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We consider the problem of server scheduling in a multiclass many-server queueing system with abandon-

ment. For the purpose of minimizing the long-run average queue length costs and abandon penalties, we

propose three scheduling policies to cope with any general cost functions and general patience time distri-

butions. First, we introduce the target-allocation policy, which assigns higher priority to customer classes

with larger deviation from the desired allocation of the service capacity, and prove its optimality for any

general queue length cost functions and patience time distributions. The Gcµ/h rule, which extends the

well-known Gcµ rule by taking abandonment into account, is shown to be optimal for the case of convex

queue length costs and nonincreasing hazard rates of patience. For the case of concave queue length costs

but nondecreasing hazard rates of patience, it is optimal to apply a fixed priority policy, and a knapsack-like

problem is developed to determine the optimal priority order efficiently. As a motivating example of the

operations of emergency departments, a hybrid of the Gcµ/h rule and the fixed priority policy is suggested

to reduce crowding and queue abandonment. Numerical experiments show that this hybrid policy performs

satisfactorily.
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1. Introduction

In 2011, the number of left-without-being-seen (LWBS) patients in the United States was

2.6 million (The National Hospital Ambulatory Medical Care Survey, NHAMCS) for the

most common reason of being “fed up with waiting” (Rowe et al. (2006)). Patient crowding

in the emergency department (ED) has become an increasing public health problem for

hospitals around the world as it contributes to increased LWBS rates and dissatisfaction

with care (Pines et al. (2011)). We consider the problem of scheduling triage patients from

the waiting room to treatment rooms to reduce ED crowding and LWBS rates.

Upon arrival, patients are rapidly sorted into five triage classes by experienced triage

nurses using the Emergency Severity Index (ESI). The acuity levels from level 1 (most
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critical) to 5 (least critical) are based on patient acuity and resource needs (Gilboy et al.

(2011)). The ESI may or may not lead to improved patient flow through the ED since the

physician response times for levels 1 and 2 are within minutes, but leaves the majority of

lower acuity patients waiting to be called for service according to their triage levels. Many

patients visiting EDs are in low-acuity conditions. These patients have limited patience

and may abandon the ED before receiving treatment. A new empirical study (Batt and

Terwiesch (2015)) indicates that the proportion of patients who abandon is up to 6.5% and

this rate ranges from 1.5% to 9.0% for different triage levels. The fundamental question

that ED physicians face on a daily basis is: which patient should be called for service first

when a treatment bed becomes available? This also gives us a motivating example for

treating a general queueing control problem—scheduling of multiclass many-server queues

with abandonment.

Recent studies on this scheduling problem have introduced a handy policy, namely the

cµ/θ rule. This fixed priority scheduling policy has been proved to be asymptotically

optimal (Atar et al. (2008, 2010, 2011, 2014)) for linear costs and exponential patience.

It is consistent with the ESI system in the sense that high-acuity patients receive high

priority. However, this rough treatment ignores the real-time status of the ED system and

may lead to long waiting times and high LWBS rates for low-acuity patients. Indeed, the

well-known generalized cµ rule (Gcµ) assigns dynamic priority to the flows of multiple

classes of customers (van Mieghem (1995), Mandelbaum and Stolyar (2004), Gurvich and

Whitt (2009b)). Recently, this scheduling policy has been applied in the control of patient

flows in EDs with feedback (Huang et al. (2015)). However, the Gcµ rule does not consider

the LWBS patients. In this paper, we take into account patience time (the amount of

time a patient is willing to wait for service) following general distributions. A natural

paradigm to study the ED dynamics would be a multiclass many-server queueing system

with abandonment (the LWBS phenomenon) as shown in Figure 1. One of our main results

is to introduce a dynamic scheduling policy, which we refer to as the generalized cµ/h

rule (Gcµ/h), to minimize the long-run average queueing costs and abandon penalties.

To describe our Gcµ/h rule, let µi be the service rate of level i patients and Fi denote

the patience time distribution of level i patients with the hazard rate function hi. Denote

the marginal queue length cost function and the penalty for each abandonment of level i

by ci(·) and γi, respectively. The arrival rates λi’s are determined by triage nurses when
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Figure 1 The scheduling problem in EDs with LWBS patients

categorizing ED visits. Let Bi(t) be the number of level i patients being served in the

treatment rooms. We call the scheduling policy that serves the level i patient (FCFS within

each level) with the highest index

i∈ arg max
i

(
ci
(
λi
∫ F−1

i (1−Bi(t)µi/λi)

0
F c
i (s)ds

)
µi

hi(F
−1
i (1−Bi(t)µi/λi))

+ γiµi

)
,

the generalized cµ/h rule (Gcµ/h). We show that the Gcµ/h rule is asymptotically optimal

in a many-server fluid regime with convex queueing costs and nonincreasing hazard rates.

The Gcµ/h rule can be brought into play not only in call centers but also in systems like

EDs due to its flexibility. For call center operations, the latest information technology allows

all agents and supervisors to observe the real-time status of the system (Gans et al. (2003)).

However, the situation in EDs is quite different. The queue status is usually unknown to

ED staff since they are not notified when patients quit waiting. Our scheduling decision

suitably depends on the current number of patients in the treatment room. There is no need

to modify the rule when the service capacity in the hospital changes. For example, the ED

beds may be temporarily added to increase available capacity when all licensed beds are

occupied (Derlet et al. (2014)). In such a situation, the Gcµ/h rule adapts automatically

to the change in service capacity.

Our Gcµ/h rule and the family of Gcµ rules (van Mieghem (1995), Mandelbaum and

Stolyar (2004)) all consider convex queue length costs, but a theoretical understanding of

more general cost functions is still lacking. To tackle this problem, we propose another

dynamic scheduling policy referred to as the target-allocation policy (see §3.1). In an over-

crowded ED, where a portion of the patients may end up leaving without being treated, the
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number of patients will be stable. The steady state of all types of patients in the treatment

rooms can be viewed as an allocation of the service capacity. Our target-allocation policy

aims to assign higher priority to the class of patients that deviates most from the optimal

allocation, which is determined by solving a nonlinear optimization problem (13). The

advantage of this policy is that it is optimal for any general cost functions and patience

distributions. However, the primary challenge lies in solving the nonlinear programming

in advance.

The current practice in the EDs is mainly to implement triage priority (Batt and Ter-

wiesch (2015)), although the Gcµ/h rule suggests that the fixed priority rule could be

sub-optimal for convex queue length costs and nonincreasing hazard rate functions. Unex-

pectedly, for concave queue length cost functions and nondecreasing hazard rate functions

of patience, we find that the optimal scheduling is a fixed priority policy. It is NP-hard to

determine an optimal priority order since it involves the minimization of a concave func-

tion. As it is nontrivial to solve a concave optimization problem using standard non-linear

approaches, we formulate it as a knapsack-like problem and develop a dynamic program-

ming algorithm. The algorithm can efficiently determine the treatment priority, especially

when patients are further categorized by disease types. Our algorithm reduces the time

complexity in a similar problem studied in Burke et al. (2008) (see Remark EC.1). The

novel research allows us to choose the most appropriate scheduling policy under any queue

length cost functions and patience distributions.

The Gcµ/h rule and the fixed priority rule have their own merits in the sense that the

former gives consideration to the least critical patients while the latter enables the most

critical patients to receive timely treatment. In view of the fact that the most critical

patients may not survive if they fail to receive medical care in time, there is no doubt

that they should be given the highest priority. On the other hand, the majority of patients

in low-acuity conditions should also be taken care of in a timely manner as they are the

main reason for ED crowding and high LWBS rates. To balance the tradeoff, we suggest

a hybrid policy to improve patient flows in EDs as follows: according to ESI assign the

highest priority to level 1, the second highest priority to level 2, and apply the Gcµ/h rule

to levels 3, 4, and 5. Numerical experiments in §4 show that this hybrid policy achieves

the desired allocation of service capacity in the long run.
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1.1. Literature Review.

Fluid approximations for many-server queues with general patience time distributions

began to emerge following the pioneering work of Whitt (2006). Bassamboo and Randhawa

(2010) established the optimal gap of fluid approximation as the system size increases. As

an example of how powerful the fluid model approach is that it can be used to approxi-

mate a system with dependent service and patience times, see Bassamboo and Randhawa

(2016); Wu et al. (2017). For multiclass queues, Atar et al. (2014) established the fluid

limit of a multiclass G/GI/n+GI queueing system building on the approach developed

by Kaspi and Ramanan (2011). Our fluid model is tailored to a multiclass G/M/n+GI

system with exponential service time distributions.

The cµ-type rules have a long history in the study of scheduling problems. As early as

Smith (1956) and Cox and Smith (1961), the cµ rule was proposed and proved to be optimal

for a multiclass M/G/1 system with linear holding costs. Recently, in Atar et al. (2008,

2010, 2011, 2014), it was extended to the cµ/θ rule in the case of exponential abandonment.

The Gcµ rule of van Mieghem (1995) appears to be the first to consider nonlinear, convex

holding costs in the analysis of a multiclass G/G/1 queue. Mandelbaum and Stolyar (2004)

generalized the Gcµ rule to a system with heterogeneous servers. Our Gcµ/h rule extends

van Mieghem (1995) and Atar et al. (2008, 2010, 2011, 2014) to a multiclass many-server

queueing system with general patience and nonlinear holding costs.

Other than the cµ-type rules, there has also been an expanding body of literature on

the optimal control of multiclass queueing systems. Harrison and López (1999) explicitly

solved a dynamic control problem in the multiclass parallel-server setting. Based on the

conventional heavy traffic regime, Ata and Tongarlak (2013) and Kim and Ward (2013)

considered dynamic policies by studying the approximating Brownian control problems.

Focusing on the Halfin-Whitt scaling proposed by Halfin and Whitt (1981) in the quality-

and-efficiency-driven regime, Atar et al. (2004), Atar (2005) and Ata et al. (2012) studied

dynamic scheduling policies by formulating a Hamilton-Jacobi-Bellman equation based

on the heavy traffic limits; Dai and Tezcan (2008) developed robust control policies to

minimize the total linear holding and abandon costs for a parallel server system; Gurvich

and Whitt (2009a,b, 2010) studied the staffing and control problems of service systems

with multiple customers classes and multiple agent pools; and Kim et al. (2018) solved a

diffusion control problem to propose a scheduling policy for a critically loaded multiclass

system with abandonment.
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1.2. Contributions

The main contributions of this paper are summarized as follows:

• We propose scheduling policies to optimally control a multiclass many-server queueing

system under any given queue length cost functions and patience distributions.

• The target-allocation policy is optimal for any general queue length cost functions and

patience time distributions by assigning higher priority to customer classes that deviate

most from the desired allocation of the service capacity.

• The Gcµ/h rule extends the Gcµ rule of van Mieghem (1995) to overloaded systems

with impatient customers and is shown to be optimal for convex queue length cost functions

and nonincreasing hazard rates of patience.

• The fixed priority policy is proved to be optimal for concave queue length cost func-

tions and nondecreasing hazard rates of patience. It represents a generalization of the cµ/θ

rule of Atar et al. (2008, 2010, 2011, 2014), which considers linear cost and exponential

patience.

The remainder of this paper is organized as follows. In §2, we introduce the fluid model

of a multiclass many-server queueing system with abandonment. We also study a steady-

state optimization problem. Our proposed policies and the main results are presented in

§3. In §4, we use simulation experiments to test the performance of a hybrid policy. We

show the connection between queueing and knapsack problems in §5. Our conclusion is

stated in §6. The technical proofs are collected in the appendix, where we also develop a

dynamic programming algorithm to solve the knapsack problem.

2. Multiclass Many-server Queues

We model the system using the fluid model of a G/M/n + GI queueing system with

multiple customer classes. Atar et al. (2014) studied a multiclass many-server system under

the fixed priority policy. The main difference is that our paper proposes several dynamic

priority policies in accordance with more general cost functions. We focus on the analysis

of the fluid model and simplify the fluid equations in Atar et al. (2014) benefiting from

the assumption of exponential service times.

2.1. A Fluid Model

The model consists of I classes of customers, who arrive at a service system having I

unlimited waiting queues and a server pool with a fixed service capacity n > 0. For each
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class i= 1, . . . , I, the amount of external arrivals over [0, t] is Ei(t) = λit, where λi > 0. At

time t, the arrival enters the server pool if there is any idle server available. Otherwise, the

arrivals who cannot be directly served will join the end of their own queue and are allowed to

abandon from the queue once losing patience. We use Qi(t) and Bi(t) to denote the amount

of class i customers waiting in queue and being served in the server pool, respectively.

Thus, the total amount of class i customers in the system is Xi(t) =Qi(t)+Bi(t). Note that

in the ED context, the length of each queue cannot be observed in real time since patients

normally do not inform hospital staff of their decision to abandon the queue. However,

the status of the server pool can be easily observed in real time as the number of patients

being treated is surely recorded. For this reason, we will see in §3 that Bi’s are important

criteria for designing scheduling policies. In the ED setting, customer classes are usually

called acuity levels; hereafter, we use these terms interchangeably.

Let Ki(t) denote the total amount of class i customers who have entered service by time

t and Di(t) be the total amount of class i customers who have completed service by time

t. It is clear that the cumulative processes Ki(t) and Di(t) would be nondecreasing. Then,

we can deduce the following balance equation for Bi:

Bi(t) =Bi(0) +Ki(t)−Di(t). (1)

Let the service time follow the distribution function Gi(x) = 1−e−µix for class i customers,

namely the service rate of class i customers is µi. Due to the memoryless property of

exponential distributions, the service completion process satisfies the equation

Di(t) = µi

∫ t

0

Bi(s)ds. (2)

One can see that the derivative of the service completion process is µiBi(t), which facilitates

the analysis of the convergence of the fluid model.

