
 

 

  

Abstract—We consider in this paper the application of deep 

reinforcement learning techniques to learning closed loop control and 

goal-oriented trajectory planning in a robotic application. We employ 

an end-to-end (from the motor input the required task) model free 

approach using a deep Q-learning framework to learn a motoric skill. 

We propose several improvements to the naive deep Q-learning 

algorithm which otherwise fails. First we use some rough prior 

knowledge we have on the goal of the task to heuristically explore the 

environment. Second we manage to prevent the so-called catastrophic 

forgetting of neural networks. We present our simulation results for 

accurate striking task in air hockey, and show the success and stability 

of our learning algorithm due to the proposed modifications. We also 

present simulations that further support our claim of successfully 

mitigating the problem of catastrophic forgetting. 

 

Keywords—Air hockey, catastrophic forgetting, deep 

reinforcement learning, model free control, robot learning.  

I. INTRODUCTION 

HE problem of learning a skill, a mapping between states 

and actions to reach a goal in a continuous world, lies at the 

heart of every interaction of an autonomous system with its 

environment. In this paper, we consider the problem of a robot 

learning how to strike effectively the puck in a game of air 

hockey. Air hockey is a fast competitive game where two 

players face each other on a low-friction table. Players are 

required to develop and perfect skills such as blocking and 

striking in order to play and win. Classical approaches for 

striking the puck involve a hierarchical process of planning and 

execution. A common approach involves, first, planning a 

strategy based on the goal and skill, e.g., calculating the best 

point of collision to achieve the goal, then planning a path and 

trajectory, and finally executing the low level motoric control 

[23]. Each part requires full knowledge of the mechanical and 

physical models, which might be complex or unavailable. In 

this paper, we apply a model free reinforcement learning to a 

goal-oriented robotic task of striking a puck effectively towards 

a target point in an air hockey simulated environment. We 

propose doing the planning and the control simultaneously with 

end-to-end learning, which offers a model-free way to learn 

from the final result. Specifically, we employ a deep Q-learning 

approach, inspired by the spectacular success it had in the Atari 

2600 video games [19]. The result will be given in a form of 

reward at the end of each strike attempt, and will serve as the 

reinforcement signal for the learning the correct striking policy.  

When dealing with continuous robotic problems, policy 

gradients methods [39] are a popular approach, where a 

mapping between states and actions is learned with gradient 

ascent optimization on the accumulated reward, with or without 

keeping track of the value function. Another popular approach 

is Learning from Demonstration (LfD) [27], [3] sometimes 

refereed as imitation learning [21] and apprenticeship learning 

[2]. In LfD a human expert (or a programmed agent) is recorded 

and the learning agent learns on the recorded data in a 

supervised fashion. Sometimes this process is used as an 

initialization for a second reinforcement learning stage for 

improvement. In a similar application to ours [5] used imitation 

learning to learn primitive behaviors for a humanoid robot in air 

hockey.  

The driving force of all reinforcement learning algorithms is 

the reward signal. The performance objective is also formulated 

as a maximization of the total reward. A learning agent 

evaluates each state and action according to the amount of 

reward that can be collected until reaching the goal state. When 

there are no rewards along the way, only at the end of an 

episode, it is hard for such an agent to distinguish between good 

and bad transitions. E.g., an episode which ended in a "bad" 

terminal state, might still contain good transitions. Thus, such 

problems have given rise to reward shaping and reward 

engineering techniques [17], [24] in order to guide the learning 

in cases otherwise prone for failure. This problem occurs 

especially when the state space is high dimensional, the action 

policy is complicated and the learning episode duration is long. 

Control and planning in robotics suffers from all of the above.  

Exploration has been a standing problem since the early days 

of reinforcement learning and intelligent control [34]. The role 

and necessity of exploration have been discussed in length, and 

also how to perform the exploration efficiently [35]. 

Exploration has several aspects. The first is that the agent has 

to explore the environment to figure out on its own what is the 

required task based on the gathered rewards. Another aspect is 

once a policy is found that achieve some reward which is better 

than a random policy (that might be viewed as understanding 

the task), gradually improve the policy toward reward 

maximization. The 𝜖-greedy exploration which is the most 

basic exploration method used, is not highly efficient in motor 

tasks, since a dynamical system functions as a low pass filter 

and once in a while using a random action might have little 
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effect on the output of the system. We combined several types 

of explorations including integration of prior knowledge on the 

goal only as part of the learning process without any 

information on the robot's internal model or the problem 

structure, we also used 𝜖-greedy and local exploration, for 

better exploration in systems with limited bandwidth operating 

in continuous spaces.  

Deep neural networks are currently the most successful 

machine-learning tools for solving complex tasks. One 

weakness of such models is that, unlike humans, they are unable 

to learn continuously throughout complex tasks while keeping 

old information. The weights learned in the earlier stages of the 

task are being changed by later stages updates, causing for 

performance degradation in the states learned earlier. In this 

work we have dealt with this problem and practically prevented 

this degradation in performances completely. 

