) ≤ δ, or p1(xn|xn−1

0 ) = 0

}
. (6)

We note that the stopping condition
∏n−1

t=0 ρ(xt
0) ≤ δ can be written as Rn

4
= −∑n−1

t=0 log ρ(xt
0) ≥

− log δ, where Rn is the cumulative Bhattacharyya distance (or total Bhattacharyya informa-
tion).

While our algorithm uses the Wald test, the Bhattacharyya stopping time will be more
handy for analysis as Rn is a non-decreasing sequence. The following proposition relates these
two stopping times (see Appendix E for the proof).

Proposition 17 For 0 < δ < 1, the inequality P
{
NW (δ) > NB(δ3/2)

} ≤ δ holds both under
H0 and H1.

4.5 Information Count Lemma

Consider the PEL algorithm applied to the true MDP Mθ0 and consider hypothesis testing
between MDPs Mθ0 and Mθ for θ 6= θ0. Denote by Rt(θ) the total Bhattacharyya information
of the observed history ht with respect to hypotheses Mθ0 and Mθ. Denote by NB(θ, δ)
and NW (θ, δ) the corresponding Bhattacharyya stopping time (see Definition 16) and the
corresponding SPRT stopping time (see Definition 12).

The following lemma assesses the maximal number of visits to informative state-action
pairs until all parameter θ 6= θ0 are eliminated.

10
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Lemma 18 Let δ′ 4= δ/ [3(|Θ| − 1)]. Consider a history h∞ = {st, at, rt}∞t=0 so that the fol-
lowing two conditions are satisfied:
(1) The true parameter θ0 is not eliminated from the plausible list J during the execution of
the PEL algorithm; and
(2) NW (θ, δ′) ≤ NB

(
θ, (δ′)3/2

)
for all θ 6= θ0, i.e., the relation between Bhattacharyya stop-

ping time and SPRT stopping time is as indicated by Lemma 17.
Then the total number of visits to informative state-action pairs before all θ 6= θ0 are elimi-
nated is upper bounded by (|Θ| − 1) log((1/δ′)3/2)/B0, where B0

4
= 1

8

(
ε(1− γ)2/(4Rmax)

)2.

Proof As mentioned in Section 3, the elimination step of the algorithm can be interpreted
as an SPRT between any pair of parameter in Jt, with the threshold of δ′. Thus, the elim-
ination time of any θ 6= θ0 can be bounded from above by NW (θ, δ′), which by condition
(2) is dominated by NB

(
θ, (δ′)3/2

)
. In what follows we bound the total number of visits to

informative state-action pairs before time maxθ 6=θ0 NB
(
θ, (δ′)3/2

)
stops, thus bounding the

number of these visits until all θ 6= θ0 are eliminated from the plausible set J .
Let t be a time step on which an informative state-action pair (st, at) is visited (see Defi-

nition 9). Let us assess the Bhattacharyya distance (− log ρt) between the joint distribution
of (rt, st+1) under the true model Mθ0 and the auxiliary model MJ . Evidently,

− log ρt = − log

[∑

s∈S

p
1/2
θ(t)(s|st, at)p

1/2
θ0

(s|st, at)

]
− log

[∑

r∈S

η
1/2
θ(t)(r|st, at)η

1/2
θ0

(r|st, at)

]
,

where θ(t) is the optimistic parameter at time t (see Algorithm 1). Since (st, at) /∈ Kt, it

follows by Lemma 15 that − log ρt > 1
8

(
ε(1− γ)2/(4Rmax)

)2 4
= B0. Hence, each visit to an

informative state-action pair (st, at) /∈ Kt increases Rt(θ) by at least B0 for at least one θ ∈ Jt.
As the sequence Rt(θ) is non-decreasing, the total number of such increments until the time
NB(θ, (δ′)3/2) stops is upper bounded by log((1/δ′)3/2)/B0.

By the pigeon-hole principle it will take less than (|Θ|−1) log((1/δ′)3/2)/B0 until all times
NB(θ, δ′) for θ 6= θ stop.

4.6 Proof of Theorem 4

Consider the PEL algorithm applied to the true MDP Mθ0 . The proof proceeds through the
following steps. In steps 1-3 we define three “unwanted” events: the event E4 on which the
true parameter θ0 is eliminated from the plausible parameter set Jt at some point; the event
E5 on which (essentially) there is insufficient number of visits to informative state-action pairs
despite a large number of “sub-optimal” steps; and the event E6 on which a sufficient amount
of Bhattacharyya information does not lead to parameter elimination in the SPRT test. We
show that the probability of each is bounded by δ/3. In step 4 and step 5 the required upper
bound on the PMC is shown to hold on the complement of E4∪E5∪E6. In step 6 we combine
the above to conclude the required result.
Step 1: Let E4

4
= {θ0 /∈ ∩∞t=1Jt} be the event that the actual parameter is eliminated from

the set Jt of plausible parameters at some point. As mentioned, the elimination step of
the algorithm can be interpreted as a SPRT between any pair of parameter in Jt, with the

11
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threshold of δ′ 4= δ
3(|Θ|−1) . From Theorem 13 we obtain that the probability of eliminating

θ0 due to any other fixed parameter is less than δ′. Therefore, by union bound the total
probability of eliminating θ0 is less then (|Θ| − 1)δ′, namely, PA,s0 {E4} ≤ (|Θ| − 1)δ′ = δ/3.
Step 2: Recall the definition of E1(t) and T2 from (3) and (5). Let

E5
4
=





T2(N2)∑

t=1

I {E1(t)} > N1





be the event that the event E1(t) was encountered more than N1 times before the N2-th
occurrence of the event E2(t). Here,

N2
4
= 12(|Θ| − 1)

(
4Rmax

ε(1− γ)2

)2

log(
1
δ′

) + (|Θ| − 1)

(this selection is explained in step 4) and N1 is selected as in Lemma 11 with δ = δ/3, namely,

N1
4
=

4RmaxTeff

ε(1− γ)

[
N2 +

8Rmax

ε(1− γ)
log

3Teff

δ

]
.