Due to the general patience time distributions, we use the fluid measure-valued process

developed in Atar et al. (2014) to capture the dynamics of the queues. Let ηi,t([0, x]) denote

the amount of class i customers who have not abandoned by time t with elapsed time since

arrival not longer than x no matter whether a customer has entered service or not. Within

each queue, customers are served based on the FCFS discipline. Thus the queue length

process of class i can be recovered as

Qi(t) = ηi,t([0,wi(t)]), (3)
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where wi(t) is the waiting time of the customer at the head of the class i queue. Let Ri(t)

be the total amount of class i customers who abandon their queue during the time interval

[0, t]. So we have the following balance equation for Qi:

Qi(t) =Qi(0) +Ei(t)−Ri(t)−Ki(t). (4)

Let Fi(·) be the patience time distribution of class i customers. Then we have

ηi,t([0, x]) =

∫ t

t−x
F c
i (t− s)dEi(s), (5)

where F c
i (·) = 1− Fi(·). Indeed, dEi(s) is the amount of fluid that enters the system at

time s, among which F c
i (t− s)dEi(s) is the amount that has not abandoned by time t.

For s < 0, we regard dEi(s) as the fluid that had entered the system before time 0. On

the other hand, ηi,t([0, x]) only consists of the arrivals between time t− x to t. Thus (5)

holds. Clearly, ηi,t(dx) is the density of class i fluid with the waiting time x but without

abandoning at time t. Let the hazard rate function of Fi be hi(x) = fi(x)/F c
i (x). Then

hi(x) is the fraction of the infinitesimal ηi,t(dx) that abandons the system. Recall that wi(t)

is the longest elapsed time of the fluid in the class i queue at time t, so the total amount

of fluid that abandons the system during the interval [0, t] can be written as

Ri(t) =

∫ t

0

(∫ wi(s)

0

hi(x)ηi,s(dx)

)
ds. (6)

We denote by Π the class of all work-conserving policies that, for all t≥ 0, satisfy

I∑
i=1

Bi(t)≤ n, (7)

(
n−

I∑
i=1

Bi(t)
) I∑
i=1

Qi(t) = 0. (8)

We refer to equations (1)–(8) as the fluid model of a multiclass many-server queueing

system. It can be seen from the proof of Theorem 4.3 in Atar et al. (2014) that the tuple

(E,B,X,Q,D,K,R,η) satisfying (1)–(8) serves as the fluid limits for many-server systems

under any work-conserving policy (see §EC.2.1 for more discussion).

To manage such a system well, the cost it incurs should also be considered. We allow any

general nondecreasing function Ci(·) for the queue length cost of each class i. Set Ci(0) = 0,

which means there won’t be any queue length cost once there is no queue. There is also a
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penalty cost γi associated with abandonment for each class i customer. Therefore, for any

work-conserving policy π ∈Π, the average cost over [0, T ] is

JT (π) =
1

T

I∑
i=1

[∫ T

0

Ci (Qi(s))ds+ γiRi(T )

]
. (9)

We define the traffic intensity as
∑I

i=1 λi/µi. The system is underloaded if
∑I

i=1 λi/µi <

n, critically loaded if
∑I

i=1 λi/µi = n, or overloaded if
∑I

i=1 λi/µi > n. Intuitively, if the

system is underloaded, then the average cost given above should vanish in the long run

under any work-conserving policy. The following theorem validates this intuition.

Theorem 1. If the system is underloaded, i.e.,
∑I

i=1 λi/µi < n, then for any work-

conserving policy π ∈Π the queue length process of each class vanishes after a finite time

and the amount of customers being served converges to λi/µi for each class i= 1, . . . , I. As

a consequence, the long-run average cost is zero. In other words, there exists a T > 0 such

that Qi(t) = 0 for all t > T ,

lim
t→∞

Bi(t) =
λi
µi

and lim
T→∞

JT (π) = 0.

The proof is postponed to §EC.1. A well-designed scheduling policy is expected to reduce

system congestion, especially for an overloaded system. However, a critically loaded system

also needs a well-designed scheduling policy. In Mandelbaum and Stolyar (2004), the Gcµ

rule is applied to a queueing system with multiple types of customers and multiskilled

servers. Note that their system is critically loaded and the corresponding fluid model is

studied under the Gcµ rule. We go one step further and focus on both the critically loaded

and overloaded cases.

The following assumption on the input parameters is required throughout this paper.

Assumption 1 (On Input Parameters). For each class i = 1, . . . , I, the service time

distribution Gi(x) = 1−e−µix is exponentially distributed and the patience time distribution

Fi(x) =
∫ x
0
fi(y)dy is strictly increasing. The system is either critically loaded or overloaded,

i.e.,
∑I

i=1 λi/µi ≥ n. The queue length cost function Ci(·) can be any nondecreasing function

and the marginal cost satisfies

d

dx
Ci(x) = ci(x), (10)

where ci(x)≥ 0. The abandon penalty cost also satisfies γi ≥ 0.
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Remark 1. It is well known that the steady-state behavior of the queue length of the fluid

model of a single-class many-server queue depends upon the service time distribution only

through its mean, but upon the patience time distribution beyond its mean (Whitt (2006)).

Therefore, we restrict ourselves to exponential service times. The simulation results in

§4 suggest that our proposed policies also works well for nonexponential service times.

However, for nonexponential service time distributions, we are not able to prove that the

fluid model converges to the invariant state as time goes to infinity. But even for the single-

class G/GI/n+GI fluid model, this remains an open problem (see Theorem 2 in Long and

Zhang (2014), where an additional assumption on the initial state is needed for critically

loaded and overloaded systems).

2.2. Stability and Optimality

We first give the following proposition to show the convergence relationship between the

fluid content in the queues and that in service. This would help managers in scheduling the

system when the status of the queues or the server pool cannot be fully observed. Usually

the situation in waiting rooms in EDs is difficult to observe since the time when patients

abandon the queue is normally not observed. This is one of the motivations for designing

scheduling policies based on the status of the server pool in §3.

Proposition 1 (Equivalence of the convergence of Qi and Bi). Given Assump-

tion 1, for any scheduling policy π ∈Π,

Qi(t) converges⇔Bi(t) converges for all i= 1, . . . , I.

Moreover, for such a convergent policy, let F−1i be the inverse function of Fi. Then we

have, for all i= 1, . . . , I,

qi = λi

∫ F−1
i (1−biµi/λi)

0

F c
i (s)ds, (11)

where qi = lim
t→∞

Qi(t) and bi = lim
t→∞

Bi(t) satisfying 0≤ bi ≤ λi/µi and
∑I

i=1 bi = n. Therefore,

lim
T→∞

JT (π) =
∑I

i=1 Ji(bi). Here,

Ji(bi) =Ci
(
λi

∫ F−1
i (1−biµi/λi)

0

F c
i (s)ds

)
+ γi(λi− biµi). (12)
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The detailed proof is given in §EC.1.2. The steady-state behavior of customers in the

queues and of those being served follows the relation (11), which is consistent with Theo-

rem 3.1 in Whitt (2006). We can see from Proposition 1 that the steady state behavior of

the convergence policy has a simple form and the cost function (12) can be expressed in

terms of the status of the server pool.

Let us consider the optimization problem in terms of the steady state of the fluid model:

minimize
I∑
i=1

Ji(bi)

subject to
I∑
i=1

bi ≤ n,

0≤ bi ≤
λi
µi
, i= 1, . . . , I.

(13)

The decision variables bi’s can be intuitively understood as the amount of service resources

that is assigned to class i customers in the long run. The objective is to minimize the long-

run average cost by choosing appropriate bi’s. The first constraint states that bi’s must be

chosen so that the amount of customers being served does not exceed the service capacity

n. The second constraint implies that at most λi/µi servers are needed to handle class i

customers. Denote by b∗ = (b∗1, . . . , b
∗
I) the optimal solution to this nonlinear programming

and J∗ the optimal value. It is clear that b∗ indicates the optimal allocation of the service

capacity. Meanwhile, Proposition 1 implies that J∗ is the lower bound of any convergence

policies. The main goal of this paper is to find a scheduling policy that attains the lower

bound asymptotically.

Definition 1 (Stationary Optimal Control). A control policy π ∈Π is said to be sta-

tionary optimal if the corresponding cost function (9) satisfies lim
T→∞

JT (π) = J∗.

The following lemma implies that (13) can actually become either a convex or a concave

optimization problem.

Lemma 1. If the queue length cost functions Ci’s are convex and the hazard rate func-

tions hi’s are nonincreasing, then the nonlinear programming (13) is a convex optimization

problem. In contrast, if the queue length cost functions Ci’s are concave and the hazard

rate functions hi’s are nondecreasing, then the nonlinear programming (13) is a concave

optimization problem.
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A direct way to show the above lemma is to consider the derivative of the cost function

Ji(bi). By (12) and after some basic calculations, it becomes clear that

d

dbi
Ji(bi) =−

ci
(
λi
∫ F−1

i (1−biµi/λi)
0

F c
i (s)ds

)
µi

hi(F
−1
i (1− biµi/λi))

− γiµi. (14)

We leave the detailed proof to §EC.1. In the following section, we propose different schedul-

ing policies for all types of optimization problems such that the optimal value J∗ can be

attained in all cases.

3. Scheduling Policies

In this section, we propose dynamic priority scheduling policies that give a time-varying

priority order. The goal is to design a policy such that the amount of customers being served

approaches b∗. In §3.1 the target-allocation policy is proposed for general queue length

cost functions and patience time distributions. We then propose in §3.2 the Gcµ/h rule,

which is an extension to the Gcµ rule in van Mieghem (1995) by adding abandonments.

When the optimization problem (13) is convex, the Gcµ/h rule is shown to be stationary

optimal. On the other hand, if (13) is a concave optimization problem, we find that it is

optimal to apply the fixed priority policy in §3.3.

We first introduce the dynamic priority policy. At time t, given that there is a certain

amount of service resource, the policy chooses some amount of customers from the class

with index

i∈ arg max
i=1,...,I

Pi(t), (15)

where Pi(t) is the priority value for class i at time t and is a continuous function in time t. If

the classes of customers with the highest priority value are all in service, then the available

service resource can be assigned to classes with the second highest priority value, so on so

forth. The stochastic version of (15) is presented in (EC.17). Equivalently, the dynamic

priority policy means customers with lower priority can enter service at time t only if at

that time no one else in the queue has higher priority. Therefore, the dynamic priority

policy can also be expressed as∫ t

0

∑
{j=1,...,I:Pj(s)>Pi(s)}

Qj(s)dKi(s) = 0, i= 1, . . . , I. (16)
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Note that
∑
{j=1,...,I:Pj(s)>Pi(s)}Qj(s) = 0 if {j = 1 . . . , I : Pj(s)>Pi(s)}= ∅. In Lemma EC.2,

we prove (16) rigorously. As a special case, the dynamic priority policy becomes the fixed

priority policy when Pi(t)’s are independent of time t. We will see in §3.3 that (16) is actu-

ally an extension of (32) in Atar et al. (2014). Moreover, the policy essentially determines

the flow rates of customers into the server pool. We present its complete characterization

in (EC.20).

3.1. Target-allocation Policy

We propose in this subsection a policy that is suitable for any general queue length cost

function and patience time distribution. The optimal solution b∗ = (b∗1, . . . , b
∗
I) of (13)

reveals that class i customers should be allocated b∗i amount of service resources in the

long run. Thus we define the following priority value function:

Pi(t) = b∗i −Bi(t) (17)

for all i= 1, . . . , I. Intuitively, given the above priority value function, the dynamic priority

policy serves the class with largest deviation from its target. Thus more servers will be

assigned to those classes of customers who are not given enough service resources. All the

Bi’s will be gradually close to the optimal allocation b∗ of the service capacity. We refer to

this control policy as the target-allocation policy denoted by πb∗ . Its optimality is shown

in Theorem 2 below, which is proved in §EC.2.3.

Theorem 2 (Optimality of the Target-allocation Policy). Given Assumption 1,

the fluid model (1)–(8) under the target-allocation policy πb∗ with the priority value function

(17) satisfies lim
T→∞

JT (πb∗) = J∗.

3.2. The Generalized cµ/h Rule

For convex queue length cost functions and patience time distributions with nonincreasing

hazard rate functions under which the nonlinear programming (13) becomes a convex

optimization by Lemma 1, we propose another dynamic priority policy that is easier to

implement. Consider the Lagrangian function

L(bi, α0, αi, βi) =

I∑
i=1

Ji(bi)−α0(n−
I∑
i=1

bi)−
I∑
i=1

αibiµi−
I∑
i=1

βi · (λi− biµi).
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Combining it with (14), the optimal solution b∗ = (b∗1, . . . , b
∗
I) of (13) solves

ci
(
λi
∫ F−1

i (1−b∗i µi/λi)
0

F c
i (s)ds

)
µi

hi(F
−1
i (1− b∗iµi/λi))

+ γiµi +αiµi−βiµi = α0,

αib
∗
i = 0,

βi · (λi− b∗iµi) = 0,

I∑
i=1

b∗i = n,

where the Lagrange multipliers satisfy α0 ∈R and αi, βi ≥ 0 for all i= 1, . . . , I. We assume

that the cost function Ci, i = 1 . . . , I, satisfies conditions that are analogous to (van

Mieghem, 1995, Assumption 3) and (Huang et al., 2015, Assumption 2). Specifically, we

have the following assumption.

Assumption 2 (Cost Regularity). The cost function Ci, i= 1, . . . , I, is strictly convex

and has an interior solution to the minimization problem (13).