We propose a deep Q-learning algorithm suitable for learning 

complex policies in dynamic physical environments. The 

algorithm combines 𝜖-greedy exploration with a temporally 

correlated noise [16] for local exploration, which proved to be 

essential for effective learning. We further propose two novel 

contributions. We suggest a more relaxed approach to LfD 

which does not have the same limitations as standard LfD and 

can be learned from experience as regular RL as an exploration 

enhancing mechanism. We also manage to overcome the 

instability of the learning algorithm due to the non-stationarity 

of the observed data and the forgetting of old data, by gradually 

expending the target network update period. The target network 

is used to stabilize the learning and prevent oscillations as part 

of the deep Q-learning algorithm, and as we show affect the 

forgetting of the algorithm. 

We compare our results with other deep reinforcement 

learning algorithms, namely Double DQN and Deep 

Deterministic Policy Gradients, and achieve significant 

improvements. We are able to reach near optimal performance, 

and keep the performance over time without suffering from a 

drop in the score function and the policies obtained. We also 

conduct experiments to understand the effect of our algorithm 

on the forgetting phenomenon.  

II. RELATED WORK 

Related research on learning in robotics and autonomous 

systems was conducted in several directions. Traditionally 

reinforcement learning has been divided roughly into model-

based learning and model-free learning. In model-based 

learning the learning agent estimates a dynamic model as part 

of the learning process, then exploit the estimated model to 

calculate the optimal policy [4], [32]. In model-free learning the 

agent tries to estimate an effective policy, without learning an 

explicit model, either by learning it directly [39] or estimating 

the value function [33]. Popular methods in model free learning 

for learning the value function calculate the temporal difference 

(TD) error for the updates. The TD can be used in on-policy 

algorithms such as TD(0) and Sarsa, which learn the value 

function of a given policy, and gradually attempt to improve the 

policy. The TD can also be used in off-policy algorithms which 

learns from samples in order to learn directly the optimal value 

function [38] for deriving the optimal policy directly. 

Policy learning methods for episodic (finite duration) 

problems usually estimate the policy directly from full episode 

roll-outs by using stochastic policies. Policy gradient methods 

have evolved in several directions, including natural gradients 

and actor-critic methods, where the last attempts to keep track 

of the value function for better policy updates. In recent years a 

class of deterministic policy gradients have also been developed 

[31]. Policy gradients were very successful in many domains 

but struggled as the number of parameters increased. For a 

comprehensive survey see [14], [8]. 

Since the groundbreaking results shown by Deep Q-Learning 

[19] for learning to play computer games on the Atari 2600 

arcade environment such as Breakout and Demon Attack, there 

has been extensive research on deep reinforcement learning. 

Deep Q-learning in particular seeks to approximate the Q-

values using deep networks, such as deep convolutional neural 

networks. There has been work on better target (see Sec. III) 

estimation [37], improving the learning by prioritizing the 

experience replay buffer to maximize learning [28] and 

preforming better gradient updates with parallel batch 

approaches [18], [22]. Policy gradient methods have also 

enjoyed the success of deep neural networks, and several 

approached have been introduced such as [15] which learns 

with the help of DDP generated trajectories, and more recently 

[29] which attempt to keep track of the advantage function 

instead of the commonly used Q-function. An attempt to 

combine between the deterministic policy gradients with deep 

neural networks and the ideas presented in the DQN algorithm 

have produced the deep deterministic policy gradients [16], 

which will be used for comparison in this work. Several 

benchmark studies such as [9] have made comparisons between 

continuous control algorithms. 

Our work has been influenced mainly by the recent work on 

deep Q-networks [19], [20], [30], [37], and the adaptation for 

continuous domains of deep deterministic policy gradients [16]. 

In This paper we focus on the on-line DQN-based approach, 

and extend it to the domain of continuous state optimal control 

for striking in air hockey. 

Imitation learning is a popular approach when concerning 

robotics and dynamical systems in general. In application 

related to ours, a humanoid was taught to play air hockey from 

expert's recordings [5]. In [21] a robot playing table tennis was 

taught how to play using motor primitives. A recent work used 

deep reinforcement learning with imitation learning [21] for 

learning control policies in Atari and simple control problems, 

and have successfully transitioned between the imitation stage 

and the on-line stage where the agent continues to learn on its 

own. 

In the on-line scheme of learning the exploration is a critical 

part. In high dimensional continuous spaces often methods 

involving optimism or directed exploration are used. Often is 

the case that the environment does not supply an interacting 

agent with continuous flow of rewards. The scarcity of rewards 

affects the ability of the agent to efficiently explore the 

environment. A popular approach is to augment external 
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received rewards with internal generated rewards [7]. Recently 

a curiosity-based, approach where the agent rewards itself 

based on a curiosity measure [26] has gained popularity. In this 

case the reward maximization is done over the total 

accumulated rewards of internal and external received rewards. 

Catastrophic Forgetting (CF) [10] is a problem observed in 

neural networks when learning in high dimensional continuous 

spaces, such as in the case of control of dynamical systems. 

Paper [11] have proposed a neuron selection technique which 

keeps local representation of the value function. When learning 

several tasks, older tasks tend to be forgotten. In order to 

address that [13] have proposed a regularization term which 

penalized deviations of the neural network weights from the 

previous learned ones. 