Then, Lemma 11 implies (for any N2 and in particular for the one above), PA,s0 {E5} ≤ δ/3.
Step 3: Consider hypothesis testing between MDPs Mθ0 and Mθ for θ 6= θ0. Denote by
NW (θ, δ), Rt(θ) and NB(θ, δ) the corresponding SPRT stopping time, the total Bhattacharyya
information and the Bhattacharyya stopping time (see Definitions 12 and 16). Let E6 be the
event on which NW (θ, δ′) > NB

(
θ, (δ′)3/2

)
holds for some θ 6= θ0 (i.e., the relation between

Bhattacharyya stopping time and SPRT stopping time defined in Lemma 17 is violated).
Using Proposition 17 and the union bound we conclude that PA,s0 {E6} ≤ (|Θ| − 1)δ′ = δ/3.
Step 4: Consider a realization h∞ = {st, at, rt}∞t=0 ∈ Ec

4 ∩ Ec
5 ∩ Ec

6, where Ac stands for
complement event for the event A. Noting the definition of the event E2(t) in (4), recall that
E2(t) occurs if an informative state-action pair was visited at time (t− 1) or a parameter was
eliminated from Jt−1. Hence,

∞∑

t=1

I {E2(t)} ≤
∞∑

t=1

I {(st−1, at−1) /∈ Kt−1}+
∞∑

t=1

I {Jt 6= Jt−1} .

We bound the first term using Lemma 18 yielding

∞∑

t=1

I {E2(t)} ≤ (|Θ| − 1)
log((1/δ′)3/2)

B0
+ (|Θ| − 1) ≡ N2.

Step 5: Let T2, N2 be as in Step 2. For h∞ as before we argue that PMC(ε) ≤ N1. Since

12
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h∞ ∈ Ec
5,

N1 ≥
T2(N2)∑

t=0

I {E1(t)}

=

[ ∞∑

t=0

I {E1(t)}
]
I {T2(N2) = ∞}+

[ ∞∑

t=0

I {E1(t)}
]
I {T2(N2) < ∞}

−



∞∑

t=T2(N2)+1

I {E1(t)}

 I {T2(N2) < ∞} .

Note that the argument in Step 4 implies that for t > T2(N2) the set Jt of plausible parameters
contains only the true parameter θ0. For this realization the PEL algorithm follows an optimal
policy πθ0 from time T2(N2) onward, therefore

∑∞
t=T2(N2)+1 I {E1(t)} = 0. Hence,

N1 ≥
∞∑

t=0

I {E1(t)} =
∞∑

t=0

I
{
V At(ht) < V ∗

θ0
(st)− ε

}
,

where equality holds since θ0 ∈ Jt for realization in Ec
4 (see 4). Hence, by definition of the

PMC, N1 ≥ PMC(ε).
Step 6: The bound N1 ≥ PMC(ε) holds on h∞ ∈ Ec

4 ∩ Ec
5 ∩ Ec

6. But, by the union bound,
PA,s0 {Ec

4 ∩ Ec
5 ∩ Ec

6} ≥ 1− δ. Substituting N2 and Teff yields the inequality (2) with proba-
bility of at least (1− δ).

4.7 Discussion

As may be seen from Equation (2), the dependence of PEL’s PMC bound on |Θ| is essentially
linear. The following example shows that without further assumptions on the model, this
linear dependence can not be improved upon by any learning algorithm.

Example 2 Consider an array of N one-armed bandits (Robbins, 1952) b1, ..., bN , each with
a payoff of 0 (loss) or 1 (gain). It is known that exactly one bandit b∗ that has a high gain
probability of pmax, and all others have a lower gain probability of pmin < pmax. The agent
may play any single bandit bi at each time step.

Given that the index of the best bandit is initially unknown, our model set contains
N different models, namely |Θ| = N . Consider PMC(ε) with ε small enough so that a
policy mistake occurs each time the agent chooses a suboptimal bandit. Obviously, a learning
agent needs to converge to the (initially unknown) bandit b∗. It is evident that any learning
algorithm may need to try out all N bandits in order to find the best one; thus, the (worst-
case) PMC is at least linear in |Θ| (see Mannor and Tsitsiklis (2004) for a stronger result).

5. Decomposable Models

As indicated above, the dependence of PEL’s PMC bound on |Θ| is essentially linear. Unfor-
tunately, |Θ| may turn out to be prohibitively large, especially when the parameter vector is
multidimensional. To be specific, consider a system which consists of N coupled subsystems,
each parameterized independently by a parameter θi ∈ Θi, where i = 1, 2, ..., N . The complete
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system is thus described by a parameter vector θ = (θ1, ..., θN ) from the set Θ = "N
i=1Θ

i, so
that the size |Θ| = ∏N

i=1

∣∣Θi
∣∣ of the composite parameter set grows exponentially in N . This

may be viewed of course as a particular manifestation of the well known “curse of dimension-
ality.”

However, if the subsystems concerned are decomposable in an appropriate sense, we can
obtain separate statistical information about each component θi of the parameter vector
independently. It is our purpose in this section to utilize such decomposable model structure
in order to obtain better performance bounds on the AMC of our algorithm. Furthermore, we
introduce a natural modification of the PEL algorithm to these models - the D–PEL algorithm.
This algorithm maintains separate plausible sets and cumulative likelihood functions for each
component θi. This reduces both the memory complexity of parameter bookkeeping from∏N

i=1

∣∣Θi
∣∣ to

∑N
i=1

∣∣Θi
∣∣ and the computational complexity of finding the most likely parameter

at the elimination step.
This section proceeds as follows. We formalize the notion of a decomposable model in

Section 5.1. In Section 5.2 we introduce a version of the PEL algorithm, the Decomposable
PEL (D-PEL) algorithm, fitted to these models. We provide a mistake bound for the D-PEL
algorithm that is linear in the sum of the sizes of parameter sets describing each subsystem.
We conclude with the proof of the mistake bound on the D-PEL algorithm in Section 5.3.

5.1 Decomposable Models: Definition

We next formally introduce the notion of decomposable models. We consider a system M
consisting of N subsystems M1, ..., MN . Denote by Si the state space of subsystem Mi and
let S = "N

i=1Si be the composite state space of the model. Thus, the state s ∈ S is a vector
s = (s1, ..., sN ) of subsystem states. We assume that the state transition of each subsystem
Mi from state si to s̄ i occurs in two stages. At the first stage each subsystem generates a
coupling variable yi ∈ Yi, where Yi is a finite set. We assume that probability distribution
αi of yi depends on the current action a and on the current state si of the system Mi, i.e.,
yi ∼ αi(·|si, a). At the second stage, the next state s̄ i of each subsystem Mi is generated via
a probability distribution βi that depends on the current state si, the current action a and
the vector y = (y1, ..., yN ) of coupling variables, i.e., s̄ i ∼ βi(·|si, a, y). The joint distribution
of the next state s̄ and the coupling vector y may then be expressed as follows:

P { s̄, y| s, a} =
N∏

i=1

βi(s̄ i|si, a, y)
N∏

j=1

αi(yj |sj , a).