Recall that the patience time distribution Fi is strictly increasing. By Lemma 1, there

is a unique solution to (13) if the cost functions are strictly convex and the hazard rates

of patience are nonincreasing. If we assume in addition that ci(0) = 0 and γi = 0, then all

customer classes satisfy b∗i < λi/µi making βi = 0 for all i. Similarly, if we further assume

that hi(x)→ 0 as x→∞, then all customer classes receive positive service resources making

αi = 0 for all i. This essentially provides a sufficient condition such that the solution b∗i is

unique and interior.

Under Assumption 2, the Karush-Kuhn-Tucker (KKT) conditions then reduce to

ci
(
λi
∫ F−1

i (1−b∗i µi/λi)
0

F c
i (s)ds

)
µi

hi(F
−1
i (1− b∗iµi/λi))

+ γiµi = α0, (18)

I∑
i=1

b∗i = n. (19)

Observe that the left hand side of (18) is equal to a constant. This inspires us to consider

the following priority value function:

Pi(t) =
ci
(
λi
∫ F−1

i (1−Bi(t)µi/λi)

0
F c
i (s)ds

)
µi

hi(F
−1
i (1−Bi(t)µi/λi))

+ γiµi, (20)

for all i= 1, . . . , I. This equation is referred to as the priority value function of the gener-

alized cµ/h rule (Gcµ/h) denoted by πG.
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We owe the idea of the Gcµ/h rule to van Mieghem (1995), where the striking result Gcµ

rule performs well for a single-server multiclass queueing system. In fact, Figure 1 extends

the one in van Mieghem (1995) by adding abandonments and considering a many-server

pool. Later, the Gcµ rule was generalized to a system with heterogeneous servers in Man-

delbaum and Stolyar (2004). They both consider the conventional diffusion approximation

for critically loaded queueing systems without abandonment. We focus on the fluid model

of an overloaded multiclass many-server queueing system and allow for customer abandon-

ment. This is why the hazard rate function appears in the priority value function (20).

Another main difference is that we take advantage of the equivalence of the convergence

of Qi and Bi (see Proposition 1) to control the system based on the real-time value of

Bi(t) instead of Qi(t). The optimality of our Gcµ/h rule is shown in the following theorem,

which we prove in §EC.2.3.

Theorem 3 (Optimality of the Gcµ/h rule). Given Assumptions 1 and 2, if ci and

hi are differentiable and the hazard rate functions hi’s are nonincreasing, then the fluid

model (1)–(8) under the Gcµ/h rule πG with the priority value function (20) satisfies

lim
T→∞

JT (πG) = J∗.

The assumption that ci and hi are differentiable is in the same spirit as the twice differ-

entiability of Ci in §4 of Mandelbaum and Stolyar (2004). It surprised us somewhat that

the proofs of the optimality of the target-allocation policy and the Gcµ/h rule are almost

the same. Part of the reason is that the priority value functions go to a constant under

both policies—the priority value of the target-allocation policy converges to 0 and that of

the Gcµ/h rule converges to α0. Therefore, we will prove Theorems 2 and 3 in §EC.2.3

simultaneously.

3.3. Fixed Priority Policy

A fixed priority policy essentially prevents customers from entering service as long as other

customers with higher priority are still waiting for their turn. Consider a priority order

from class 1 (highest priority) to class I (lowest priority). Then the priority value function

in (15) can be specified as

Pi(t) = I − i (21)
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for all i = 1, . . . , I. Note that only if customers with the highest priority value are all in

service, then the available service resource can be assigned to classes with the second

highest priority value, so on so forth. Equation (16) becomes exactly the same as (32) in

Atar et al. (2014). The following proposition shows that the system converges to the steady

state under the fixed priority policy (21). Especially, the limit of Bi(t) follows the form

as (23), which is the main feature of the fixed priority policy. The proof is postponed to

§EC.2.4.

Proposition 2 (Convergence of the Fixed Priority Policy). Given Assumption 1,

the fluid model (1)–(8) under the fixed priority policy with the priority value function (21)

converges to the following steady state

lim
t→∞

Bi(t) = bi and lim
t→∞

Qi(t) = qi (22)

starting from any initial state, for all i = 1, . . . , I, where the allocation b = (b1, · · · , bI) of

the service capacity to their dedicated classes is

b=
(λ1

µ1

, · · · , λi0−1
µi0−1

, n−
∑
j<i0

λj
µj
,0, · · · ,0

)
, (23)

where i0 = max
{
i∈ [1, · · · , n] :

∑i−1
j=1

λj
µj
<n
}

. And

qi =


0, i < i0,

λi
∫ F−1

i (1−biµi/λi)
0

F c
i (s)ds, i= i0,

λi
∫∞
0
F c
i (s)ds, i > i0.

Moreover, there exists T > 0 such that Qi(t) = 0 for all t > T and i= 1, . . . , i0− 1.

The allocation of the service capacity (23) takes a special form such that bi = λi/µi

for all classes i < i0 being fully served, bi = 0 for all classes i > i0 without receiving any

service, and bi0 = n −
∑i0−1

i=1 λi/µi for at most one class i0 being partially served. This

is virtually a solution on the boundary of the feasible region of (13). Therefore, if the

nonlinear programming (13) is a concave optimization problem, then the optimal solution

b∗ = (b∗1, . . . , b
∗
I) surely has the same form as (23) after reordering the class indices if needed.

This is associated with an optimal fixed priority order, of which the corresponding fixed

priority policy is denoted by πP ∗ . Note that the order among the classes with b∗i = λi
µi

can

be arbitrarily determined. It can also be arbitrary for those with b∗i = 0.
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Theorem 4 (Optimality of the Fixed Priority Policy). Given Assumption 1, if the

queue length cost functions Ci’s are concave and the hazard rate functions hi’s are nonde-

creasing, then the fluid model (1)–(8) under the fixed priority policy πP ∗ with the priority

value function (21) (after re-ordering the class indices if needed) satisfies lim
T→∞

JT (πP ∗) =

J∗.

Theorem 4 is proved in §EC.2.4. This theorem actually gives a sufficient condition for

the optimality of the fixed priority policy. We will show in §5 the innovative connection

between the fixed priority policy and knapsack problems.

Remark 2 (Connection to Linear Queue Length Costs and Exponential Patience).

We consider a special case of exponential patience time distributions Fi(x) = 1 − e−θix

and linear queue length cost functions by setting Ci(x) = cix for all i= 1, . . . , I. Then the

optimization problem (13) becomes the following linear programming:

minimize
I∑
i=1

[
ci
λi−µibi

θi
+ γi(λi−µibi)

]

subject to
I∑
i=1

bi ≤ n,

0≤ bi ≤
λi
µi
, i= 1, . . . , I.

(24)

Let c̃i = ci + θiγi for notational simplicity. Then the objective function in (24) is identical

to

maximize

I∑
i=1

c̃iµi
θi
bi. (25)

Due to the simple form of the above objective function, to maximize (25), the obvious

solution is to assign as much value (namely λi/µi) as possible to bi with higher coeffi-

cient c̃iµi/θi. For convenience, we relabel indices such that c̃1µ1/θ1 ≥ · · · ≥ c̃IµI/θI . After

reordering the indices, the linear programming (24) admits an optimal solution with the

same form as (23). Thus, it is straightforward to design a fixed priority policy that assigns

higher priority to customers with higher c̃iµi/θi. This is exactly the cµ/θ rule studied in

Atar et al. (2008, 2010, 2011, 2014). The optimality of the cµ/θ rule can be easily seen

from Propositions 1 and 2.
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4. Numerical Experiments

We first introduce a hybrid policy that is a mixture of the fixed priority policy and the

Gcµ/h rule in §4.1. This policy can be implemented in EDs to reduce the crowding and

LWBS rates. We illustrate with performance metrics including the numbers of patients in

each of the five acuity levels in steady state and the long-run average cost that the hybrid

policy inherits the merits of both the fixed priority policy and the Gcµ/h rule. In §4.2, we

present the parameters used in our experiments. Our simulation results in §4.3 show that

the lengths of the queues for levels 1 and 2 patients with the highest priority are close to

zero in steady state. We also observe that the patients in the other three less critical levels

following the Gcµ/h rule are able to receive proper medical treatment in the long run.

4.1. A Hybrid Policy

In practice, we can combine the fixed priority policy with the Gcµ/h rule. It is widely

accepted that in EDs patients are generally called for service on a FCFS basis by triage

level (Batt and Terwiesch (2015)). However, the fixed priority policy is unfair to the classes

of patients with lower priority since they will only be served when all patients with higher

priority have been served. The hybrid policy can be used to improve scheduling in EDs

such that patients in a lower triage level will also have a chance to be served even when

there are still patients in a higher triage level waiting. Meanwhile, the policy always assigns

the highest priority to the most critical patients (e.g, levels 1 and 2), ensuring that they

receive the quickest response from the physicians. According to the ESI, the hybrid policy

can be realized as level 1 with the highest priority, level 2 with the second highest priority

and levels 3, 4, and 5 following the Gcµ/h rule with proper input parameters. The queues

of levels 1 and 2 will vanish after a finite time by Proposition 2. This means all patients in

levels 1 and 2 will directly enter service and all patients in levels 3, 4, 5 will enter service

according to the Gcµ/h rule. Then by Theorem 3 the fluid model under the hybrid policy

converges to a certain steady state.

4.2. Simulation Parameters

In order to demonstrate the fluid approximation, the service capacity is set to be n =

100. We now explain the parameters in Table 1. In the column titled “Arrival rate”, we

display the arrival rates λi’s for different acuity levels. The service rates µi’s are set to
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increase monotonically from level 1 to level 5 as is typically the case in EDs. In general, the

monotonicity of the parameters in Table 1 is unnecessary. Since the hybrid policy assigns

the highest priority to level 1 and the second highest priority to level 2, there is no need

to identify the abandon penalty and queue length cost for these two levels. An alternative

way to think about this is that the cost of not treating the most critical patients promptly

is high, and so they must be seen by a physician within minutes. We will see in the next

subsection that there is almost no queue for levels 1 and 2 patients. For levels 3, 4 and 5

patients, the related costs are presented in the last two columns.

Triage class Arrival rate

λi

Service rate

µi

Abandon penalty

γi

Queue length cost

Ci(x)

Level 1 30 1 — —

Level 2 40 2 — —

Level 3 80 3 3 3x2

Level 4 100 4 2 2x2

Level 5 160 5 1 x2

Table 1 Arrival and service rates together with related costs for five triage classes

For patients in levels 1 and 2, we assume that they will not abandon the queue because

of their high treatment priority. For patients in less critical conditions, their patience time

distributions are assumed to be Fi(x) = 1− 1
x+1

for all levels i= 3,4,5, of which the hazard

rate function hi(x) = 1
x+1

is nonincreasing. Considering the Gcµ/h rule for levels 3, 4, and

5 and applying the above parameters to (20) yield

Pi(t) = 2(6− i) ln

(
λi

Bi(t)µi

)
λ2
i

Bi(t)
+ γiµi for i= 3,4,5. (26)

Thus, once there are no more levels 1 and 2 patients waiting, the patients in levels 3, 4,

and 5 will be treated according to the above priority value function.

Assume the arrivals follow Erlang E2(1/λi) distributions for levels i = 1, . . . ,5. From

now on we use “E2(x)” to denote an Erlang E2 distribution with mean x, “expo(x)” to

denote an exponential distribution with mean x, and “ln(x, y)” to denote a log-normal

distribution with mean x and variance y. As pointed out in Remark 1, the steady state
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of the fluid approximation depends only on the mean of the service time distributions.

Thus we simulate the system with three different service time distributions, i.e, expo(1/µi),

E2(1/µi) and ln(1/µi,1/µ
2
i ), which have same service rate µi for any i= 1, . . . ,5.

With the given parameters and distributions, we run each simulation under the hybrid

policy for 1000 time units. The first 10% and the last 10% of the simulation period are

regarded as the warm-up and the close-down periods of the system, thus they are discarded

when computing the steady state performance metrics. We use the batch-means method

with five independent runs to obtain confidence intervals.

4.3. Summary of Results

We present the results of our simulation experiments in this subsection. The steady state

of the fluid model under the hybrid policy can be easily computed given the experimental

setting in Table 1 and the priority value function (26). For levels 1 and 2 patients with

the highest priority, we can deduce from (23) that b1 = λ1
µ1

= 30 and b2 = λ2
µ2

= 20. Thus, the

service capacity that remains for levels 3, 4 and 5 patients is 50. And their steady state

can be obtained by solving the KKT condition (18) with service capacity b3 + b4 + b5 = 50.

Then the corresponding queue lengths qi’s, i= 1, . . . ,5, and the total cost follow directly

from (11) and (12). This yields the fluid approximation of the system, which is displayed in

the last column of Table 2 for comparison with the simulation results. In Table 2, we also

present the simulation approximations for Qi’s, Bi’s and the total long-run average cost

along with their relative errors and 95% confidence intervals for three different service time

distributions. The relative errors for Q1 and Q2 are omitted since their fluid approximations

are 0.

It is worth noting that the steady-state performance of the systems with general service

times is similar to that of the system with exponential service time distributions. For

example, the value of B3 is 15.758 when service time distributions for different levels are

exponential. The corresponding values of B3 for Erlang E2 and log-normal distributions

are 15.730 and 15.711, respectively. The results of other performance metrics are also close

to each other.

Moreover, our approximations using the fluid steady state are fairly accurate. The rela-

tive errors of the approximations for Qi’s and Bi’s are less than 2.34% and 1.31%, respec-

tively, with an average error of 1.17% for patients who are waiting in queue and 0.59% for
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Performance Exponential expo(1/µi) Erlang E2(1/µi) Log-normal ln(1/µi,1/µ
2
i ) Approx.