III. DEEP Q-NETWORKS 

We consider a standard reinforcement learning setup 

consisting of an agent interacting with the environment in 

discrete time steps. At each step the agent receives an 

observation 𝑠𝑡 ∈ ℝ𝑛 which represents the current physical state 

of the system, takes a discrete action 𝑎𝑡 ∈ 𝐴 which it applies to 

the environment, receives a scalar reward 𝑟𝑡 = 𝑟(𝑠𝑡 , 𝑎𝑡), and 

observes a new state 𝑠𝑡+1 which the environment transitions to. 

It is assumed that the next state is according to a stochastic 

transition model 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡). The action set 𝒜 is assumed to 

be discrete. 

The goal of the agent is to maximize the sum of rewards 

gained from interaction with the environment. Our problem is a 

finite horizon problem in which the game terminates if the agent 

reached some predefined time 𝑇. We define the future return at 

time 𝑡 as 𝑅𝑡 = ∑ 𝑟𝑡′
𝑇
𝑡′=𝑡 , where 𝑇 is the time at which the game 

terminates. The goal is to learn a policy which maximizes the 

expected return 𝔼[𝑅0] from the initial state. 

The action-value function 𝑄∗(𝑠, 𝑎) is used in many 

reinforcement learning algorithms. It describes the expected 

return after taking an action 𝑎 in state 𝑠 and thereafter following 

an optimal policy. The optimal state-action value function 𝑄∗ 

obeys the equality known as the Bellman's equation: 
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For learning purposes it is common to approximate the value 

of 𝑄∗(𝑠, 𝑎) by using a function approximator, such as a neural 

network. We refer to the neural network function approximator 

with weights 𝜃 as a Q-network. A neural network representing 

the Q-function can be trained by considering the loss function: 
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During training each transition of state, action, reward and 

next state < 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1 > is stored in an experience replay 

buffer 𝐷 from which samples are drawn uniformly in order to 

reduce time correlations to train the network. 𝑦(𝜃) is called the 

target value and is also a function of 𝜃. The 𝑚𝑎𝑥 operator in the 

target makes it hard to calculate derivatives with respect to the 

weights, so the target is kept constant and the derivatives are 

calculated only with respect to 𝑄(𝑠𝑡 , 𝑎𝑡; 𝜃). This loss function 

has the tendency to oscillate and diverge. In order to keep the 

target stationary and prevent oscillations, the DQN algorithm 

makes use of another network, called a target network with 

parameters �̂�−. The target network is the same as the on-line 

network except that its parameters are copied every 𝐶 updates 

from the on-line network, so that �̂�−. are kept fixed during all 

other updates. The training of the network in this case is 

according to the following sequence of loss functions: 
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The target used by DQN is then 
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And the on-line network weights can be trained by stochastic 

gradient descent (SGD) and back-propagation 

 

 1 ii i i iL                                 (6) 

 

Where 𝛼 is the learning rate. An improvement on that has 

been proposed in the Double DQN (DDQN) algorithm. The 

estimation of the next value, and the selection of the action, 

have been decoupled. This separation decreases the problem of 

value overestimation, thus the following target has been used: 
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In our work unless specified otherwise all learning updates 

have been done according to the double DQN learning rule. 

To explore the environment, the basic 𝜖-greedy exploration 

scheme is used. Given a state, a deep Q-network (DQN) 

predicts a value �̂�(𝑠, 𝑎) for each action 𝑎. The agent chooses 

the action with the highest value with probability 1 − 𝜖 and a 

random action with probability 𝜖. 

IV. STRIKING IN AIR HOCKEY 

We next introduce the striking problem and our learning 

approach. 

A. The Striking Problem 

The striking problem deals in general with interception of a 

moving puck and striking it in a controlled manner. We 
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specialize here to the case where the puck is stationary. We wish 

to learn the control policy for striking the puck such that after 

the impact, the puck trajectory will have some desired 

properties. We focus on learning to strike the puck directly to 

the opponent's goal. We also considered some other different 

modes of striking the puck, Such as hitting the wall first. These 

are not presented here, but the same learning scheme fits them 

as well. We refer to these modes as skills, which a high level 

agent can choose from in full air hockey game. The learning 

goal is to be able to learn these skills with the following desired 

properties 

 The puck's velocity should be maximal after the 

impact with the agent. 

 The puck's end position at the opponent's side 

should be the center of the goal. 

 The puck's direction should be according to the 

selected skill. 

The agent is a planar robot with 2 degrees of freedom, X and 

Y (gantry like robot). We used a second order kinematics for 

the agent and puck. The state vector of the problem is 𝑠𝑡 ∈ ℝ8, 

which includes all the position and velocities of the agent and 

the puck in both axes, i.e., 𝑠𝑡 =

[𝑚𝑥, 𝑚𝑉𝑥, 𝑚𝑦 , 𝑚𝑉𝑦 , 𝑝𝑥, 𝑝𝑉𝑥 , 𝑝𝑦 , 𝑝𝑉𝑦]
𝑇
. Here 𝑚∗ stands for the 

agent's state variables and 𝑝∗ stands for the puck's state 

variables. The actions are 𝑎𝑡 ∈ ℝ2, and include the 

accelerations in both axes for the agent. 