We further assume that each subsystem Mi produces a reward ri ∈ Ri, where Ri is a finite set.
The reward ri is generated via a distribution ηi(·|si, a) that depends on the current state si

and the current action a. The reward of the complete system is a sum of rewards produced by
all subsystems, i.e., r =

∑N
i=1 ri. See Figure 1 for a graphical description of the dependencies

above. Similar to standard MDPs, we denote by M = 〈S,Y,A,R, {ηi}N
i=1, {α}N

i=1, {β}N
i=1〉 the

described decomposable model.
We further assume that the model parametrization is decomposable in the following

sense. Let each subsystem Mi be parameterized with a parameters θi ∈ Θi, where the
parameter defines distributions αi(yi|si, a), βi(s̄ i|si, a, y) and ηi(ri|si, a). Let Θ = "N

i=1Θ
i

denote the composite parameter set and let θ ≡ (θ1, , ..., θN ) be the composite parame-
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Figure 1: Graphical Representation of Decomposable Models.
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Figure 2: Two Concurrent Queues

ter vector. Denote αi(yi|si, a, θ) = αi(yi|si, a, θi), βi(s̄ i|si, a, y, θ) = βi(s̄ i|si, a, y, θi) and
ηi(ri|si, a, θ) = ηi(ri|si, a, θi).

We observe the following with respect to the proposed model:
1. The state dynamics of decomposable models is standard controlled Markov dynamics with
the following state transition probabilities:

P { s̄| s, a} =
∑

y∈"N
i=1Yi

P { s̄, y| s, a} =
∑

y∈"N
i=1Yi

N∏

i=1

βi(s̄ i|si, a, y)
N∏

j=1

αi(yj |sj , a).

Further, the distribution of the immediate reward is independent of coupling vector y. Based
on these observations, we conclude that there exists an optimal stationary policy π : S → A
for this model that is independent of the value of coupling vector y. Hence, the optimal policy
for decomposable models can be calculated using the same algorithms as for MDPs.
2. The augmentation of the basic state model by the (fully observed) coupling variables
allows to decouple the parameter elimination in the different subsystems. The usefulness of
this decomposition is illustrated by the following example:

Example 3 (Decoupling of Parameter Estimation) Consider two serially connected
queues Q1 and Q2 equipped with servers S1 and S2 respectively. We assume that the service
process of each server Si is geometric with an unknown rate µi. The job arrival process is also
assumed to be geometric with an unknown rate λ. The arrival and service processes are fully
observed. New jobs arrive either to queue Q1 or Q2 depending on a control signal (a = a1

or a2, respectively). Jobs processed by the server S2 exit the system, while jobs processed by
the server S1 are sent to the queue Q2. See Figure 2 for schematic.

Denote by si be the number of jobs in queue Qi, then the vector (s1, s2) fully defines the
state of this system. We note that the standard one-stage state-transition dynamics fails to

15



Dyagilev, Mannor and Shimkin

provide us with separate statistical information on each parameter. For example, for s1, s2 > 0
P (s̄ 1 = s1, s̄ 2 = s2|s1, s2, a1) = (1− λ)(1− µ1)(1− µ2) + λµ1µ2, as this transition can occur
in two different ways: (1) there were no arrival nor service in the last time step; (2)a new job
arrived and an existing jobs was serviced. Hence, observing only the state vector (s1, s2) does
not provide separate statistical information on each parameter in this case.

However, the state-transition dynamic of this system may be naturally divided into the
following two stages. (1) Servers S1, S2 generate coupling variables y1, y2 indicating whether
they finished processing a job in the current time step. The arrival process, in turn, generates
a coupling variable y3 indicating an arrival of a new task; (2) Given the coupling vector
y = (y1, y2, y3) and the current number of jobs s1 and s2 in queues Q1 and Q2 respectively,
the number of jobs s̄ 1 and s̄ 2 in queues in the following step is deterministic.

Given the current state of the system, the probability distribution of y1 and y2 depends
only on µi and the probability distribution of y3 depends only on λ:

p(s̄ 1, s̄ 2, y1, y2, y3|s1, s2, λ, µ1, µ2) = p(y3|λ)p(y1|µ1, s
1)p(y2|µ2, s

2)
·p(s̄ 1|s1, a, y1, y3)p(s̄ 2|s2, a, y1, y2, y3).

Hence, observing both the state and the coupling vectors we are able to obtain statistical data
on each parameter separately.

This subsection is concluded with an example of two well-known models that have a
decomposable structure: factored models and Markov bandits. We begin by noting that
decomposable models can be seen as a refinement of factored models introduced by Kearns
and Koller (1999) and defined in the following way:

Example 4 (Factored Models) Let M =< S,A,R, p, η > be an MDP. Let the state space
S be a product S = "N

i=1Si, i.e., a state s ∈ S is a vector s = (s1, ..., sN ). We assume that
for each i ∈ {1, ..., N} and action a ∈ A there exists a subset Pai

a(s) of components of state s
(“parents” of s̄i) so that

p (s̄|s, a) =
N∏

i=1

pi

(
s̄ i|Pai

a(s), a
)
.

Namely, each component of the state s̄ is drawn independently from the distribution that
depends on the action a and a subset of components of the state s. We further assume that
the reward function is a deterministic function that depends on the current state only. An
MDP that admits such decomposition is called factored.

We consider a version of factored model parameterized with a set Θ = "N
i=1Θ

j . Namely,
we assume that for each i ∈ {1, ..., N} and each a ∈ A the distribution Pi

(
s̄ i|Pai

a(s), a
)

is
parameterized with single component θi of the parameter vector. This model can be seen as
a decomposable model with coupling variables yi = Pai

a(s). Here the coupling variables help
to capture the dependence of s̄ i on several components of s rather than just on si.

The major advantage of factored models, is that the transition probabilities for each
component of the state vector can be learned separately, thus reducing significantly the PMC
of “flat” model-based algorithms (see Kearns and Koller (1999)). Computing the optimal
policy can also be done more efficiently for factored model (Guestrin, 2003).

However, the component independence property of factored models may not hold even
in a relatively simple models. For instance, consider the serial queueing system defined in
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Example 3. On the one hand, as the state transitions in the queue are interdependent, the
queue–size state vector (s1, s2) can not be factored in a straightforward manner as p (s̄|s, a) =
p1

(
s̄ 1|s1, a

)
p2

(
s̄ 2|s2, a

)
. On the other hand, we have shown that it can be represented as a

decomposable model by adding the coupling variables.
We note, that similarly to factored model, the probability distribution αi of each cou-

pling variable yi and the probability distribution βi of each si in decomposable models can
also be learned separately. We believe that a proper modification of “flat” model-based al-
gorithms may yield a boost to the learning rate in decomposable models even in absence of
parameterized model.