Sim. Rel.Error(%) Sim. Rel.Error(%) Sim. Rel.Error(%)

Q1 0.600

±0.063
—

0.555

±0.076
—

0.578

±0.130
—

0

Q2 0.621

±0.077
—

0.668

±0.099
—

0.668

±0.002
—

0

Q3 42.119

±1.815

2.34 42.208

±1.694

2.13 42.325

±1.643

1.86 43.126

Q4 49.865

±1.847

0.91 49.783

±1.929

1.07 49.816

±1.904

1.01 50.325

Q5 80.247

±3.220

0.48 80.365

±2.857

0.34 80.497

±3.233

0.18 80.640

B1 29.775

±0.403

0.75 29.864

±0.500

0.45 29.995

±0.778

0.02 30

B2 19.941

±0.537

0.30 20.024

±0.181

0.12 20.035

±0.439

0.18 20

B3 15.758

±0.172

1.31 15.730

±0.060

1.13 15.711

±0.218

1.01 15.554

B4 15.245

±0.171

0.87 15.193

±0.204

0.52 15.153

±0.190

0.26 15.114

B5 19.280

±0.250

0.27 19.186

±0.144

0.76 19.145

±0.218

0.97 19.332

Long run

average cost

18027.311

±562.222

3.66 17833.704

±414.350

2.55 18050.739

±556.930

3.80 17390.018

Table 2 Comparison of simulation results and approximations with general service time distributions

patients who are being treated. The quality of the approximations for the long-run average

cost is relatively worse. Due to the quadratic queue length cost functions in Table 1, the

magnitude of the long-run average cost in the last row of Table 2 is much larger than that

of the other performance metrics. Even so, the average error is still less than 3.34% across

all simulations with different service time distributions.

5. Knapsack Problems

In this section we show the connection between queueing systems and knapsack problems.

The classical 0-1 Knapsack Problem and Fractional Knapsack Problem are reviewed in
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§§5.1 and 5.2. We declare that the cµ/θ rule derived from (24) is identical to the Fractional

Knapsack Problem. In §5.3, we introduce the Fractional 0-1 Knapsack Problem, which

turns out to be consistent with the fixed priority scheduling problem in §3.3. To solve it

efficiently we propose a dynamic programming algorithm in §EC.3 due to space constraints.

5.1. The 0-1 Knapsack Problem

The 0-1 Knapsack Problem is the most common problem concerning how to pack items

into a knapsack without exceeding its capacity to achieve the highest value. Let there be

K items, indexed by k = 1, . . . ,K, with value vk and weight wk for item k. The number

of copies of item k will be denoted by xk being a binary variable equalling 1 if item k is

packed in the knapsack and 0 otherwise. The maximum weight that can be carried in the

knapsack is W . All values and weights are conventionally assumed to be positive integers.

More specifically, we wish to solve the following maximization problem:

maximize
K∑
k=1

vkxk

subject to
K∑
k=1

wkxk ≤W,

xk ∈ {0,1}, k= 1, . . . ,K.

(27)

The distinctive feature of the 0-1 Knapsack Problem is that the items are indivisible as

each xk is either 0 or 1. The following subsection introduces a continuous version of the

problem representing another extreme of the knapsack problem allowing every item to be

divided.

5.2. The Fractional Knapsack Problem

Although problem (27) is irrelevant to our queueing model, we state in the following that

its continuous version, where the binary constraint xk ∈ {0,1} is relaxed to 0≤ xk ≤ 1, is

equivalent to the cµ/θ rule problem (25). Replacing yk by wkxk, which represents the weight

of item k packed into the knapsack, we can transform the above integer programming to

a linear one. Then (27) becomes
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maximize

K∑
k=1

vk
wk
yk

subject to

K∑
k=1

yk ≤W,

0≤ yk ≤wk, k= 1, . . . ,K.

(28)

The above problem is the well-known Fractional Knapsack Problem named after

George Dantzig in Dantzig (1957). Because of its very simple form it admits an immediate

algorithm: order the items according to their value-to-weight ratio, v1
w1
≥ · · · ≥ vK

wK
, then

apply a greedy algorithm to pack as many high ratio items into the knapsack as possible.

It can be easily seen that the form of the optimal solutions is either 0 or wk for each item,

with at most one exception to choose the fractional part of its weight. Now comparing the

maximization problems (25) and (28), there is no doubt that the cµ/θ rule is virtually a

Fractional Knapsack Problem. We formally state it in the following proposition and omit

its proof for brevity.

Proposition 3. For linear queue length cost functions and exponential patience time dis-

tributions, the cµ/θ rule problem (24) is identical to the Fractional Knapsack Problem

(28).

5.3. The Fractional 0-1 Knapsack Problem

Instead of the linear objective functions in (27) and (28), we consider a nonlinear reward

function Vk(yk) being the reward value of item k with weight yk packed into the knapsack.

For standardization, we set Vk(0) = 0. Also Vk(yk) is postulated to be a nondecreasing

function in yk. Among all the possible choices of {y1, y2, · · · , yK}, we allow at most one item

to be strictly between 0 and its maximum weight. Hence, the problem (28) is extended to

maximize
K∑
k=1

Vk(yk)

subject to

K∑
k=1

yk ≤W,

0≤ yk ≤wk, k= 1, . . . ,K,

0< yk <wk for at most one k ∈ {1, · · · ,K}.

(29)
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We refer to (29) as the Fractional 0-1 Knapsack Problem since it allows at most one item

to be divided like in the Fractional Knapsack Problem and requires other items to be

packed in their entirety or not packed at all like in the 0-1 Knapsack Problem. Obviously,

the last constraint can be eliminated when (29) is a concave optimization problem. Now it

becomes clear that in order to find an optimal fixed priority order it is essential to solve the

Fractional 0-1 Knapsack Problem. Therefore, the proposition below immediately follows.

Proposition 4. For general queue length cost functions and patience time distributions,

the fixed priority control problem is equivalent to the Fractional 0-1 Knapsack Problem

(29).

Note that if we restrict ourselves to the family of fixed priority policies then there is no

need to require the queue length cost functions to be concave and the hazard rates to be

nondecreasing as in Theorem 4. All we need is to find an optimal solution on the boundary

of the feasible region of (13) by adding a constraint like the last one in (29).

Remark 3. Note that in the study of knapsack problems, it is quite common to assume

that all the weights are integer numbers, i.e., W and wk in (29) are all integers. It is

also well known that the 0-1 Knapsack Problem can be solved in pseudo-polynomial time

through dynamic programming (see, e.g., Martello and Toth (1990)). In §EC.3, we develop

a dynamic programming algorithm to solve our fixed priority control problem in the same

manner, for which we need to assume the related parameters, i.e., λi and µi in (13), are

rational numbers.

6. Conclusion

To the best of our knowledge, this paper is the first to extend the Gcµ rule by adding

abandonment with general patience time distributions. We consider the control problem of

a multiclass many-server queueing model with general holding cost functions and patience

time distributions based on the fluid approximation. To minimize the queue length costs

and abandon penalties, we solve a nonlinear programming in terms of the steady state of

the fluid model. The optimal solution inspired us to design three scheduling polices. The

target-allocation policy with the priority value function (17) works for any kind of queue

length cost functions and patience time distributions. Interestingly, we find that the Gcµ/h

rule with the priority value function (20) is optimal for convex queue length cost functions
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and nonincreasing hazard rates of patience. In contrast, the fixed priority policy is optimal

for concave queue length cost functions and nondecreasing hazard rates of patience with

the priority value function (21) (after re-ordering the class indices if needed). In order to

find such an optimal order of indices, we develop a dynamic programming algorithm (see

§EC.3) based on the unexpected consistency between queueing and knapsack problems.

Motivated by the application to EDs, a hybrid of the fixed priority policy and the Gcµ/h

rule is suggested to reduce patient abandonment and crowding in waiting rooms. The

simulation results show that the performance of our proposed policy is fairly close to the

theoretical result with a relative error of less than 3.8% among all performance metrics.

Several extensions are possible for future research. First, we have assumed that the

service time distributions are exponential, which facilitates the equilibrium analysis of

the fluid model. The corresponding convergence for the dynamically controlled multiclass

many-server queue with nonexponential service time distributions remains to be developed.

Another direction is to develop priority value functions based on the waiting time or the

queue length. Although we believe that in EDs our proposed dynamic policies based on

the number of patients being treated are more realistic, we could accommodate a wider

range of situations if we are able to show the asymptotical optimality of a queue length

based policy.
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Appendix: Dynamic Scheduling for Multiclass Many-server
Queues with Abandonment: the Generalized cµ/h Rule

We prove Theorem 1 in §EC.1.1. The proof of Proposition 1 about the equivalence of

the convergence of Qi and Bi is presented in §EC.1.2. Then we prove Lemma 1 in §EC.1.3.

The proofs of the optimality of our proposed scheduling policies is placed in §EC.2. We

discuss the prelimit stochastic processes in §EC.2.1. In §EC.2.2, we analyze the flow rates

of the fluid model. We provide a proof to the optimality of the target-allocation and the

Gcµ/h rule in §EC.2.3 simultaneously. The optimality of the fixed priority policy is shown

in §EC.2.4. In §EC.3, we develop a dynamic programming algorithm to solve the Fractional

0-1 Knapsack Problem.

EC.1. Preliminary Analysis

In this section, we start with the analysis of the fluid model (1)–(8). Due to the fact that

class i customers arrive at the system with a constant arrival rate λi, we can see from (5)

that

ηi,t([0, x]) = λi

∫ x

0

F c
i (s)ds, (EC.1)

which implies ηi,t(dx) = λiF
c(x)dx. This with (6) yields

Ri(t) = λi

∫ t

0

Fi(wi(s))ds. (EC.2)

For all i= 1, . . . , I, let

Fi,d(x) :=

∫ x

0

F c
i (y)dy. (EC.3)
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Combining (3) and (EC.1) yields wi(t) = F−1i,d (Qi(t)/λi). This together with (EC.2) gives

Ri(t) = λi

∫ t

0

Fi

(
F−1i,d

(
Qi(s)

λi

))
ds. (EC.4)

Then it follows from (4) that

Ki(t) = λi

∫ t

0

F c
i

(
F−1i,d

(
Qi(s)

λi

))
ds−Qi(t) +Qi(0). (EC.5)

We can also see from (1) and (2) that

Bi(t) =Bi(0) +Ki(t)−µi
∫ t

0

Bi(s)ds,

of which the solution can be solved as

Bi(t) =Bi(0)e−µit +

∫ t

0

e−µi(t−s)dKi(s).

Now plugging (EC.5) into the above equation and applying integration by parts yields

Xi(t) =Xi(0)e−µit +λi

∫ t

0

F c
i

(
F−1i,d

(
Qi(t− s)

λi

))
e−µisds+µi

∫ t

0

Qi(t− s)e−µisds.

(EC.6)

The above equation is consistent with (3.21) in Zhang (2013). It reveals the relationship

between Qi and Bi for each class since Xi = Qi +Bi, and will play a central role in the

proofs of Theorem 1 and Proposition 1.

EC.1.1. Underloaded System

If the fluid model is underloaded, i.e.,
∑I

i=1 λi/µi <n, then any work-conserving policy will

be optimal as all the queues vanish in finite time.

Proof of Theorem 1. Let

U(t) =−
I∑
i=1

Bi(t) +

I∑
i=1

[
Xi(0)e−µit +λi

∫ t

0

F c
i

(
F−1i,d

(
Qi(t− s)

λi

))
e−µisds

]
. (EC.7)

Then we can see from (EC.6) that

I∑
i=1

Qi(t) = U(t) +
I∑
i=1

µi

∫ t

0

Qi(t− s)e−µisds. (EC.8)
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If
∑I

i=1Qi(t) = 0, then by (EC.8), U(t) = 0−
∑I

i=1µi
∫ t
0
Qi(t−s)e−µisds≤ 0. If

∑I
i=1Qi(t)>

0, then
∑I

i=1Bi(t) = n due to the non-idling constraint (8). Since
∑I

i=1 λi/µi < n, we can

pick δ= (n−
∑I

i=1 λi/µi)/2, which is positive, such that

I∑
i=1

[
λi

∫ t

0

F c
i

(
F−1i,d

(
Qi(t− s)

λi

))
e−µisds

]

=
I∑
i=1

[
λi
µi
µi

∫ t

0

F c
i

(
F−1i,d

(
Qi(t− s)

λi

))
e−µisds

]
≤ n− 2δ,

where the last inequality follows since

µi

∫ t

0

F c
i

(
F−1i,d

(
Qi(t− s)

λi

))
e−µisds≤ µi

∫ t

0

e−µisds= 1− e−µit ≤ 1. (EC.9)

For this given δ > 0, there exists a T1 such that for all t > T1,
∑I

i=1Xi(0)e−µit ≤ δ. Applying

theses estimates to (EC.7), we have U(t)≤−n+ δ+n− 2δ =−δ for all t satisfying t > T1

and
∑I

i=1Qi(t)> 0.

Denote by S = {t≥ 0 :
∑I

i=1Qi(t)> 0} the collection of time epochs when the total fluid

queue length is larger than 0. Following the discussion of the above two cases, we have

that U(t)≤ 0 for any t ∈ [T1,+∞) and U(t)≤−δ for any t ∈ S ∩ [T1,+∞). We show that

m(S)<∞, where m is the Lebesgue measure of real numbers. Consider the contradictory,

i.e., m(S) =∞. Note that∫ ∞
0

e−ytU(t)dt=

∫ T1

0

e−ytU(t)dt+

∫ ∞
T1

e−ytU(t)dt

≤
∫ T1

0

|U(t)|dt−
∫
S∩[T1,+∞)

e−ytδdt. (EC.10)

Since we assumem(S) =∞, there exists a T2 >T1 such that
∫
S∩[T1,T2] δdt= 2+2

∫ T1
0
|U(t)|dt.