The striking problem can be described as the following 

discrete time optimal planning problem: 
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Here the objective function 𝜙(𝑠𝑇 , 𝑇) represents the value of 

the final state 𝑠𝑇 (in terms of velocity and accuracy), and the 

final time 𝑇 which we desire to be small. The function 𝑓(⋅) is 

the physical model dynamics. 𝑆𝑚𝑖𝑛
(𝑖)

, 𝑆max
(𝑖)

 and 𝐴min
(𝑗)

, 𝐴𝑚𝑎𝑥
(𝑗)

  are 

the constraints on the state (table boundaries and velocities) and 

action spaces (accelerations/torques) respectively. 𝑠0 is the 

initial state. We assume that 𝑓(⋅), the collision models and the 

table state constraints are hidden from the learning algorithm, 

The best known collision model is non-linear and hard to work 

with [25]. Solving analytically such a problem when these 

function are known is a challenging problem, when they are 

unknown it is practically impossible with analytic tools. In the 

simulations specific models were specified as explained in 

Section V. 

In order to fit the problem as stated in IV-A to the DQN 

learning scheme, where the outputs are discrete Q values 

associated with discrete actions, we discretized the action space 

by sampling a 2𝐷 grid with 𝑛 actions in each dimension (each 

dimension represents an axis in joint frame). Thus, we have 𝑛2 

actions. We make sure to include the marginal and the zero 

action, so our class of policies we search in will include the 

Bang-Zero-Bang profile which is associated with time optimal 

problems. Each action is associated with an output of the neural 

network, where each output represents the Q-values of each 

action under the input state supplied to the network, e.g., if state 

𝑠 is supplied to the network, output 𝑖 is the Q-value of 

𝑄(𝑠, 𝑎𝑡; 𝜃). Thus, for every given state we have 𝑛2 Q-values 

from the network, associated with the 𝑛2 actions. 

B. Reward Definition 

The learning is episodic and in this problem the agent 

receives success indication only upon reaching a terminal state 

and finishing an episode. The terminal states are states in which 

the mallet collide with one of the walls (table boundaries 

violation), and the states in which the mallet strikes the puck 

(the agent does not perform any actions beyond this point). Any 

other state including the states in which an episode terminates 

due to reaching the maximal allowed steps, are not defined as 

terminal states. At the terminal state of each episode the agent 

receive the following reward: 

 

terminal c v dR r r r                             (9) 

 

𝑅𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙  consists of three components. The first is 𝑟𝑐 , which 

is a fixed reward indicating a puck striking. The second 

component is a reward which encourages the agent to strike the 

puck with maximum velocity, and given by 
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vr sign V V                            (10) 

 

Where 𝑉 is the projection of the velocity on the direction of 

a desired location 𝑥𝑔 on the goal line of the opponent. The last 

component is a reward for striking accuracy, which indicates 

how close the puck reached 𝑥𝑔. 
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Where 𝑥 is the actual point the puck reaches on the 

opponent's side on the goal line, 𝑐 is a scaling factor for the 

reward, 𝑤 is the width of the window around the target point 

which receives the highest reward and 𝑑 is a decay rate around 

the desired target location. Naturally, if the episode terminates 

without striking the puck 𝑅𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 is zero. In order to 

encourage the agent to reach a terminal state in minimum time, 

the agent receives a negative small reward −𝑟𝑡𝑖𝑚𝑒 for each time 

step of the simulation until termination. The accumulative 

reward for the entire episode then is 𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 − 𝑛 ⋅
𝑟𝑡𝑖𝑚𝑒 , where 𝑛 is the number of time steps for that episode. 

C. Exploration 

The problem of Exploration is a major one, especially in the 

continuous domain. We address the issue from two angles, 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 11, 2017

ISSN: 1998-0140 161



 

 

completely random exploration and local exploration. 

1) Completely Random Exploration: 

 We use 𝜖-greedy exploration (see Section III) in order to 

allow experimenting with arbitrary actions. In physical systems 

with inertia it is not efficient since the system acts as a low pass 

filter, but it does give the agent some sampling of actions it 

would not try under normal conditions. 

2) Local Exploration 

The main type of exploration is what we refer to as local 

exploration. Similarly to what was done in [16], we added a 

noise sampled from a noise process 𝒩 to our currently learned 

policy. Since the agent can apply only actions from a discrete 

set of actions 𝒜, we projected the outcome on the agent's action 

set: 

 

  arg max , ;t t
a

t Q s aa                  (12) 

 

We used for 𝒩 an Ornstein-Uhlenbeck process [36] to 

generate temporally correlated exploration noise for exploring 

efficiently. The noise parameters should be chosen in such a 

way that after the projection the exploration will be effective. 

Small noise might not change the action after the projection, but 

large noise might result in straying too far from the greedy 

policy. Thus, the parameters of the noise should be in 

proportion to the actions range and the aggregation. 