Example 5 (Markov Bandits) Consider the Markovian multi–armed bandit problem (Git-
tins, 1989). This model consists of N Markov processes b1, ..., bN , where the i-th process is
a Markov chain Ci over a finite state space Si. If bandit bi is at some state si ∈ Si and is
played, then a random reward r is received with probability ηi(r|si), the state of this bandit
changes to s̄ i ∈ Si with probability pi(s̄ i|si), while the states of all the other bandits remain
unchanged. The goal of the agent is to maximize the expected discounted reward by playing
interchangeably the given N bandits.

Consider learning version of the Markov bandit problem with independent parametrization
of bandits. Namely, the transition and reward probabilities of each bandit bi depend on a
parameter θi ∈ Θi. Hence the parameter set is Θ = "N

i=1Θ
i and parameter values are vectors

θ = (θ1, ..., θN ).
This model can be seen as a decomposable MDP with each bandit bi as a sub-system with

state space Si and an empty set Yi of values of coupling variable. It can be easily seen that
both reward distribution and state transition probability function decompose as required.

5.2 The D-PEL Algorithm

The Decomposable PEL (D-PEL) algorithm proceeds as follows (see Algorithm 2 for details).
Essentially, it performs parameter elimination for each component of the parameter vector
separately. Namely, the algorithm maintains lists J i ⊆ Θi of plausible values for each com-
ponent θi of the parameter vector, where i = 1, ..., N . Initially, all parameter values are
considered plausible (i.e., J i = Θi) and then they are eliminated sequentially. For brevity of
notation we denote by J = "N

i=1J
i ⊆ Θ the composite plausible parameters list.

Similarly to the PEL algorithm, the elimination step is based on the Sequential Probability
Ratio Test (SPRT) with the following three modifications. First, we perform hypothesis
testing of parameter values in each plausible list J i separately. Second, we use a smaller value
of the elimination threshold:

Gth = log

[
3

∑N
i=1(

∣∣Θi
∣∣− 1)

δ

]
.

This reduction is due to smaller number of eliminations needed by the D-PEL algorithm
until the identification of the true parameter. The maximal number of eliminations in the
D-PEL algorithm is

∑N
i=1

∣∣Θi
∣∣ − N as opposed to

∏N
i=1

∣∣Θi
∣∣ − 1 in the original PEL al-

gorithm. Finally, we adjust the definition of the log-likelihood function of the observation
ot

4
= (st−1, at−1, rt−1, yt, st) to encapsulate the fact that we obtain statistical information on

different components of the parameter vector separately.

17



Dyagilev, Mannor and Shimkin

We let lit(θ
i) for i ∈ {1, ..., N} and θi ∈ Θi denote the log-likelihood of observation ot with

respect to the value θi of the component θi of the parameter vector. Namely,

lit(θ
i) = log αi(yi

t|st−1, at−1, θ
i) + log βi(yi

t|st−1, at−1, θ
i) + log ηi(rt|st−1, at−1, θ

i). (7)

The cumulative log-likelihood for the component θi is then Gi
t(θ

i, i) =
∑t

i=1 lit(θ
i).

The exploration-exploitation tradeoff is addressed in the same way as in the original PEL
algorithm. At each time step t, the D-PEL algorithm selects an “optimistic” action in the
following sense. First, the algorithm selects the parameter vector θ(t) ∈ Jt that maximizes
the value function V ∗

θ (st) for the current state st. The selected action is then the optimal one
given θ(t), i.e., at = π∗θ(t)(st).

Algorithm 2 Decomposable Model Parameter ELimination
Input:{Mθ}θ∈Θ – the finite family of possible decomposable models, δ – an allowed probability
of error.
Initialize: Initialize the lists of plausible parameter values to J i

0 = Θi for all i ∈ {1, ..., N}.
Initialize the arrays of cumulative log-likelihood to Gi

0(θ
i, i) = 0 for all i ∈ {1, ..., N} and

θi ∈ Θi.
For t = 0, 1, ... do
1. Stopping condition: If all lists J i

t are singletons, namely J i
t = {θi}, then use the

corresponding policy π∗
(θ1,...,θN )

indefinitely and skip items (2)-(5) below.
2. Find an optimistic parameter: Select a parameter value that maximizes the value
function among plausible parameter values: θ(t) = arg maxθ∈Jt V ∗

θ (st).
3. Act: Execute the action according to the optimal policy for the optimistic parameter:
at = π∗θ(t)(st).
4. Update: Observe the reward rt, the vector yt of coupling variables and the next state
st+1. Update for all i ∈ {1, ..., N}, θi ∈ J i

t : Gi
t+1(θ

i) = Gi
t(θ

i) + lit+1(θ
i), where lit+1 is defined

in (7).
5. Eliminate: For all i ∈ {1, ..., N} set J i

t+1 = J i
t and do:

a. For all θi ∈ J i
t+1 so that Gi

t+1(θ
i) = −∞, let J i

t+1 = J i
t+1 \ {θi}.

b. Find the most likely parameter in the plausible set θ̂i = arg maxθi∈Ji
t+1

Gi
t+1(θ

i).

c. For all θi ∈ J i
t+1 so that

Gi
t+1(θ̂

i)−Gi
t+1(θ

i) > log

[
3

∑N
i=1(

∣∣Θi
∣∣− 1)

δ

]
, (8)

let J i
t+1 = J i

t+1 \ {θi}.

The high probability bound on the mistake count of the D-PEL algorithm is given by the
following theorem:

Theorem 19 Consider the D-PEL algorithm with parameter 0 < ε < Rmax
(1−γ) and 0 < δ < 1.

Then with probability of at least 1− δ, D-PEL’s policy-mistake count is upper bounded by

PMC(ε) ≤ L(ε, δ, γ)

[
N∑

i=1

∣∣Θi
∣∣
]

R3
max

ε3(1− γ)6
log

(
3

∑N
i=1

∣∣Θi
∣∣

δ

)
, (9)
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where L(ε, δ, γ) = 1000 log 4Rmax
ε(1−γ) .

This theorem implies that the D-PEL algorithm is PPAC in terms of the total mistake bound,
and its PMC is proportional (up to the logarithmic term) to the sum of sizes of the parameter
sets Θi. When

∣∣Θ1
∣∣ = ... =

∣∣ΘN
∣∣ the bound is linear in the number N of components of

parameter vector as opposed to the original PEL algorithm whose PMC bound is exponential
in N . Moreover, the amount of memory required for storage of lists of plausible parameters
and cumulative likelihood functions is also reduced from exponential to linear in N since we
do not need to keep track of log-likelihood and plausibility of all combinations θ = (θ1, ..., θN )
as in the original PEL algorithm.