Choosing y0 = ln 2
T2
> 0 yields∫
S∩[T1,+∞)

e−y0tδdt≥ e−y0T2
∫
S∩[T1,T2]

δdt= 1 +

∫ T1

0

|U(t)|dt.

So we have
∫∞
0
e−y0tU(t)dt≤−1 from (EC.10). On the other hand, (EC.8) implies that for

all y > 0,∫ ∞
0

e−yt
I∑
i=1

Qi(t)dt=

∫ ∞
0

e−ytU(t)dt+

I∑
i=1

[∫ ∞
0

e−ytQi(t)dt ·
∫ ∞
0

e−ytµie
−µitdt

]
,
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where the last term follows from the Laplace transform. Due to the fact that∫∞
0
e−ytµie

−µitdt≤ 1 from (EC.9), the above implies
∫∞
0
e−ytU(t)dt≥ 0 for all y > 0, which

is a contradiction. Hence, we have shown by contradiction that m(S)<∞.

Since m(S)<∞, for any ε ∈ (0,1) there exists a τ ≥ 1 such that m(S ∩ [τ − 1,∞))< ε.

So for any t≥ τ , there exists a ξ ∈ [t− ε, t] such that
∑I

i=1Qi(ξ) = 0. The balance equation

(4) implies

Qi(t)≤Qi(ξ) +λiε= λiε for all t≥ τ. (EC.11)

Denote Xi,τ (t) := Xi(t+ τ) and Qi,τ (t) := Qi(t+ τ). In other words, we shift the fluid

model by time τ . Similar to (EC.6) we have the following “shifted” version:

I∑
i=1

Xi,τ (t) =
I∑
i=1

[
Xi(τ)e−µit +λi

∫ t

0

F c
i

(
F−1i,d

(
Qi,τ (t− s)

λi

))
e−µisds+µi

∫ t

0

Qi,τ (t− s)e−µisds
]

≤
I∑
i=1

Xi(τ)e−µit +
I∑
i=1

λi
µi

+
I∑
i=1

λiε,

where the inequality is due to (EC.9) and (EC.11). We can see that Xi(τ)e−µit→ 0 as t

goes to infinity. Due to the arbitrariness of ε, taking the limsup on both sides of the above

equation yields lim sup
t→∞

∑I
i=1Xi,τ (t) =

∑I
i=1 λi/µi <n. Thus, there must exists a T > 0 such

that
∑I

i=1Qi(t) = 0 for all t > T . Consequently, with regards to (9), we have lim
T→∞

JT (π) = 0

for any work-conserving policy π ∈Π. Now by (EC.6), Qi(t) vanishing in finite time implies

the convergence of Bi(t). It can also be seen from (EC.6) that lim
t→∞

Bi(t) = λi
µi

. �

EC.1.2. Equivalence of the convergence of Qi and Bi

Proposition 1 shows that the convergence of Qi is equivalent to that of Bi. This helps

to control the system based on the status of the server pool especially when the queue

length of the system is unobservable. This result will be multiply used in the proofs of the

optimality of our scheduling polices.

Proof of Proposition 1. We first prove that the convergence of Qi(t) implies that

of Bi(t). The left-hand side of (EC.6) is nothing but Qi(t) +Bi(t) and the right-hand side

of (EC.6) converges to a certain constant as t goes to infinity due to the convergence of

Qi(t). Therefore, Bi(t) also converges.

Now we start to prove that Bi(t) converging implies the convergence of Qi(t). Assume
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that lim
t→∞

Bi(t) = bi, where the limit bi must satisfy bi ∈ [0, λi/µi] for all i ∈ I. Indeed, if

bi >λi/µi, then by (1), (2) and (4),

X ′i(t) = λi−R′i(t)−µiBi(t)≤−
1

2
µi(bi−

λi
µi

) (EC.12)

for all large enough t, where R′i(t) ≥ 0 following from (6) and the inequality holds due

to the assumption bi > λi/µi. The above implies Xi(t)→−∞ as t goes to infinity, which

is a contradiction. Thus, we have bi ≤ λi/µi for all i = 1, . . . , I. Moreover, there must be∑I
i=1 bi = n. Otherwise, assume to the contrary that

∑I
i=1 bi < n≤

∑I
i=1 λi/µi, where the

last inequality is due to Assumption 1. This implies there must exist an i0 ∈ {1, . . . , I}

satisfying bi0 < λi0/µi0. Moreover, there will be
∑I

i=1Bi(t) < n for large enough t, which

means all the arrivals enter into service upon arriving. For class i0, we have for any ε > 0

there will be Bi0(t)≤ bi0 + ε for all large t. Then by (1) and (2), we have

B′i0(t) = λi0 −µi0Bi0(t)≥ λi0 −µi0(bi0 + ε)≥ 1

2
(λi0 −µi0bi0)

for small enough ε. The above implies Bi0(t)→+∞, which is a contradiction. This proves∑I
i=1 bi = n. Now let

Xi,∞ := bi +λi

∫ F−1
i (1−µibi/λi)

0

F c
i (s)ds.

Plugging (EC.4) into the equation in (EC.12) yields

X ′i(t) = λiF
c
i

(
F−1i,d

(
Xi(t)−Bi(t)

λi

))
−µiBi(t).

For any ε > 0, there exists a T0 > 0 such that for all t > T0, bi− ε≤Bi(t)≤ bi + ε, and as

well there exists δ1, δ2 > 0 depending only on ε such that

X ′i(t)≤−ε whenever Xi(t)≥Xi,∞+ δ1, (EC.13)

X ′i(t)≥ ε whenever Xi(t)≤Xi,∞− δ2, (EC.14)

for all t≥ T0, where δ1 and δ2 will be determined in the following. It can be easily checked

that

λiF
c
i

(
F−1i,d

(
Xi,∞− bi

λi

))
= µibi, (EC.15)
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where F−1i,d (·) is defined in (EC.3). One can find F c
i (F−1i,d (·)) is strictly decreasing. Therefore,

when Xi(t)≥Xi,∞+ δ1, we have

X ′i(t) = λiF
c
i

(
F−1i,d

(
Xi(t)−Bi(t)

λi

))
−µiBi(t)≤ λiF c

i

(
F−1i,d

(
Xi,∞− bi + δ1− ε

λi

))
−µi(bi− ε).

Solving the equation

λiF
c
i

(
F−1i,d

(
Xi,∞− bi + δ1− ε

λi

))
−µi(bi− ε) =−ε

yields δ1 = δ1(ε)> 0 following from (EC.15) and the fact that F c
i (F−1i,d (·)) is strictly decreas-

ing. Moreover, δ1(ε)→ 0 as ε goes to zero also following from (EC.15). This determines δ1

in (EC.13). The δ2 in (EC.14) can be determined in a same way. Let L(t) = (Xi(t)−Xi,∞)2.

Then

L′(t) = 2(Xi(t)−Xi,∞)

[
λiF

c
i

(
F−1i,d

(
Xi(t)−Bi(t)

λi

))
−µiBi(t)

]
≤−2εmin{δ1, δ2},

whenever Xi(t) ≤ Xi,∞ − δ1 or Xi(t) ≥ Xi,∞ + δ2. So there must be a T > T0 such that

Xi(t) ∈ (Xi,∞ − δ1,Xi,∞ + δ2) for all t > T . Since δ1 and δ2 can be arbitrarily small,

we have limt→∞Xi(t) = Xi,∞. Thus Qi(t) also converges. More specifically, lim
t→∞

Qi(t) =

λi
∫ F−1

i (1−µibi/λi)
0

F c
i (s)ds. This implies (11). And we proved that the convergence of Bi and

Qi are equivalent.

In view of (EC.4) and (EC.15), we have lim
T→∞

1
T
Ri(T ) = µibi for a convergent policy. Thus,

the convergence of the total cost JT (π) immediately follows from (9) and satisfies (12) for

the cost of each class. �

EC.1.3. Stationary Optimization Problem

In this paper three scheduling polices are proposed to cater the different types of the

nonlinear programming (13). Lemma 1 provides sufficient conditions to each type of the

optimization problem.

Proof of Lemma 1. It is evident that (14) is a nondecreasing function in bi for convex

cost function Ci and nonincreasing hazard rate function hi. The reason is simply that

ci(λi
∫ x
0
F c
i (s)ds)µi/hi(x) is nondecreasing in x, so is the derivative (d/dbi)Ji(bi). Then the

objective function
∑I

i=1 Ji(bi) is a convex function, and the optimization problem (13) is

a convex programming.
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On the other hand, if the cost function Ci is concave and the hazard rate function

hi is nondecreasing then the objective function Ji(bi) in (13) is a concave function of bi.

Indeed, it follows that ci(λi
∫ x
0
F c
i (s)ds)µi/hi(x) becomes nonincreasing in x. Thus, the

derivative (d/dbi)Ji(bi) is non-increasing in bi. Therefore the objective function
∑I

i=1 Ji(bi)

is a concave function, and the optimization problem (13) becomes a concave optimization.

�

EC.2. Proofs of the Optimality of the Scheduling Policies

EC.2.1. The Prelimit Stochastic Processes

As explained in §2, our fluid model follows directly from Atar et al. (2014). Since they

focused on the fixed priority policy, the dynamic priority policy (16) was only proved when

the priority value function is specified to be (21). Thus, we still need to prove that (16)

holds for any dynamic priority policy.

To this end, let (EN ,BN ,XN ,QN ,DN ,KN ,RN , ηN) be the prelimit stochastic processes

of the fluid limits (E,B,X,Q,D,K,R,η) defined in §2. Note that the arrival processes

{EN
i : i= 1, . . . , I} are mutually independent renewal processes with mean interarrival times

(λNi )−1, respectively. It’s worth pointing out that only ηN the measure-valued process of

the buffer is needed since the measure-valued process of the server pool just becomes an

auxiliary process due to the exponential service time distribution. The stochastic processes

characterize exactly the same dynamics of a multiclass many-server queueing system as

that of Atar et al. (2014) except the scheduling policy. In the many-server heavy traffic

regime, both the arrival rates λNi , i = 1, . . . , I, and the number of agents nN increase to

infinity. More precisely, as N →∞,

λNi
N
→ λi, i= 1, . . . , I, and

nN

N
→ n.

Define the fluid scaled processes X̄N
i =N−1XN

i and define ĒN
i , B̄N

i , Q̄N
i , D̄N

i , K̄N
i , R̄N

i anal-

ogously. Similarly, η̄Ni =N−1ηNi for the measure-valued process. Following the same argu-

ment as Theorem 4.3 of Atar et al. (2014), we can conclude that for any work-conserving

policy there is as N →∞,

(ĒN , B̄N , X̄N , Q̄N , D̄N , K̄N , R̄N , η̄N) =⇒ (E,B,X,Q,D,K,R,η). (EC.16)

The following lemma shows that all component functions of the fluid limits are absolutely

continuous.
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Lemma EC.1. Consider the fluid model (1)–(8). Then all the fluid processes Ei, Bi, Xi,

Qi, Di, Ki, Ri, i=1,. . . ,I, are absolutely continuous.

Proof. It is clear the arrival process Ei is absolutely continuous. The absolute continuity

of Di and Ri follows from (2) and (6), respectively. By (1) and (4), Xi(t) =Xi(0) +Ei(t)−

Ri(t) − Di(t). This implies that Xi is absolutely continuous. As a result,
∑I

i=1Qi(t) =

(
∑I

i=1Xi(t)−n)+ is also absolutely continuous. Then the absolute continuity of
∑I

i=1Ki(t)

follows from (4). Since the entrance into service process Ki(t) is nondecreasing, it follows

that each Ki must be absolutely continuous. Consequently, the absolute continuity of Bi

and Qi follows from (1) and (4). This completes the proof. �

In the Nth system, let PN
i (t) be the priority value function of each level. Then the

stochastic version of the fluid dynamic priority policy (15) is said to be: at time t, given

that a customer is to be served by an idle server, it chooses the head-of-the-line customer

from the class with index

i∈ arg max
i=1,...,I

PN
i (t), (EC.17)

where PN
i (t) is the priority value for class i at time t of the Nth system. If queue i with

the highest priority value is empty, the idle server will check classes with the second largest

priority value, so on so forth. Ties are broken arbitrarily once there are multiple queues

with same priority value, for example, in favor of the smallest index i. It can be easily seen

that the stochastic dynamic priority policy (EC.17) is equivalent to∫ t

0

∑
{j=1,...,I:PN

j (s)>PN
i (s)}

QN
j (s)dKN

i (s) = 0, i= 1, . . . , I. (EC.18)

Note that
∑
{j=1,...,I:PN

j (s)>PN
i (s)}Q

N
j (s) = 0 if {j = 1, . . . , I : PN

j (s)>PN
i (s)}= ∅.

We end up this subsection by proving (16) based on the above stochastic dynamic priority

policy.

Lemma EC.2. If PN
i (t)⇒ Pi(t), i=1,. . . ,I, as N goes to infinity for some continuous

priority value function Pi(t), then (16) holds.