D. Prior Knowledge as Exploration Guiding Heuristic 

In a complex environment, learning from scratch has been 

shown to be a hard task. Searching in a continuous high 

dimensional spaces with local exploration might prove futile. In 

many learning problems prior knowledge and understanding are 

present and can be used to improve the learning performance. 

A common way of inserting priors into the learning process 

uses LfD. For that purpose, multiple samples of expert 

performance should be collected, which is not always feasible 

or applicable. 

In many cases the prior knowledge can be translated to some 

reasonable actions, although usually not an optimal policy. 

Examples for that can be seen in almost every planning 

problem. In games, the rules give us some guidance to what to 

do, e.g., in soccer, "Kick the ball to the goal," so for an agent to 

spend time on learning the fact that it has to kick the ball is a 

waste. In skydiving, the skydivers are told to move their hands 

to the sides in order to rotate, they are not required to search 

every possible pose to learn how to rotate. Furthermore, the 

basic rotating procedure taught to new skydivers is not the 

correct way to do it, it is taught as a basic technique, an 

initialization for them to modify and find the correct way. 

We propose showing the agent a translation of the prior 

knowledge as a heuristic teacher policy which in only aware on 

the goal of the task, and has no knowledge of the models 

involved. In some episodes instead of letting the agent to act 

according to the greedy policy, it does what the teacher policy 

suggests. The samples collected in those episodes are stored in 

the experience replay buffer as any other samples, allowing the 

learning algorithm to call upon that experience from the replay 

buffer and learn from it in within the standard framework. 

For the problem of air hockey, we used a policy 

encapsulating some very crude knowledge we have of the 

problem's goal. We just instruct the agent to move in the 

direction of the puck, regardless of the task at hand (aiming to 

the right\left\middle) and the dynamic model, since this 

knowledge was simple, and robust enough. The guidance policy 

we constructed has the following form: 
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Where 𝑃𝑜𝑏𝑗𝑒𝑐𝑡 is the 𝑥, 𝑦 position vector of the object, and 

MaxVelocity, MaxForce are physical constraints of the 

mechanics. The agent acts by the projection of the policy on its 

action space 𝒫𝒜{⋅} This policy will result with an impact 

between the agent and puck, but by no account will be 

considered as a "good" strike since there is no reason the puck 

will move in the goal's direction (except in the special case 

when the puck lays on the line between the agent and the goal). 

The guidance policy is shown (the agent acts by it) and stored 

in the replay buffer with probability 𝜖𝑝. 

E. Non-Uniform Target Network Update Periods 

The deep reinforcement learning problem is different from 

the supervised learning problem in a fundamental way, as the 

data which the network uses during the learning changes over 

time. At the beginning, the experience replay buffer is empty, 

the agent starts to act and fills the buffer, when the buffer 

reaches its maximal capacity new transitions overwrite the 

older ones. It is obvious that the data is changing over time, first 

changing in size and then changing in distribution. As the agent 

learns and gets better, the data in the buffer reflects that and the 

samples are more and more of good states which maximize the 

reward. 

Recall that the value the neural network tries to minimize is 

the loss function stated in (2). In order to stabilize the 

oscillations a target network with fixed weights over constant 

update periods were introduced. That led to the stationarity of 

the target value. The choosing of update period length became 

of the parameters that had to be set. Small update period result 

with instability since the target network changes too fast and 

oscillates, large update periods may be too stationary and the 

bootstrap process might not work properly. Thus, a period that 

is somewhere in the middle is chosen so the updates are stable. 

In many domains such as in the air hockey and also in some 

of Atari games, DQN still suffers from a drop in the score as the 

learning process progresses (see, e.g., Fig. 2). We argue that this 

drop is not only due to value overestimation (it happens for 

Double DQN updates as well), but also for issues with the target 

value. Choosing a middle value for the update period may result 

in slow learning in the beginning and a drop in the score later 

in the learning due to oscillations. 
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We show that by adjusting the update period over time, we 

manage to stabilize the learning and prevent completely the 

drop in the score. We start with a small update period since the 

replay buffer 𝐷 is empty and we want to learn quickly, we then 

keep expanding the period as the buffer gets larger, and we need 

more sampling to cover it. As the agent gets better and the 

distribution stabilizes, we also expand the update period in 

order to filter oscillations and keep the agent in the vicinity of 

the good learned policy. The expansion of the update period is 

done at each target weights update according to 

 

, 1r rC C C C                            (14) 

 

Where 𝐶𝑟 is the expansion rate. When 𝐶𝑟 = 1 the updates are 

uniform as in the standard DQN. 

At the beginning every sample contains new information that 

should affect the learning. As the learning progresses and the 

optimal policy hasn't been obtained yet, the samples in the 

replay buffer are diverse allowing the agent to learn from good 

samples and bad samples as well. At later stages when the agent 

has already learned a good policy, and the distribution of 

samples in the replay buffer resembles that policy. The network 

at the point if learning continuous, might suffer from what is 

known as the catastrophic forgetting [10] of neural networks. 

Freezing the target network before that stage, stabilize the 

learning and allows the network fine tune its performances, 

even though the distribution in the replay buffer is undiverse. 