Remark 20 Computational and memory complexities of calculating an optimistic parameter
and optimistic policy remains exponential in N for a general model. However, these values
can be computed in time linear in N in a variety of well-known models, including Markov
Bandits, certain queuing systems and particular variants of the inventory problem.

Remark 21 The D–PEL algorithm can be applied to any parametrization that provides
statistical information about each component of the parameter vector separately. For in-
stance, in some models the parameter θi may be further decomposed to a triplet (θi

α, θi
β, θi

η) so
that αi(yi|si, a, θi) = αi(yi|si, a, θi

α), βi(s̄ i|si, a, y, θi) = βi(s̄ i|si, a, y, θi
β) and ηi(ri|si, a, θi) =

ηi(ri|si, a, θi
η). D–PEL’s analysis applies to these models and provides further gain in terms of

a bound on D–PEL’s PMC. The specific parametrization described in Section 5.1 was chosen
for the purposes of the brevity of exposition.

5.3 Proof of Theorem 19

This section contains an outline of the proof of Theorem 19. The essential part of the proof
is similar to the proof of Theorem 4, and we indicate explicitly only those parts that are
substantially different.

We denote by θ0 = (θ1
0, ..., θ

N
0 ) the vector of the actual values of all parameters and

consider the D-PEL algorithm applied to the true MDP Mθ0 . We note that similarly to the
PEL algorithm, the elimination step of D-PEL can be interpreted as an SPRT test between
θi and θi′ with parameter

δ′ 4=
δ

3
∑N

i=1(|Θi| − 1)
.

Denote by Ri
t(θ

i) the total Bhattacharyya information of the observed history ht with respect
to parameters θi and θi

0. Further denote by NB
i (θi, δ) and NW

i (θi, δ) the corresponding
Bhattacharyya stopping time (see Definition 16) and the corresponding SPRT stopping time
(see Definition 12).

We next modify Lemma 18 (the information count lemma) in the following way. Its proof
can be found in Appendix F.

Lemma 22 Consider a history h∞ = {st, at, rt}∞t=0 so that the following two conditions are
satisfied:
(1) The true parameters θi

0, i = 1...N , are not eliminated during the execution of the D-PEL
algorithm;
(2) NW

i (θi, δ′) ≤ NB
i

(
θi, (δ′)3/2

)
for all θi 6= θi

0 and all i = 1, ..., N , i.e., the relation between
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Figure 3: Simulated Model: Queue with admittance control and two-mode server.

Bhattacharyya stopping time and SPRT stopping time is as indicated by Lemma 17.
Then the total number of visits to informative state-action pairs before all θi 6= θi

0, i = 1, ..., N
are eliminated is upper bounded by

(
N∑

i=1

(
∣∣Θi

∣∣− 1)

)
log((1/δ′)3/2)

B0
,

where B0
4
= 1

8

(
ε(1−γ)2

4Rmax

)2
.

6. Simulation Experiments

In this section we illustrate the theoretical convergence results for the PEL and D-PEL algo-
rithms with some simulation experiments. As a reference point, we provide simulation results
of a state-of-the-art model-based algorithm - the RTDP–IE algorithm (Strehl et al., 2006a).
We show that by leveraging the parametrization our algorithms achieve a significantly smaller
action mistake count.

In our experiments we consider a system composed of a discrete–time single queue with a
buffer of size B = 50 equipped with a server S (see Figure 3). At each time step the dynamics
of the system may be divided into the following two stages: (1) A new job arrives with
probability λ. Depending on control signal a1 it is either discarded (a1 = 1) or admitted to
the queue (a1 = 2); If the queue buffer is full then the job is always discarded. (2) Depending
on the control variable a2 the job at the top of the queue may be processed by server S either
in the slow mode (a2 = 1) or in the fast mode (a2 = 2). This job will be serviced and removed
from the queue with probability µ1 or µ2 respectively, otherwise it will remain in the queue.
The one-step reward is deterministic and is a sum of the following three terms: a cost of −1
for each job waiting in the queue, a cost of −2.7 for using mode 2 of the server and a fine of
9 for discarding a arriving job. We then normalize the reward so it would be in the interval
[0, 1] as it is required by the RTDP–IE algorithm. We further assume that µ1, µ2, λ ∈ M,

where M 4
= {0.1, 0.2, ..., 0.9}.

Let the number s number of jobs in the queue be the state of the system. We set the
true parameters to be λ = 0.3, µ1 = 0.5 and µ2 = 0.8 and use a discount factor of γ = 0.9.
We note that the optimal control policy for these values of parameters and values of costs
described above is not trivial in the sense that it does not choose the same action for all states
(see Figure 4).

We further denote by y1 an observed binary variable that indicates whether the server S
finished processing a job in the last step. Finally, denote by y2 an observed binary variable
that indicates an arrival of a new job. Then the joint probability of the next state s′ and
coupling variables decomposes as follows:

p(s′, y1, y2|s, a1, s2, λ, µ1, µ2) = p(y2|λ)p(y1|s, µi where i = a2)p(s′|s, a1, y1, y2)
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Figure 4: The optimal policy.

On the one hand, given variables (y1, y2), we can obtain statistical information on each of
parameters µ1, µ2 and λ separately, hence the D-PEL algorithm and its analysis apply. On
the other hand, this system may be modeled as a standard parameterized MDP, to which the
PEL algorithm applies.

In order to make a fair comparison between PEL and D-PEL, we provide Step 4 (“Update”)
of the PEL algorithm with the same statistical information as the D-PEL has. Namely, we
“allow” PEL to observe the coupling variables (y1, y2) for purposes of parameter elimination.

We stop all algorithms after 10 million steps and measure their performance by empirical
Action Mistake Count, namely, the total number of suboptimal actions taken before stopping.

We tested the performance of the PEL and D–PEL algorithms for different values of the
allowed probability of error δ, while simulation for each value was repeated 1000 times.

Figure 5 depicts the fraction of successful learning episodes for the PEL and the D-PEL
algorithms, namely, simulations in which the true parameter was not eliminated. According
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Figure 5: Fraction of successful learning episodes.

to our analysis (see Step 1 in Section 4.6) this fraction is lower bounded by 1− δ/3. However,
the actual fraction is much larger. This observation can be explained by non-tightness of the
union bound used in deriving this bound.