Proof. By Lemma EC.1, let K ′i(t) = (d/dt)Ki(t). It suffices to prove that K ′i(t) = 0

if
∑
{j:Pj(t)>Pi(t)}Qj(t) > 0, which gives (16). So assume that there exists t > 0 and j ∈

{1, . . . , I} such that Pj(t)> Pi(t) and Qj(t)> 0. Due to the continuity of Pj and Pi from
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the condition of this lemma and the continuity of Qj by Lemma EC.1, we can conclude

that for N large enough PN
j (s) > PN

i (s) and Q̄N
j (s) > 0 for |s− t| < δ and some δ > 0.

According to the stochastic dynamic priority policy (EC.17) (or equivalently (EC.18)),

K̄N
i (t+ δ)− K̄N

i (t− δ) = 0, and therefore Ki(t+ δ)−Ki(t− δ) = 0 following from (EC.16).

This gives the desired result. �

EC.2.2. Flow Rates of the Fluid Model

The following lemma extends Theorem 3.2 in Atar et al. (2014) and characterizes a notable

property of the dynamic priority policy that the entrance into service process can be

represented by the external arrival and departure processes.

Let ∗Ij(t) be the collection of indices with the first jth highest priority value at time t

recursively defined as follows:

∗I1(t) = arg max
i∈{1,...,I}

Pi(x), (EC.19)

and for 1≤ j ≤ I,

∗Ij+1(t) = ∗Ij(t)∪ arg max
i∈{1,...,I}\∗Ij(t)

Pi(t).

Lemma EC.3. Consider the fluid model (1)–(8) given any continuous priority value func-

tion Pi(t). Then the entrance into service processes Ki(t) are absolutely continuous, and

the derivatives K ′i(t) := (d/dt)Ki(t) satisfy a.e. for j = 1, . . . , I,

∑
i∈∗Ij(t)

K ′i(t) =


∑I

i=1µiBi(t) if
∑

i∈∗Ij(t)Qi(t)> 0,

[
∑I

i=1µiBi(t)]∧
∑

i∈∗Ij(t) λi if
∑

i∈∗Ij(t)Qi(t) = 0,
∑I

i=1Bi(t) = n,∑
i∈∗Ij(t) λi if

∑I
i=1Bi(t)<n,

(EC.20)

where a∧ b is the minimum of a and b.

Proof. We prove this lemma following a similar argument to Theorem 3.2 in Atar et al.

(2014). The absolutely continuity of Ki has been proven in Lemma EC.1.

If
∑I

i=1Bi(t) < n for some t, then by the continuity of Bi’s (which follows from (1)

using the continuity of Ki and Di) this holds on a neighborhood of t. For any s in such a

neighborhood, it is easily seen that Qi(s) = 0 by (8) and R′i(s) = 0 by (EC.4). Hence, by

(4), we have Ki(s)−Ki(t) =Ei(s)−Ei(t). This shows K ′i(t) = λi for all i= 1, . . . , I.
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On the other hand, if
∑

i∈∗Ij(t)Qi(t)> 0, then we have
∑

i∈∗Ij(t)Qi(s)> 0 for any s≥ t
in a right neighborhood of t by the continuity of Qi’s (which follows from (4) using the

continuity of Ei, Ri, and Ki). By (8), for any s in such a neighborhood,
∑I

i=1Bi(s) = n.

We also have ∗Ij(s)⊂ ∗Ij(t) for small enough neighborhood, which is due to continuity of

the priority value function. According to the definition of the dynamic priority policy (15),

customers with lower priority value can be served only if those with higher priority are

all in service. This together with the fact
∑

i∈∗Ij(t)Qi(s) > 0 implies that there must be

K ′i(s) = 0 for all i /∈ ∗Ij(t) for small enough neighborhood. It then follows from (1) that

∑
i∈∗Ij(t)

Ki(s)−
∑

i∈∗Ij(t)

Ki(t) =

I∑
i=1

Di(s)−
I∑
i=1

Di(t).

By (2), the above implies that
∑

i∈∗Ij(t)K
′
i(t) =

∑I
i=1µiBi(t) if

∑
i∈∗Ij(t)Qi(t)> 0.

Now we start to prove the second entry in (EC.20). Since
∑I

i=1Bi(t) and
∑

i∈∗I(t)Qi(t)

are absolutely continuous, it follows that
∑I

i=1B
′
i(t) = 0 a.e. on S1 := {t :

∑I
i=1Bi(t) = n}

and
∑

i∈∗I(t)Q
′
i(t) = 0 a.e. on S2 := {t :

∑
i∈∗I(t)Qi(t) = 0} by Theorem A.6.3 in Dupuis and

Ellis (1997). Moreover, from (1) and (4) we have

I∑
i=1

B′i(t) =
I∑
i=1

K ′i(t)−
I∑
i=1

µiBi(t),∑
i∈∗Ij(t)

Q′i(t) =
∑

i∈∗Ij(t)

λi−
∑

i∈∗Ij(t)

K ′i(t)−
∑

i∈∗Ij(t)

R′i(t).

Note that R′i(t) = 0 whenever Qi(t) = 0 by (EC.4). Thus a.e. on S1 ∩ S2, we have∑I
i=1K

′
i(t) =

∑I
i=1µiBi(t) and

∑
i∈∗Ij(t)K

′
i(t) =

∑
i∈∗Ij(t) λi. Hence a.e. on S1 ∩ S2,∑

i∈∗Ij(t)K
′
i(t) =

∑
i∈∗Ij(t) λi(t) = [

∑I
i=1µiBi(t)]∧

∑
i∈∗Ij(t) λi. This completes the proof. �

EC.2.3. Optimality of the Target-allocation Policy and the Gcµ/h Rule

In view of the fact that the priority value functions go to an equal constant under both

policies. We will see that the proofs of the optimality of the target-allocation policy and

the Gcµ/h rule are exactly the same. Thus we prove Theorems 2 and 3 simultaneously,

which is presented in the end of this subsection. Before that, some auxiliary Lemmas EC.4

– EC.7 are analyzed. First we introduce the following auxiliary functions.

For the target-allocation policy πb∗ proposed in §3.1, let

Ai(x) = α0 + b∗i −x, (EC.21)
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where α0 can be chosen as any constant. In order to have a same proof as the optimality

of the Gcµ/h rule, we choose α0 to be the one in (18). With a little bit abuse of notation,

for the Gcµ/h rule, we also introduce Ai(·) as follows:

Ai(x) =
ci
(
λi
∫ F−1

i (1−xµi/λi)
0

F c
i (u)du

)
µi

hi(F
−1
i (1−xµi/λi))

+ γiµi. (EC.22)

Note that by (18) and (EC.21), we have

Ai(b
∗
i ) = α0 (EC.23)

for both Ai(·) in (EC.21) and (EC.22). Obviously, Ai(·) in (EC.21) is strictly decreasing.

And Ai(·) in (EC.22) is also a strictly decreasing function under Assumption 2. Thus,

within this subsection Ai(x) could be either (EC.21) or (EC.22). Now introduce

∗A(B(t)) := max
i=1,...,I

Ai(Bi(t)). (EC.24)

In view of (17) and (EC.21), for the target-allocation policy, we can consider Ai(Bi(t))

as the priority value function instead of the one in (17). Then ∗I1(t) in (EC.19) can be

replaced by

∗I1(t) := {i∈ {1, . . . , I} :Ai(Bi(t)) = ∗A(B(t))}, (EC.25)

which is the collection of indices with the highest priority value at time t. And define

∗Bi(t)
.
= {ζ ≥ 0 :Ai(ζ) = ∗A(B(t))}. (EC.26)

Lemma EC.4. Consider the fluid model (1)–(8) given the priority value function (17) or

(20). The following properties hold at any time t≥ 0.

(1) The process Bi(t) is absolutely continuous and the derivative B′i(t) := (d/dt)Bi(t) sat-

isfies a.e. ∑
i∈∗I1(t)

B′i(t)≥ 0. (EC.27)

(2) Moreover, if
∑I

i=1
∗Bi(t) ≤ n− δ, for some δ > 0, then there exists a constant ε0 > 0

depending only on δ such that

Bi(t)≤ b∗i − ε0 for all i∈ ∗I(t), (EC.28)

and there also exists a constant ε1 > 0 depending only on δ such that∑
i∈∗I1(t)

B′i(t)≥ ε1. (EC.29)
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Proof. First, the absolute continuity of Bi(t) follows from (1) and Lemma EC.3. Now,

we claim that there must be Bi(t)≤ b∗i for all i ∈ ∗I(t). Suppose there exists an i0 ∈ ∗I(t)

satisfying Bi0(t) > b∗i0. Together this with (EC.23) yields Ai0(Bi0(t)) ≤ Ai0(b
∗
i0

) = α0. By

(EC.25), this implies ∗A(B(t))≤ α0, which yields Ai(Bi(t))≤ α0 for all i∈ {1, . . . , I}. Thus

Bi(t) ≥ b∗i for all i ∈ {1, . . . , I} following from (EC.23). Due to the strict inequality of

Bi0(t)> b∗i0, we obtain
∑I

i=1Bi(t)> n. This contradicts (7) and then it follows Bi(t)≤ b∗i
for all i∈ ∗I1(t). From (1), ∑

i∈∗I1(t)

B′i(t) =
∑

i∈∗I1(t)

K ′i(t)−
∑

i∈∗I1(t)

D′i(t). (EC.30)

By Lemma EC.3, the above expression is nonnegative once
∑

i∈∗I1(t)K
′
i(t) =

∑I
i=1D

′
i(t) =∑I

i=1µiBi(t). So we just need to consider the other possible case
∑

i∈∗I1(t)K
′
i(t) =

∑
i∈∗I1(t) λi

when proving (EC.27), which still holds since D′i(t) =Bi(t)µi ≤ b∗iµi ≤ λi for all i ∈ ∗I1(t).
Thus (EC.27) holds.

We show that the condition
∑I

i=1
∗Bi(t)≤ n− δ implies there exists an ε′ > 0, such that

Bi(t)≤ b∗i − ε′ for all i∈ ∗I1(t), (EC.31)

where ε′ depends only on the subset ∗I1(t) and δ. Indeed, there must be Bi(t)< b∗i for all

i∈ ∗I1(t) with strict inequalities. Otherwise, we will have Bi(t) = b∗i for at least one i∈ ∗I1(t),
which causes ∗A(B(t)) = α0 following from (EC.23) and (EC.25). Then ∗Bi(t) = b∗i for all

i ∈ I deducing from (EC.26). This is a contradiction to the assumption
∑I

i=1
∗Bi(t) < n

since
∑I

i=1 b
∗
i = n. Therefore ∗A(B(t)) = α0 + ε, for some ε > 0. From (EC.26), we have

I∑
i=1

∗Bi(t) =

I∑
i=1

A−1i (α0 + ε)≤ s− δ.

Let ε∗ satisfy
∑I

i=1A
−1
i (α0 +ε∗) = n− δ. There must be 0< ε∗ ≤ ε since A−1i , i∈ {1, . . . , I},

are decreasing. By (EC.25), for all i∈ ∗I1(t), Bi(t) =A−1i (α0 +ε)≤A−1i (α0 +ε∗) = b∗i − (b∗i −
A−1i (α0 +ε∗)). Now let ε′ = mini∈∗I1(t)(b

∗
i −A−1i (α0 +ε∗)) which is positive and depends only

on the subset ∗I1(t)⊂ {1, . . . , I} and δ. This proves (EC.31). Because there is only a finite

number of subsets of {1, . . . , I}, we have proved (EC.28) and ε0 only depends on δ.

From (2) and (EC.30), if
∑

i∈∗I1(t)K
′
i(t) =

∑
i∈∗I1(t) λi, then∑

i∈∗I1(t)

B′i(t) =
∑

i∈∗I1(t)

λi−
∑

i∈∗I1(t)

Bi(t)µi



e-companion ec13

≥
∑

i∈∗I1(t)

λi−
∑

i∈∗I1(t)

(b∗i − ε0)µi

≥
∑

i∈∗I1(t)

µiε0

≥ min
i∈{1,...,I}

µiε0,

where the first inequality uses (EC.28), the second inequality is due to the fact λi ≥
b∗iµi. Another case is

∑
i∈∗I1(t)K

′
i(t) =

∑I
i=1D

′
i(t), which happens only when

∑I
i=1Bi(t) = n

deduced from Lemma EC.3. In this case the set {1, . . . , I} \ ∗I(t) is nonempty, otherwise,

observing (EC.28),
∑I

i=1Bi(t) =
∑

i∈∗I1(t)Bi(t)<
∑

i∈∗I1(t) b
∗
i ≤ n becoming a contradiction.

Then there must be an i1 ∈ {1, . . . , I} \ ∗I1(t) satisfying Bi1(t)≥ b∗i1. Thus, by (EC.30),∑
i∈∗I1(t)

B′i(t) =
∑

i∈{1,...,I}\∗I1(t)

D′i(t)≥Bi1(t)µi1 ≥ b∗i1µi1 ≥ min
i∈{1,...,I}

b∗iµi.

Combining the above two inequalities yields (EC.29). �

It follows from (EC.21) and the absolutely continuous of Bi(t) proved in Lemma EC.4

that Ai(Bi(t)) is absolutely continuous for the target-allocation policy. For the Gcµ/h

rule, with the fact ci and hi are differentiable assumed in Theorem 3, the function Ai(x)

in (EC.22) is absolutely continuous. Thus Ai(Bi(t)) is also absolutely continuous for the

Gcµ/h rule. This implies that ∗A(B(t)) is absolutely continuous, so is ∗Bi(t) by (EC.26).

Let us call such points t strictly regular. This concept was also used in Mandelbaum and

Stolyar (2004) (see Page 847 for reference).