The target network contains then the knowledge gained in the 

past from bad examples. At that stage of the learning the update 

period should be large for that purpose. This is achieved by 

gradually increasing the update period from an initial small 

period at the beginning during the learning. 

F. Guided-DQN 

Putting the above-discussed features together produces the 

guided-DQN algorithm we used in the air hockey problem. The 

algorithm is given in algorithm 1. 

As an input the algorithm gets the guidance policy, which 

encapsulated the prior knowledge we have on the problem, and 

will be used as a heuristic guidance. The algorithm should also 

be supplied with the expansion rate 𝐶𝑟 which controls the 

expansion rate of the target update periods. Before the 

algorithm begins the finite capacity replay buffer is initialized 

to be empty, the on-line neural network is initialized with 

random uniformly distributed values in each layer according the 

fan-in of the layer. The values of the target neural networks are 

copied from the on-line network so at the beginning the 

networks are identical. 

The algorithm has several parameters which define its 

operation. The first is the number of episodes or striking tries 

𝑀 the algorithm will perform. A basic update rate 𝐶 for the 

target network, a very small number since it is expending over 

the course of the algorithm. A learning rate 𝛼 for the gradient 

updates. A batch size 𝑁 for the sampling of transitions from the 

replay buffer. And finally two probabilities which define the 

exploration mechanism, 𝜖𝑝 is the rate in which a full guided 

episode is performed, and 𝜖 which is the rate in which the 𝜖-

greedy exploration chooses an action at random. 

At each episode, with probability 𝜖𝑝 the entire episode will 

be executed with the guidance policy 𝜋(𝑠), or with probability 

1 − 𝜖𝑝 according to the greedy policy, in case of a greedy policy 

episode the actions are augmented with a time correlated 

exploration noise for the local exploration. In either case, a 

guided episode or a greedy episode, at each step the algorithm 

executes the selected action, observes the new transitioned state 

and reward, and stores the transitions in the replay buffer. Then 

a batch of samples from the replay buffer are selected randomly 

with uniform probability, and a learning step according the 

Double DDQN loss and gradient descent is performed on the 

on-line Q network. Every 𝐶 updates the target Q network is 

updated with the weights of the on-line Q network, and 𝐶 is 

expanded with a factor of 𝐶𝑟 so the next time the target network 

gets updated, it will be after a longer period than the previous 

update. The algorithm ends after 𝑀 episodes. 

 
Algorithm 1: Guided Deep Q-Network 

 
   input : Guidance policy 𝜋(𝑠), expansion rate 𝐶𝑟 

1 Initialize replay memory 𝐷 

2 Initialize states-actions value function 𝑄 with random 

weights 𝜃 

3 Initialize target states-actions value function  �̂� with 

weights �̂�− = 𝜃 

4 for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1, 𝑀 do 

5        Observe initial state from environment 𝑠0 

6        Initialize random process 𝑛 for action exploration 

7        with probability 𝜖𝑝 decide if this episode is guided or  

       not 

8        while 𝑡 < 𝑁 and 𝑠𝑡 is not terminal do 

9               if guided episode then 

10                      Select 𝒫𝒜 {argmax
𝑎

 𝜋(𝑠𝑡)} 

11               else  

12                      With probability 𝜖 select random action 𝑎𝑡 

                      otherwise select  

                      𝒫𝒜 {argmax
𝑎

 𝑄(𝑠𝑡 , 𝑎) + 𝑛𝑡} 

13               Execute action 𝑎𝑡 in environment and observe  

              reward 𝑟𝑡, next state 𝑥𝑡+1 and if terminal 𝑑𝑡+1 

14               Set new state 𝑠(𝑡+1) = 𝑠𝑡 , 𝑥𝑡+1 

15               Store transition < 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1 > in 𝐷 

16               Sample random mini-batch of transition 

              < 𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑠𝑗 +1 > from 𝐷 

17               Set 𝑦𝑡 = 𝑟𝑡 + �̂�(𝑠𝑗+1, argmax
𝑎

𝑄(𝑠𝑗+1, 𝑎; 𝜃); �̂�−) 

18               Perform gradient descent step on  

              (𝑦𝑗 − 𝑄(𝑠𝑗 , 𝑎𝑗; 𝜃))
2

 with respect to the network  

              weights 𝜃 

19               Every 𝐶 steps reset �̂� = 𝜃, and set 𝐶 = 𝐶 𝐶𝑟 

20 return Q 
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The projection operator 𝒫𝒜  projects the continuous actions 

onto the agent's discrete set, by choosing the action with the 

lowest Euclidean distance. The learning rule is a Double DQN 

learning rule. Note that if the algorithm is not provided with a 

guidance policy (equivalent to setting 𝜖𝑝 to zero), 𝐶𝑟  =  1, and 

the temporal correlated process is 𝒩 ≡ 0, the GDQN algorithm 

reduces to the standard Double DQN algorithm. 

V. EXPERIMENTS 

The simulation was fashioned after the robotic system in Fig. 

1. 