Figure 6 depicts the mean value of empirical AMC of the PEL and the D–PEL algorithms
over successful learning episodes for different values of parameter δ. In order to make a fair
comparison between performances of PEL and D–PEL, we plot the AMC of both algorithms
as a function of their empirical probability δn of elimination of the true parameter. We refer
to parameter δn as the normalized δ-parameter and it can be easily calculated as 1 minus the
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fraction of successful learning episodes given by Figure 5. For clarity of exposition we set the
height of error bars to one third of empirical standard deviation.
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Figure 6: Empirical AMC of the PEL and the D–PEL algorithms.

Comparing the empirical AMC to the bounds given in Theorems 4 and 19, these bounds
turn out to be significantly larger that the observed empirical AMC, namely, these bounds
are loose. The main value of these bounds is in their functional form, namely, the form of the
dependencies on different model and algorithm parameters.

For comparison, we apply the RTDP–IE algorithm to our model. This algorithm re-
quires a user-defined parameter β that allows to tune the algorithm’s solution to exploration–
exploitation trade–off (see Section 4.2 in Strehl et al. (2006a)). We scanned a variety of values
for this parameter and repeated simulation 1000 times for each value of β (see Figure 7). In
order to make a fair comparison to the performances of the PEL and the D–PEL algorithms
we calculate the mean empirical AMC for the RTDP–IE algorithm over the 700 repetitions
that yielded the lowest AMC (out of total 1000 repetitions). For consistency with previous
graphs the height of error bars is set to one third of empirical standard deviation. We observe
that the minimal mean AMC is obtained for β = 0.07 and is equal to 1.06 ·104, which is about
50 times larger than the AMC of the PEL and the D-PEL algorithms.

7. Conclusion

Parameterized models offer a great potential for reduction of learning time and cost in large
RL problems, alongside less structured methods such as function approximation, aggregation
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Figure 7: Empirical AMC of the RTDP-IE algorithm.
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and state abstraction. The former should be used when the available prior information allows
to reduce model uncertainty to a lower dimensional parameter space, thereby allowing explicit
modeling of inter-state dependencies and avoiding the pitfalls inherent in the local nature of
learning in the general unstructured model.

In this paper we have considered the case of parameterized models with with discrete pa-
rameters. We proposed a learning algorithm that incorporates efficient exploration to achieve
polynomial mistake bounds in the PAC sense. As may be expected these bounds are indepen-
dent of the cardinality of the state and action spaces, and in fact may well apply to continuous
spaces under reasonable regularity conditions.

We further introduced a family of decomposable models which roughly correspond to a
system consisting of several independently parameterized subsystems coupled through control
and/or some exogenous coupling variables. We provided a variant of the PEL algorithm, the
D-PEL algorithm, for efficient learning in these models. We further demonstrated that several
well-known problems fit into decomposable model framework.

We concluded our paper with an experiment that shows that our algorithms learn faster
than a state-of-the-art model based algorithm that does not exploit parametrization of the
model.

Several choices were made in the design of proposed algorithms. First, the basic approach
taken was that of parameter elimination, rather than on-line parameter estimation. Parame-
ter elimination has the advantage of reducing the considered parameter set over time, which
can quickly converge to a small set if sufficient statistical information is obtained. On the
theoretical side, this approach allows the application of sequential hypotheses testing for the
analysis of the algorithm. However, it should be realized that the possible error of eliminating
the true parameter cannot be rectified later, and it is therefore important to keep its proba-
bility small. The second choice made in the algorithm is to incorporate an optimistic policy
which is defined on a per-state basis, rather than freeze a stationary policy that is optimal for
a certain parameter from a certain state. We believe this approach may add to exploration
efficiency, although no direct comparison is available.

The main weakness of our algorithms is their computational and memory complexities.
We need to calculate the optimal value function and the optimal policy for every possible
parameter. As we have shown, in decomposable models the number of parameters may grow
exponentially fast in the number of subsystems, hence so is the computational complexity
for the general model. However, there are many standard models, including certain queuing
systems and inventory problems, where the complexity of this computation grows only linearly
in the number of subsystems. Furthermore, in some of these models the optimal value function
and the optimal policy can be expressed analytically as a closed-form function, thus making
the computational burden of finding optimal policies trivial.

The PEL and the D–PEL algorithms may be extended to the continuous parameter case
through discretization. In Chapter 5 in Dyagilev (2009) we provide this extension for the PEL
algorithm and analyze its performance. This algorithm is also elimination-based, however, it
relies on a modified version of the sequential probability ratio test that takes into account
the discretization error that might bias the likelihood ratios. The total mistake bound of the
continuous parameter PEL algorithm is shown to be linear in the number of points on the
grid needed for discretization. The D–PEL algorithm may be extended in a similar manner.

We further note that the analysis of both our algorithms relies on the fact that the actual
model belongs the given set of models. It is possible to consider a weaker assumption that
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the state transition and reward probabilities of the true model are sufficiently close, but
not necessarily equal, to one of these models. Using ideas similar to these described in
the previous paragraph, we can extend the PEL and the D–PEL algorithms to this setting
without a significant change in performance guarantees. We can also relax the assumption
that the optimal value and the optimal policy can be calculated exactly. Our analysis may
be easily modified to account for sub-optimality of the calculated policy and imprecision in
the calculation of its value.
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Appendix A: Proof of Proposition 6

Let us consider the difference of the two value functions. Noting the definition of θ(J, s) and
πJ , and substituting the corresponding Bellman backup we have

VJ(s)− Vθ(s) ≥ VJ(s)− Vθ(J,s)(s)

= γ
∑

s′∈S

pJ(s′|s, πJ(s))
[
VJ(s′)− Vθ(J,s)(s

′)
]

≥ γ
∑

s′∈S

pJ(s′|s, πJ(s))
[
VJ(s′)− Vθ(J,s′)(s

′)
]
.

Repeating the argument n times we obtain that (with s0 ≡ s),

VJ(s)− Vθ(s) ≥ γn
∑

s1,s2,...,sn∈Sn

(
n∏

i=1

pJ(si|si−1, πJ(si−1))

)
· [VJ(sn)− Vθ(J,sn)(sn)

]

≥ −Rmax

1− γ
γn

∑

s1,s2,...,sn∈Sn

(
n∏

i=1

pJ(si|si−1, πJ(si−1))

)

≥ −Rmax

1− γ
γn n→∞−−−→ 0.

The second inequality follows since the value functions are positive and upper bounded by
Rmax/(1 − γ). The third inequality uses the fact that sum of probabilities over all possible
histories is equal to 1.