Lemma EC.5. Consider the fluid model (1)–(8) given the priority value function (17) or

(20). Suppose t is a strictly regular point, then

d

dt
[Ai(Bi(t))] =

d

dt
[∗A(B(t))] for all i∈ ∗I1(t). (EC.32)

Proof. Suppose contrarily

d

dt
[Ai0(Bi0(t))] = max

i∈∗I1(t)

d

dt
[Ai(Bi(t))]> min

i∈∗I1(t)

d

dt
[Ai(Bi(t))] =

d

dt
[Ai1(Bi1(t))]

for some i0, i1 ∈ ∗I1(t). There exist sequences {εn1 , εn2} both converging to 0

such that Ai0(Bi0(t + εn1 )) > Ai1(Bi1(t + εn1 )) and Ai0(Bi0(t − εn2 )) < Ai1(Bi1(t −
εn2 )). Thus lim

s→t+

∗A(B(s))−∗A(B(t))
s−t = lim

εn1→0

Ai0
(Bi0

(t+εn1 ))−Ai0
(Bi0

(t))

εn1
= d

dt
[Ai0(Bi0(t))]. Similarly,

lim
s→t−

∗A(B(s))−∗A(B(t))
s−t = d

dt
[Ai1(Bi1(t))] 6= d

dt
[Ai0(Bi0(t))], which contradicts the strict regular-

ity at t. This completes the proof. �
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Lemma EC.6. Consider the fluid model (1)–(8) given the priority value function (17) or

(20). The following inequalities hold for almost all t≥ 0,

∗A(B(t))≥ α0, (EC.33)

d

dt
[∗A(B(t))]≤ 0. (EC.34)

And if
∑I

i=1
∗Bi(t)≤ n− δ, for some δ > 0, then there exists an ε1 > 0 depending only on δ

such that for almost all t > 0,

d

dt
[

I∑
i=1

∗Bi(t)]≥ ε1, (EC.35)

where ε1 is given in (EC.29).

Proof. In view of (7) and the fact that
∑I

i=1 b
∗
i = n, there must be an i∈ {1, . . . , I} such

that Bi(t)≤ b∗i . Then by (EC.23) and (EC.24) the inequality (EC.33) follows.

We have shown in the above of Lemma EC.5 that ∗A(B(t)) and ∗Bi(t) for all i= 1, . . . , I

are absolutely continuous, which means they have derivatives almost everywhere. Consider

an arbitrary strictly regular point t > 0. We cannot have (d/dt)∗A(B(t)) > 0 since by

Lemma EC.5 this would imply B′i(t)< 0 for all i∈ ∗I1(t). This contradicts (EC.27). So we

have (EC.34).

Next we prove (EC.35). Using (EC.25), (EC.26), and (EC.32) yields ∗B′i(t) = B′i(t) for

all i∈ ∗I1(t). Therefore,

I∑
i=1

∗B′i(t)≥
∑

i∈∗I1(t)

∗B′i(t) =
∑

i∈∗I1(t)

B′i(t)≥ ε1,

where the first inequality comes from the fact that ∗B′i(t)≥ 0 for all i= 1, . . . , I (which is

implied by (EC.34)) and the second inequality follows from (EC.29). �

The following lemma is similar to Proposition 7 in van Mieghem (1995), which is essen-

tially a sufficient condition of the optimality of our policies.

Lemma EC.7. Consider the fluid model (1)–(8) given the priority value function (17) or

(20). If

max
1≤k,l≤I

|Ak(Bk(t))−Al(Bl(t))| → 0 as t→∞, (EC.36)

then the amount of customers in service Bi(t) satisfies lim
t→∞

Bi(t) = b∗i for all i= 1, . . . , I.
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Proof. We first claim that for any ε0 > 0 and i∈ {1, . . . I},

Bi(t)≤ λi/µi + ε0 for large enough t. (EC.37)

Otherwise, there must be an i0 ∈ {1, . . . , I} and a subsequence tn→∞ such that

Bi0(tn)>λi0/µi0 + ε0 ≥ b∗i0 + ε0. (EC.38)

We have Ai0(Bi0(tn)) ≤ Ai0(b
∗
i0

) = α0 by (EC.23) and the fact that Ai0(·) is decreasing.

Then by (EC.36), Ai(Bi(tn)) ≤ α0 + ε′ for all i 6= i0 and large enough tn, where ε′ > 0

could be arbitrarily small. Thus we can chose ε′ small enough such that for all i 6= i0,

Bi(tn)≥ b∗i − ε0/(2(I− 1)) for large enough tn. This together with the assumption (EC.38)

yields
∑I

i=1Bi(tn)≥
∑I

i=1 b
∗
i + ε0/2>n, contradicting (7). Thus (EC.37) holds.

Now we use (EC.37) to prove

lim
t→∞

I∑
i=1

Bi(t) = n. (EC.39)

To this end, we show that for any ε > 0 there exists a δ > 0 such that

I∑
i=1

B′i(t)≥ δ whenever
I∑
i=1

Bi(t)≤ n− ε. (EC.40)

Since
∑I

i=1 λi/µi ≥ n, there must exist i1 ∈ {1, . . . , I} such that Bi1(t)≤
λi1
µi1
− ε

2I
. Then we

can choose the ε0 in (EC.37) small enough such that

I∑
i=1

D′i(t) =
∑
i 6=i1

µiBi(t) +µi1Bi1(t)≤
I∑
i=1

λi− cε,

where c is a small enough constant. Note that
∑I

i=1K
′
i(t) =

∑I
i=1 λi whenever

∑I
i=1Bi(t)<

n by (EC.20). Thereby,
∑I

i=1B
′
i(t) ≥ cε is strictly positive deduced from the above and

(1). Let δ= cε, then (EC.40) holds. This yields (EC.39).

Next we consider the following two cases:

Case 1: Ai(x) is given in (EC.21). Fix a class, say l ∈ {1, . . . , I}. Then by (EC.21) and

(EC.36),

lim
t→∞
|b∗k−Bk(t)− (b∗l −Bl(t))|= 0.
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Summing over the classes k= 1, . . . , I,

lim
t→∞

∣∣ I∑
k=1

(b∗k−Bk(t))− I · (b∗l −Bl(t))
∣∣= 0.

From (EC.39), the above implies Bl(t)→ b∗l . Thus, Bi(t)→ b∗i for all i= 1, . . . , I.

Case 2: Ai(x) is given in (EC.22). We also fix a class, say l ∈ {1, . . . , I}. The limit (EC.36)

shows that for all ε1 > 0 there exists a T such that for all t > T ,

|Ak(Bk(t))−Al(Bl(t))|< ε1 for all k ∈ {1, . . . , I}.

Since Ak(x) is strictly decreasing and continuous in x according to (EC.22), its inverse A−1k

is also strictly decreasing and continuous. Thus by (EC.37) and the above, for all ε > 0

there exists a δ′ > 0 such that if ε0, ε1 < δ
′, then∣∣Bk(t)−A−1k (Al(Bl(t)))

∣∣< ε.
Summing over the classes k= 1, . . . , I,∣∣∣∣∣

I∑
k=1

Bk(t)−
I∑

k=1

A−1k (Al(Bl(t)))

∣∣∣∣∣< εI.
Because the function

∑I
k=1A

−1
k (Al(·)) is strictly decreasing , Bl(t) converges by (EC.39).

The policy satisfying (EC.36) controls the service capacity such that b∗ = (b∗1, . . . , b
∗
I) is the

solution to the sufficient first order conditions of the minimization problem (13). Thus,

Bi(t)→ b∗i for all i = 1, . . . , I. Combining the above two cases yields the result of this

lemma. �

Proof of Theorems 2 and 3. From the definition of ∗Bi(t) in (EC.26), we have

Ai(
∗Bi(t))≥Ai(Bi(t)). Since Ai is decreasing, this inequality implies ∗Bi(t)≤Bi(t) for all

i= 1, . . . , I. Then it can be seen from (7) that
∑I

i=1
∗Bi(t)≤ n. This yields lim

t→∞

∑
i=1
∗Bi(t) =

n by (EC.35). Then, we also have limt→∞
∑I

i=1Bi(t) = n following from (7). Hence,

limt→∞(Bi(t)− ∗Bi(t)) = 0 for all i= 1, . . . , I. Thus we can conclude from (EC.26) that

lim
t→∞

max
1≤k,l≤I

|Ak(Bk(t))−Al(Bl(t))|= 0.

It then follows from Lemma EC.7 that lim
t→∞

Bi(t) = b∗i . This together with Proposition 1

yields lim
T→∞

JT (πb∗) = lim
T→∞

JT (πG) = J∗. Till now we complete the proof. �
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EC.2.4. Optimality of the Fixed Priority Policy

Proposition 2 shows that the fluid model given any fixed priority order converges to an

equilibrium with a special form as (23). For concave holding cost functions and nondecreas-

ing hazard rate functions, Theorem 4 states that the optimal scheduling policy must be in

the family of the fixed priority policies. The proof is placed in the end of this subsection.

Recall from the definition of i0 in (23), i0 is the biggest number such that
∑i0−1

i=1 λi/µi

is strictly less than n, which implies that the traffic intensity of the first i0 − 1 classes

with high priorities are actually underloaded. Intuitively, their queue lengths should vanish

after a finite time under a fixed priority scheduling. The following lemma verifies such a

phenomena and claims that the first i0− 1 queues will become empty eventually.

Lemma EC.8. Under Assumption 1, for any class i∈ {1, · · · , i0−1}, where i0 is given in

(23), the queue length vanishes after a finite time and the amount of customers in service

converges to (23). In other words, there exists a T > 0 such that Qi(t) = 0 for all t≥ T and

i∈ {1, · · · , i0− 1}. And

lim
t→∞

Bi(t) = λi/µi for all i∈ {1, · · · , i0− 1}. (EC.41)

Proof. We prove the result by induction.

Step 1: As a first step, we show this lemma holds for i= 1. To prove this, we first show

that lim inf
t→∞

B1(t) ≥ b1 = λ1
µ1

. Suppose that B1(t) ≤ λ1
µ1
− δ for some δ > 0. Combining (1)

with (EC.20) yields

B′1(t) =K ′1(t)−D′1(t) =


∑I

i=1µiBi(t)−µ1B1(t) if Q1(t)> 0,

[
∑I

i=1µiBi(t)]∧λ1−µ1B1(t) if Q1(t) = 0 and
∑I

i=1Bi(t) = n,

λ1−µ1B1(t) if
∑I

i=1Bi(t)<n.

Then, one can easily see from the above equation that B′1(t)≥ c > 0 for small constant c

only depending on δ. Due to the arbitrariness of δ, the result lim inf
t→∞

B1(t)≥ b1 = λ1
µ1

thus

follows. Now for any ε > 0, we have B1(t)≥ b1 − ε for all large t. This together with (2),

(7) and the first entry of (EC.20) implies when Q1(t)> 0 we have

K ′1(t) =
I∑
i=1

D′i(t)≥ µ1B1(t) +µmin(n−B1(t))

≥ µ1(b1− ε) +µmin(n− b1 + ε)
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≥ µ1b1 +
1

2
µmin(n− b1)

for small enough ε > 0, where µmin = mini=1,...,I µi. Thus, Q′1(t)≤−1
2
µmin(n− b1) whenever

Q1(t)> 0 from (4). Therefore there exists t1 > 0 such that Q1(t) = 0 for all t≥ t1. Thus by

Proposition 1 we have lim
t→∞

B1(t) = λ1/µ1.

Step 2: Suppose that Lemma EC.8 is true for all i= 1, · · · , k− 1∈ {1, · · · , i0− 1}, i.e.,

lim
t→∞

Bi(t) = bi for all i= 1, · · · , k− 1. (EC.42)

And there exists a Tk−1 > 0 such that
∑k−1

i=1 Qi(t) = 0 for all t≥ Tk−1. From this, we need

to show that Lemma EC.8 continues to hold for k ∈ {1, · · · , i0 − 1}. Now by (4) we have∑k−1
i=1 K

′
i(t) =

∑k−1
i=1 λi for all t ≥ Tk−1. So from (2) and (EC.20), one can see that for all

t≥ Tk−1,

K ′k(t) =


∑I

i=1µiBi(t)−
∑k−1

i=1 λi, if Qk(t)> 0,

λk ∧
(∑I

i=1µiBi(t)−
∑k−1

i=1 λi

)
if Qk(t) = 0 and

∑I
i=1Bi(t) = n,

λk if
∑I

i=1Bi(t)<n.

(EC.43)

By (1),

B′k(t) =


∑I

i=1µiBi(t)−µkBk(t)−
∑k−1

i=1 λi, if K ′k(t) =
∑I

i=1µiBi(t)−
∑k−1

i=1 λi,

λk−µkBk(t), if K ′k(t) = λk.

Similar to Step 1, we also show that lim inf
t→∞

Bk(t)≥ bk = λk
µk

. Suppose that Bk(t)≤ λk
µk
− δ

for some δ > 0. From (EC.42) and the above, one can conclude that B′k(t) ≥ c > 0 for a

small constant c only depending on δ. As a consequence, we have lim inf
t→∞

Bk(t)≥ bk = λk
µk

.