In the robotic system the algorithm would learn on the real 

unknown physical models, but for the purpose of simulation we 

used simulation models for the agent dynamics and collision 

models. The simulation models are hidden from the learning 

algorithm and exist solely for the purpose of simulating the 

system for learning. For the agent dynamics we used a discrete 

time second order dynamics 
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These constraints represent the physical constraints present 

in the mechanical system, where the velocity has a maximum 

value, the torques are bounded and we are not allowing the 

mallet to move outside of the table boundaries. 

We used in the simulations an ideal impact model between 

the mallet and puck in the sense that we neglected the friction 

between the bodies during the impact and we assume the impact 

is instantaneous with energy loss according to a restitution 

coefficient 𝑒. The forces, accelerations, velocities and space 

(the field's boundaries) are constrained to reflect the physical 

constraints in the robotic system. 

The list of parameters (learning rate, probabilities, etc.) used 

throughout the simulations is given in table I. 

 

 

The learning environment is a custom built simulation based 

on OpenAI gym [6]. The simulation is modeled after an air 

hockey robotic system with two motors and track, one for each 

axis. The simulation includes visually the table, the mallet and 

the puck. The environment and learning scripts were written in 

python, and TensorFlow [1] for the purpose of models training. 

The simulations were conducted on a computer with a single 

NVIDIA Titan X GPU and 65GB of RAM. Each simulation 

(100K episodes) took approximately twelve hours. 

We simulated each attempt to strike the puck as an 

independent episode comprised of discrete time steps. At the 

beginning of each episode the puck is placed at a random 

position on the table at the agent's half court with zero velocity 

and the agent starts from a home position (a fixed position near 

the middle of the goal) with zero velocity. Each episode 

terminates upon reaching a terminal state or upon passing the 

maximum number of steps defined for an episode. The 

maximum steps number is 150 steps and the terminal states are 

the states where the agent collides with the puck ("good" states) 

or with one of the walls ("bad" states). The environment returns 

a reward as described in Section IV-B. No reward is given upon 

hitting a wall beyond the timely reward. 

The dynamic model of the puck and agent is a second order 

model as described in Section IV-A. 𝑇 is the sampling time of 

the system and was set to 0.05 [𝑠𝑒𝑐] in the simulation. The 

puck's rotation was neglected, thus the collision models (puck-

agent, puck-wall) are ideal with inbound and outbound angles 

the same. Energy loss in the collisions was modeled with 

restitution coefficient of 𝑒 = 0.99. 

The controller is a non-linear neural controller, a fully 

connected Multi-Layer Perceptron with 4 layers (3 hidden 

 

 
 

Fig. 1 mapping nonlinear data to a higher dimensional feature space. 

TABLE I 

LIST OF HYPER-PARAMETERS USED BY THE LEARNING 

ALGORITHM 

 

Parameter Value Description 

𝛼 0.00025 Learning rate 

𝜖 0.1 𝜖-greedy exploration probability 

𝜖𝑝 0.1 Policy demonstration probability 

𝐷 2 ⋅ 105 Replay buffer size 

𝑁 300 Episode's max steps 

𝒜 5 × 5 Action space size 

Mini-Batch 64 Mini-batch size sampled from 

buffer 

𝐶 Expanding Update rate of Q target network 

𝐶𝑟 1.2 Expansion rate 
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layers and an output layer), the first two hidden layers are of 

100 units each, the third hidden layer is of 40 units and the 

output layer is of 25 units. All activations are the linear rectifier 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥). The controller is a map between states 𝑠𝑡 

(the inputs to the controller) and discretized Q-values. We 

choose 5 actions in each axis, yielding 25 output actions\Q-

values (see Section IV-A). We used the RMSProp algorithm 

with mini-batches of size 64. 

In all the simulation experiments we measured the score for 

random initial positions of the puck, it will always be shown in 

graph with the caption random. In addition we measured the 

performances for additional 3 fix representing states of the 

puck, fixed positions in the left side, the middle and the right 

side of the table. In addition we estimated the average value of 

all the states and present it as well.  The graphs matching these 

measures will be shown with appropriate captions. We present 

in this paper the results for the "direct hit." 

A. Striking Results 

First we show the performance of the standard Double DQN 

in Fig. 2 for different target network update periods. We choose 

a fast period an intermediate period and a slow period calculated 

such that each state in the buffer will be visited 8 times on 

average before being thrown away from the buffer. 

It can be seen that the Double DQN with fast updates 

(𝐷𝐷𝑄𝑁200) rises the fastest but also drops quickly, the same 

behavior can be observed for the intermediate updates 

(𝐷𝐷𝑄𝑁1000) but the rise is slower and the drop happens less 

sharply. The score value the network drops to, −150, is exactly 

the value of the time penalty for a complete episode, i.e., the 

agent doesn't reach a terminal state. When investigating the 

policies obtained it can be seen that the agent's action oscillated 

between two opposite actions which affectively cause it to stand 

still. For the slow updates (𝐷𝐷𝑄𝑁5000) the case is different, the 

network seems mostly indifferent to the updates, and at the end 

it manages to rise a little. The average value for all three runs 

oscillates and in general suffers from severe underestimation. 