Appendix B: Proof of Proposition 10

Let J = Jt denote the set of plausible parameters at time t and let πJ and θ(J, s) be defined
as in Subsection 4.1. Denote by K = Kt the set of non-informative state-action pairs at time
t. Then

V A
θ0

(ht) ≡ EA,s0





∞∑

j=t

γj−trj

∣∣∣∣∣∣
ht



 ≥ EA,s0



I {E

c
3}

t+Teff−1∑

j=t

γj−trj

∣∣∣∣∣∣
ht



 ,

where Ec
3 denotes the event complementary to E3. We wish to replace the policy A in the

last expression with a stationary policy. For that purpose, define an auxiliary MDP M ′ which
coincides with Mθ0 on (s, a) ∈ K and with MJ (see Subsection 4.1) on (s, a) /∈ K. Denote by
PπJ

M ′ {·|ht} the probability on sequence (ai, ri, si+1)∞i=t induced by the policy πJ on M ′, with
EπJ

M ′ {·|ht} the corresponding expectation operator. The t-history ht determines the sets J ,
G and K for this auxiliary process.

For any realization in Ec
3(t), the set of plausible parameters Jτ is constant on the interval

τ ∈ {t, ..., t+Teff}, hence the PEL algorithm follows the stationary policy πJ on that interval.
Moreover, over that interval the PEL algorithm visits only state-action pair in K, hence the
measure under MDP Mθ0 coincides with the measure under M ′ there. Therefore

EA,s0



I {E

c
3(t)}

t+Teff−1∑

j=t

γj−trj

∣∣∣∣∣∣
ht



 = EπJ

M ′



I {E

c
3(t)}

t+Teff−1∑

j=t

γj−trj

∣∣∣∣∣∣
ht



 .
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Substituting in the previous inequality we obtain:

V A
θ0

(ht) ≥ EπJ
M ′



I {E

c
3(t)}

t+Teff−1∑

j=t

γj−trj

∣∣∣∣∣∣
ht





= EπJ
M ′





t+Teff−1∑

j=t

γj−trj

∣∣∣∣∣∣
ht



− EπJ

M ′



I {E3(t)}

t+Teff−1∑

j=t

γj−trj

∣∣∣∣∣∣
ht



 .

The first term is a finite horizon value function V πJ
M ′ (st, Teff), while the sum in the second

expectation can be bounded from above by Rmax/(1− γ). Hence,

V A
θ0

(ht) ≥ V πJ
M ′ (st, Teff)− Rmax

1− γ
PπJ

M ′ {E3(t)|ht} . (10)

Due to Lemma 6, 7 and 8, the first term satisfies

V πJ
M ′ (st, Teff) ≥ V πJ

M ′ (st)− ε

4
≥ VJ(st)− ε

2
≥ Vθ0(st)− ε

2
.

For the second term in (10), note that PπJ
M ′ {Ec

3(t)|ht} = PA,s0 {Ec
3(t)|ht}, hence

PπJ
M ′ {E3(t)|ht} = PA,s0 {E3(t)|ht}. Thus,

V A
θ0

(ht) ≥ Vθ0(st)− ε

2
− Rmax

1− γ
PA,s0 {E3(t)|ht} .

On the other hand, for ht in E1(t) the time step t is ε-suboptimal, namely V A
θ0

(ht) < Vθ0(st)−ε.

Combined with the previous inequality we obtain PA,s0 {E3(t)|ht} > (1−γ)ε
2Rmax

.

Appendix C: Proof of Lemma 11

The proof of Lemma 11 is complicated by two facts. First, the events involved are not inde-
pendent. Second, we need to consider only those time instances over which the probability
to reach an informative state-action pair exceeds some threshold. Indeed, applying a con-
centration inequality (such an Hoeffding’s or Azuma’s) to all time instances, including those
where this probability is null or very small, would result in a weak bound. The proposed
solution is to apply an appropriate concentration inequality over an appropriate subsequence
of (stopping) times.

This argument proceeds through the following proposition (see pp. 95–100 in Bernstein
(2007) for the complete proof):

Proposition 23 (Abstract Discovery Lemma) Denote by {Ft} a given filtration (i.e.,
an increasing sequence of σ-algebras) and by {Dt} a sequence of events with Dt ∈ Ft. Let

Z ,
∞∑

t=1

I {P {Dt| Ft−1} > p} ,

where p > 0 is some given constant. Further, suppose that

P

{ ∞∑

t=1

I {Dt} ≤ M

}
= 1
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for some integer M > 0. Then, for 0 < δ < 1,

P
{

Z ≤ 2
p

(
M +

4
p

log
1
δ

)}
≥ 1− δ.

Let Kt be as in Definition 9 and let N2 be a positive integer. Recall the definitions of E1(t),
E2(t), E3(t) and Ft from Section 4.2.

Proof of Lemma 11: Define the following discovery event for t ≥ 0:

D(t)
4
= {θ0 ∈ Jt}

⋂ {
t∑

k=1

I {E2(k)} < N2

}⋂
E3(t).

This event implies the following: by time step t the representative of the true parameter wasn’t
eliminated, and the informative event E2 was encountered less than N2 times; furthermore, in
the following Teff steps an least one additional event E2 will occur. Note that D(t) ∈ Ft+Teff

.
In order to employ Proposition 23 let us sample the series of events D(t) and sigma-

algebras Ft with the step of Teff, i.e., for i = 0, 1, 2, ... and j ∈ {0, .., (Teff − 1)} denote
D

(j)
i+1 = D(i · Teff + j) and F (j)

i = Fi·Teff+j . Note that D
(j)
i ∈ F (j)

i . For j as above define

Z(j) 4=
∞∑

i=0

I
{
PA,s0

{
D

(j)
i

∣∣∣F (j)
i

}
>

ε(1− γ)
2Rmax

}
,

and note that

PA,s0

{ ∞∑

i=1

I
{

D
(j)
i

}
≤ N2

}
= 1

by the definition of D
(j)
i . Noting the definition of N1, application of Proposition 23 with

p = ε(1−γ)
2Rmax

yields

PA,s0

{
Z(j) ≤ N1

Teff

}
≥ 1− δ3

Teff
.

Applying the union bound we obtain

PA,s0





Teff−1∑

j=0

Z(j) ≤ N1



 ≥ 1− δ3.