Note that µibi = λi for all i∈ {1, · · · , i0− 1}. Thus (EC.42) implies that for any ε > 0

k−1∑
i=1

λi− ε≤
k−1∑
i=1

µiBi(t)≤
k−1∑
i=1

λi + ε

for all large t. According to the above proved limit inferior of Bk(t), for any ε′ > 0, we have

Bk(t)≥ bk− ε′ for all large t. When Qk(t)> 0, using (7) and (EC.43), we have

K ′k(t) =
I∑
i=1

µiBi(t)−
k−1∑
i=1

λi
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≥
k−1∑
i=1

(µiBi(t)−λi) +µkBk(t) +µmin(n−
k∑
i=1

Bi(t)) (EC.44)

≥−ε+ (µk−µmin)(bk− ε′) +µmin

(
n−

k−1∑
i=1

(bi + ε)

)

= µkbk +µmin(n−
k∑
i=1

bi)− ε− ε′µk− (k− 1)ε′µmin + ε′µmin

≥ µkbk +
1

2
µmin(n−

k∑
i=1

bi)

for small enough ε, ε′ > 0. The above and (4) implies Q′k(t)≤−1
2
µmin(n−

∑k
i=1 bi) whenever

Qk(t) > 0. Therefore, there exists a tk such that Qk(t) = 0 for all t ≥ tk. Therefore, the

result lim
t→∞

Bk(t) = λk/µk follows from Proposition 1. �

With Lemma EC.8, we now proceed with the proof of Proposition 2.

Proof of Proposition 2. Lemma EC.8 shows that the first i0 − 1 classes with high

priorities satisfy lim
t→∞

Bi(t) = bi and there exists a T such that Qi(t) = 0, t ≥ T , for all

i∈ {1, . . . , i0−1}. And
∑i0−1

i=1 K
′
i(t) =

∑i0−1
i=1 λi for all t≥ T from (4) and (6). Then it follows

from (2) and (EC.20) that for all t≥ T ,

K ′i0(t) =


∑I

i=1µiBi(t)−
∑i0−1

i=1 λi if Qi0(t)> 0,

λi0 ∧
(∑I

i=1µiBi(t)−
∑i0−1

i=1 λi

)
if Qi0(t) = 0 and

∑I
i=1Bi(t) = n,

λi0 if
∑I

i=1Bi(t)<n.

(EC.45)

In order to complete the proof of this theorem, a critical step is to prove lim
t→∞

Bi0(t) =

bi0 = n−
∑i0−1

i=1
λi
µi

, which is less than or equal to λi0/µi0 according to the definition of i0

in (23). Deducing from (7), (23) and (EC.41), there must be lim sup
t→∞

Bi0(t)≤ bi0. Then it

suffices to show that lim inf
t→∞

Bi0(t)≥ bi0. To this end, we consider the following two cases.

Case 1: i0 = I. Suppose that Bi0(t) ≤ bi0 − δ for some δ > 0. For large enough t, this

could happen only when
∑I

i=1Bi(t)< n. Otherwise, we have
∑I

i=1Bi(t) = n. And by (7)

and (EC.41) this causes Bi0(t) = n−
∑i0−1

i=1 Bi(t)> bi0− δ for all large enough t. So we just

need to consider
∑I

i=1Bi(t)<n. Then by (1) and (EC.45), B′i0(t) = λi0 −µi0Bi0(t)≥ µi0δ.

This implies lim inf
t→∞

Bi0(t)≥ bi0. Combining the limit superior in the above, it immediately

follows lim
t→∞

Bi0(t) = bi0.
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Case 2: i0 < I. Deduce from (1) and (EC.45) that

B′i0(t) =


∑I

i=1µiBi(t)−µi0Bi0(t)−
∑i0−1

i=1 λi, if K ′i0(t) =
∑I

i=1µiBi(t)−
∑i0−1

i=1 λi,

λi0 −µi0Bi0(t), if K ′i0(t) = λi0.

Here we also suppose that Bi0(t) ≤ bi0 − δ for some δ > 0. Together this with the above

equation, one can find that if K ′i0(t) =
∑I

i=1µiBi(t)−
∑i0−1

i=1 λi, then

B′i0(t) =

i0−1∑
i=1

[µiBi(t)−λi] +

I∑
i=i0+1

µiBi(t)

≥
i0−1∑
i=1

[µiBi(t)−λi] +µmin(n−
i0−1∑
i=1

Bi(t)− bi0 + δ)

≥ 1

2
µminδ,

where the last inequality follows from (EC.41). If K ′i0(t) = λi0, then B′i0(t)≥ λi0 −µi0bi0 +

µi0δ ≥ µi0δ. It then follows that lim inf
t→∞

Bi0(t) ≥ bi0. As argued in the above this implies

lim
t→∞

Bi0(t) = bi0. Apparently, together this with (7) and (EC.41) yields lim
t→∞

Bi(t) = 0 for all

i= i0 +1, · · · , I. The convergence of queue length processes can be seen from Proposition 1.

This completes the proof. �

Proof of Theorem 4. We claim that there exists a global minimum for which 0<

bi < λi/µi for at most one index i. From Lemma 1, the nonlinear programming (13) is a

concave optimization problem if the cost functions Ci’s are concave and the hazard rate

functions hi’s are nondecreasing. Note that the constraint set is a convex set (acutally a

convex polytope), then it follows that the optimization problem admits a global minimum

at an extreme point, i.e., at one the vertices of this polytope. And at a vertex we have that

0< bi <λi/µi for at most one index i. Corresponding to any optimal vertex, we can define

an optimal fixed priority order. Then this theorem immediately follows from Propositions 1

and 2 (after re-ordering the class indices if needed). �

EC.3. Dynamic Programming Algorithm

This section is devoted to developing a dynamic programming (DP) algorithm to solve the

Fractional 0-1 Knapsack Problem (29). It is easy to see that there exists a straightforward

algorithm, especially when K is relatively small. According to each possible order of items,

items are packed into the knapsack until the weight limit W is reached. Note that the last
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item packed might be divided. After evaluating all of the sequences, the optimal solution

and the maximum value can be determined. However, such a brute-force algorithm is NP-

hard. Fortunately, the DP algorithm of the classical 0-1 Knapsack Problem inspired us to

develop a dynamic programming to solve it efficiently.

A DP Algorithm for the Fractional 0-1 Knapsack Problem. We determine how

to optimally pack items into a knapsack, allowing at most one item to be divided, using a

four-step procedure.

Step 1: Decompose the problem into subproblems.

In view of (29), any feasible solution contains at most one fractionally packed item.

This suggests constructing a three-dimensional array M [0..K,0..W,0..K], where the third

dimension is used to track the fractionally packed item. For 1 ≤ k ≤K, 0 ≤ w ≤W and

0≤ l≤K, we consider the following two cases:

Case 1: l = 0. The entry M [k,w,0] stores the maximum rewarded value of items packed

in their entirety from any subset of items {1,2, . . . , k} with total weight at most w. The

component 0 in M [k,w,0] indicates that there is no fractionally packed item.

Case 2: l 6= 0. The entry M [k,w, l] stores the maximum rewarded value of the fractionally

packed item l and the items packed in their entirety from any subset of items {1,2, · · · , k}\
{l} with total weight at most w.

We also need the following initial setting for k= 0,

M [0,w, l] =


0 if l= 0,

Vl(w) if l > 0 and wl >w,

−∞ if l > 0 and wl ≤w.

(EC.46)

The first entry means no item is packed in the knapsack. The second one implies that

item l is fractionally packed with weight w since its full weight wl exceeds the weight limit

w. The third entry is illegal, since item l cannot be divided. Thus, we simply set the value

to be −∞. For the case with weight limit w< 0, which is also illegal, we set

M [k,w, l] =−∞ for all w< 0 and k, l≥ 0. (EC.47)

Step 2: Recursively define the value of an optimal solution.

We use the above notations to define the rewarded value of an optimal solution recur-

sively. Similar to the definition of M [k,w, l], we recursively define it for two cases as well.
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For l= 0, which means no item is fractionally packed, the optimal solution corresponding

to M [k,w,0] is to either leave item k behind, in which case M [k,w,0] =M [k− 1,w,0], or

pack item k, in which case M [k,w,0] = Vk(wk) +M [k− 1,w−wk,0] given wk ≤w. Due to

the penalty for a negative weight in (EC.47), we conclude that

M [k,w,0] = max{M [k− 1,w,0], Vk(wk) +M [k− 1,w−wk,0]} (EC.48)

for all 1 ≤ k ≤K, 0 ≤ w ≤W . Actually, (EC.48) is exactly the recursive equation of the

classical 0-1 Knapsack Problem (see §2.6 in Martello and Toth (1990)). For l = 1, . . . ,K,

where item l is exactly the fractionally packed item, we can similarly derive

M [k,w, l] =

M [k− 1,w, l] if k= l,

max{M [k− 1,w, l], Vk(wk) +M [k− 1,w−wk, l]} if k 6= l.
(EC.49)

for all 1≤ k≤K, 0≤w≤W , where the first entry means that item k has been fractionally

packed, and thus it cannot also be packed in its entirety. The second entry relies on a

similar explanation to that of (EC.48). Since this time item k is not the fractionally packed

item, it can be either left behind or packed in the optimal solution corresponding to the

maximum value M [k,w, l].

We show in the proposition below that these recursions can indeed be described by a

single recursive equation.

Proposition EC.1 (Recursive Equation). The Fractional 0-1 Knapsack Problem (29)

can be solved using dynamic programming. Namely, for any l ∈ {0,1, . . . ,K}, we have the

following recursive equation

M [k,w, l] = max
{
M [k− 1,w, l], Vk(wk) +M [k− 1,w−wk, l] + Inf1{k=l}

}
, (EC.50)

holds for all k ∈ {1, . . . ,K} and w ∈ {0,1, . . . ,W}, where Inf =−∞.

Proof. From the condition of this proposition, only k ≥ 1 should be considered and

n = 0 for the boundary condition has been given in (EC.46). Thus, it’s easy to see that

the recursions (EC.48) and (EC.49) can be expressed as a unified equation (EC.50). In

order to prove (EC.50), we first consider a possible case k = l, which implies that item k

is the fractionally added item. Then M [k,w, l] = M [k − 1,w, l] since in this case item k

cannot be wholly taken. It remain to prove the case k 6= l. To compute M [k,w, l] we note
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that there are only two choices for item k. If we leave the whole item k, then limited by

the maximum weight w the maximum reward with the wholly added items taken from

{1,2, · · · , k−1} and the fractionally added being item l is M [k−1,w, l]. If instead we take

the whole item k (only possible if w≥wk), then we gain Vk(wk) immediately, but consume

wk weight of our storage. Now the rest weight limit becomes w−wk, then the maximum

reward with the remaining items {1,2, · · · , k− 1} is M [k− 1,w−wk, l]. In all, we obtain

Vk(wk) + M [k − 1,w − wk, l]. Note that if w < wk, then M [k − 1,w − wk, l] = −∞ from

(EC.47). So the recursion (EC.50) holds in both cases. �

Step 3: Compute the value of an optimal solution.

For any fixed l ∈ {0,1 . . . ,K}, the above recursive equation (EC.50) suggests a two-

dimensional recursive equation. In all, there are K + 1 independent recursive equations.

To reach our goal, we just need to recursively calculate K + 1 two-dimensional recur-

sions for k ∈ {1, . . . ,K} and w ∈ {0,1, . . . ,W} based on the boundary conditions (EC.46)

and (EC.47). Thus the running time of the dynamic programming algorithm is O(K2W ).

Finally the optimal value of the Fraction 0-1 Knapsack Problem (29) is obtained as follows:

max
K∑
k=1

Vk(yk) = max
l∈{0,1,...,K}

M [K,W, l]. (EC.51)

Step 4: Construct an optimal solution.

From (EC.51), we find that Frac := arg maxl∈{0,1,...,K}M [K,M, l] is the index of the frac-

tionally packed item of the optimal solution. The only remaining problem is to obtain the

indices of the items that are packed in their entirety. To that end, we need one auxiliary

three-dimensional array T [0..K,0..W,0..K] to be a Boolean array to find their indices.

Each entry T [k,w, l] records whether item k is packed in its entirety in realizing the highest

value M [k,w, l]. That is, T [k,w, l] = 1 if item k is packed in its entirety and T [k,w, l] = 0

otherwise. In the optimal solution, item K is packed in its entirety if T [K,W,Frac] = 1. We

can now repeat this argument for T [K−1,W −wK ,Frac]. And item K is not packed in its

entirety if T [K,W,Frac] = 0. In this case, we can repeat the argument for T [K−1,W,Frac].

Iterating the argument K times from item K downward to item 1 will give the indices of

all items that are packed in their entirety.

Thus far we have identified the optimal value and the solution to (29). The step-by-step

procedures are described in Algorithm 1.
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Algorithm 1 The Fractional 0-1 Knapsack (Dynamic Programming)

procedure Initialization according to (EC.46)

procedure Recursively define values

for k← 1 to K do

for w← 0 to W do

for l← 0 to K do

if wk ≤w and k 6= l and M [k− 1,w, l]<Vk(wk) +M [k− 1,w−wk, l] then

begin

M [k,w, l]← Vk(wk) +M [k− 1,w−wk, l]

T [k,w, l]← 1

end

else

begin

M [k,w, l]←M [k− 1,w, l]

T [k,w, l]← 0

end

procedure Search for the optimal value and the fractionally packed item

Max←M [K,W,0]; Frac← 0

for k← 1 to K do

if M [K,W, l]>Max then

Max←M [K,W, l]; Frac← l

procedure Find indices of items packed in their entirety

S←W

for k←K to 1 do

if T [k,S,Frac] = 1 then

S← S−wk; output k

Remark EC.1. To the best of our knowledge, the problem (29) was only studied in Burke

et al. (2008). They also proposed an exact algorithm to solve that problem. The complexity

of their approach is O(UK2W ), where U = maxk=1,...,K wk. The additional U is needed

because they have to further calculate each possible value of the fractionally packed item.

In contrast, the complexity our algorithm is only O(K2W ) as shown in Step 3. Obviously,
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our proposed dynamic programming algorithm is more efficient. Note that the classical 0-1

Knapsack Problem needs O(KW ) time. More importantly, Propositions 3 and 4 reveal the

internal connection between queueing and knapsack problems.
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