We conclude the proof by showing that

T2(N2)∑

t=0

I {E1(t)} ≤
Teff−1∑

j=0

Z(j) ≡
T2(N2)∑

t=0

I
{
PA,s0 {Dt| Ft} >

ε(1− γ)
2Rmax

}
. (11)

For some t < T2(N2) let ht be a t-history that satisfies E1(t) (if such history exists). For this
history, θ0 ∈ Jt by definition of E1(t) and the inequality

t∑

k=1

I {E2(k)} < N2
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holds by definition of T2(N2), hence the discovery event D(t) occurs if and only if the event
E3(t) occurs. Then, by Proposition 10,

PA,s0 {Dt|ht} >
ε(1− γ)
2Rmax

,

therefore

I
{

PA,s0{Dt|Ft} >
ε(1− γ)
2Rmax

}
≥ I {E1(t)}

almost surely. Hence 11 is established and the claim follows.

Appendix D: Proof of Lemma 15

Kraft (1955) showed the following relation: 1
2 ‖p− q‖1 ≤

√
1− ρ2. Equivalently, ρ ≤

√
1− 1

4 ‖p− q‖2
1,

hence
log ρ ≤ 1

2
log(1− 1

4
‖p− q‖2

1) ≤ −1
8
‖p− q‖2

1 ,

where the last inequality follows since log(1− x) ≤ −x for all 0 ≤ x < 1.

Appendix E: Proof of Proposition 17

Assume that H0 holds true (the proof is identical under H1). Let us consider histories xn
0

that lead to stopping of NB(δ3/2). Since p1(xn|xn−1
0 ) = 0 implies NW = NB(δ3/2) (if not

stopped before), we can focus in the remainder of the proof only on stopping due to the first
condition in (6). Let N1 = NB(δ3/2) and denote the log likelihood ratio of the history up to
the stopping time N1 as:

L
(
xN1

0

) 4
=

N1∑

t=1

log
p1(xt|xt−1

0 )
p0(xt|xt−1

0 )
.

Then NW (δ) > N1 implies that L
(
xN1

0

)
> log δ, hence

P
{
NW (δ) > N1

} ≤ P
{

L
(
xN1

0

)
> log δ, N1 < ∞

}
.

Chernoff’s inequality now implies

P
{

L
(
xN1

0

)
> log δ, N1 < ∞

}
≤ E

{
exp

{
1
2

[
L

(
xN1

0

)
− log δ

]}
I{N1<∞}

}
,

hence
P

{
NW (δ) > N1

} ≤ 1√
δ
EC , (12)

where

EC
4
= E

{
exp

{
1
2
L

(
xN1

0

)}
I{N1<∞}

}
.

We proceed to bound EC . Denote

d(xt+1|xt
0) , p

1/2
1 (xt+1|xt

0)p
1/2
0 (xt+1|xt

0)
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so that ρ(xt
0) =

∑
x′∈S d(x′|xt

0). Further denote D(xk
0)

4
=

∏k
t=1 d(xt|xt−1

0 ). Let QB to be the
collection of N1-histories xN1

0 for which N1 < ∞, namely

QB =

{
xk

0 ∈ Sk+1

∣∣∣∣∣
k−2∏

i=0

ρ(xi
0) > δ3/2 and

k−1∏

i=0

ρ(xi
0) ≤ δ3/2

}
.

Substituting the definition of the expected value we obtain:

EC =
∑

x
N1
0 ∈QB

exp

{
1
2

N1∑

t=1

log
p1(xt|xt−1

0 )
p0(xt|xt−1

0 )

}
N1∏

t=1

p0(xt|xt−1
0 )

=
∑

x
N1
0 ∈QB

N1∏

t=1

(
p1(xt|xt−1

0 )
p0(xt|xt−1

0 )

)1/2

p0(xt|xt−1
0 )

=
∑

x
N1
0 ∈QB

N1∏

t=1

p
1/2
1 (xt|xt−1

0 )p1/2
0 (xt|xt−1

0 )

=
∑

x
N1
0 ∈QB

D(xN1
0 ).

In Dyagilev (2009) pp. 40–42 we show that

EC ≡
∑

x
N1
0 ∈QB

D(xN1
0 ) ≤ sup

x
N1
0 ∈QB

{
N1−1∏

t=0

ρ(xt
0)

}
≤ δ3/2, (13)

where the last inequality holds by definition of N1. Thus, from (12) and (13),

P
{
NW (δ) > N1

} ≤ 1√
δ
EC ≤ δ.

Appendix F: Proof of Lemma 22

Recall the notations introduced in Section 5.3. Similarly to Lemma 18, we note that the
elimination time of any θi 6= θi

0 for any i can be bounded from above by NW
i (θi, δ′) which is

dominated by NB
i

(
θi, (δ′)3/2

)
by condition (2). In what follows we bound the total number

of visits to informative state-action pairs before the time maxi=1,...,N maxθi 6=θi
0
NB

i

(
θi, (δ′)3/2

)

stops, thus bounding the number of these visits until all θi 6= θi
0 for all i = 1, .., N are

eliminated from the plausible sets J i.
Let t be a time step on which an informative state-action pair (st, at) (see Definition 9)

is visited. We let θi(t) denote the i-th component of the optimistic parameter vector at time
t (see Algorithm 2). Let us assess the Bhattacharyya distance (− log ρt) between the joint
distribution of (rt, yt, st+1) under the true model Mθ0 and the auxiliary model MJ . Evidently,
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it equals the sum of Bhattacharyya distances between ηi(·|st, at, θ
i(t)) and ηi(·|st, at, θ

i
0), be-

tween αi(·|st, at, θ
i(t)) and αi(·|st, at, θ

i
0) and between βi(·|st, yt, at, θ

i(t)) and βi(·|st, yt, at, θ
i
0).

Namely,

− log ρt =
N∑

i=1

(− log ρi
t

)
,

where

− log ρi
t

4
= − log


 ∑

yi∈Yi

(
αi(yi|st, at, θ

i(t))αi(yi|st, at, θ
i
0)

)1/2




− log


 ∑

ri∈Ri

(
ηi(ri|st, at, θ

1(t))ηi(ri|st, at, θ
1
0)

)1/2




− log


 ∑

s′i∈Si

(
βi(s′i|st, yt, at, θ

i(t))βi(s′i|st, yt, at, θ
i
0)

)1/2


 .

Since (st, at) /∈ Kt, then as in proof of Lemma 18 we obtain

− log ρt >
1
8

(
ε(1− γ)2

4Rmax

)2 4
= B0.

We further note that Ri
t+1(θ

i(t)) − Ri
t(θ

i(t)) = − log ρi
t for i = 1, ..., N . Hence, by the

pigeon-hole principle, the number of visits to an informative state-action pair until the times
NB

i

(
θi, (δ′)3/2

)
stop is upper bounded by

N∑

i=1

(
∣∣Θi

∣∣− 1) log((1/δ′)3/2)/B0.
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