In Fig. 3 we compare the results of three algorithms, the 

Double DQN algorithm with the intermediate update period 

(the best of the three shown before), Deep-mind's Deep 

Deterministic Policy Gradients (DDPG) algorithm, and our 

Guided-DQN algorithm. 

The DDPG algorithm manages to learn a suboptimal policy, 

but oscillates strongly around it. It can be seen in the fix 

positions graphs of the puck, although in the random graphs it 

looks pretty stable on the suboptimal policy. Double DQN was 

discussed before, and our GDQN as can be seen clearly, learns 

the optimal policy and reaches the maximum score possible for 

each of them. In the random puck position the score also reaches 

an optimal policy in a very stable manner. Note that the score 

doesn't drop at all, and even the rise at the beginning is faster 

than the other two algorithms, it even faster than the rise of the 

Double DQN with the fast updates shown in Fig. 2, due to the 

fast updates at the beginning and the guidance of the teacher 

policy. The average values of Double DQN and DDPG are 

oscillating and suffering from underestimation and 

overestimation respectively, where GDQN's average value is 

extremely stable and does not suffer from over or under 

estimation. 

We measured the control signal and the trajectories for each 

of the three fixed positions of the puck. In Fig. 4 we see the 

results for a puck stationed in the left side of the table and in 

 

 
 

Fig. 2 Double DQN results for the air hockey striking problem. 
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Fig. 5 we can see the profile in the X-Y plane. In Fig. 6 and Fig. 

7 the profiles and trajectories for a puck stationed in the middle 

of the table can be seen, and in Fig. 8 and Fig. 9 the same for a 

puck stationed in the right of the table. In all cases the X axis is 

the horizontal dimension of the table, and Y axis the vertical 

dimension of the table. 

In all cases the agent's trajectory is following the expected 

curves in order to hit the puck so it will go to the middle of the 

goal. The motion is visually very similar to an S-curve. The 

control signal is one of the axes is saturated, and in the other is 

either saturated or zero (or small oscillations around zero) as 

necessary, in compatibility with the Band-Zero-Bang profile. 

 

 
 

Fig. 3 GDQN, DDQN and DDPG results for the air hockey striking problem. 

 
 

Fig. 4 Learned profiles for a puck stationed in the left side of the 

table. The rows are positions velocities and control signal send to the 

agent respectively. 

 
 

Fig. 5 The agent's trajectory in the X-Y plane of the table, for a left 

stationed puck. 
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B. Catastrophic Forgetting Analysis 

Here we attempt to establish the claim that our learning 

network suffers from the Catastrophic Forgetting (CF) 

phenomena. In order to understand the drop in the score 

function which we associate with CF, we conducted two 

experiments. In the first experiment we learned with Double 

DQN just to the point where the learning reaches a plateau  

(8000 episodes), and then freezed the experience replay buffer, 

so the transitions stored to this point will not be overwritten, 

and then allowed the algorithm to continue its course (the target 

network is updated but the replay buffer is fixed). In the second 

experiment we did the same up to the point of the plateau, but 

instead of freezing the replay buffer we froze the target 

network, so the new experienced transitions will erase old 

transitions in the buffer, but the target network will not be 

copied any more. In Fig. 10 we show the results for these two 

 

 
 

Fig. 6 Learned profiles for a puck stationed in the middle of the 

table. The rows are positions velocities and control signal send to the 

agent respectively. 

 
 

Fig. 7 The agent's trajectory in the X-Y plane of the table, for a 

middle stationed puck. 

 

 
 

Fig. 8 Learned profiles for a puck stationed in the right side of the 

table. The rows are positions velocities and control signal send to the 

agent respectively. 

 
 

Fig. 9 The agent's trajectory in the X-Y plane of the table, for a right 

stationed puck. 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 11, 2017

ISSN: 1998-0140 167



 

 

experiments with the results of the Double DQN algorithm for 

reference. We can see clearly that both of the experiments did 

not suffer from degradation in the performance (nor any 

improvement as expected). From the first experiment we can 

understand that the transitions not seen any more indeed affect 

our learning. The old transitions were not overwritten so the 

algorithm had used them for the learning, and the performances 

reflected the agent's ability to exploit its current knowledge, and 

so the score remained the same. In the second experiment we 

allowed for experience overwriting but kept the target network 

fixed, again the results were similar to the first experiment, 

which lead us to associate the role of active memory 

representation to the target network. 

VI. CONCLUDING REMARKS 

We addressed the application of striking a stationary puck 

with a physical mechanism. This application proved 

challenging for the standard Double DQN algorithm. Therefore 

we proposed two novel improvements to this algorithm. 

1. Using prior knowledge during learning to direct the 

algorithm to interesting regions of the state and 

action spaces. 

2. Using non-uniform target update periods with 

increasing duration in order to stabilize the learning 

process. 

3. Augmenting the plain 𝜖-greedy exploration 

mechanism with a local exploration with temporally 

correlated random process to better accommodate 

for the physical environment. 

The modified algorithm is shown to learn near optimal 

performance in the motion planning and control problem of air 

hockey striking. In particular, it solves completely the problem 

of score drop that was observed in Double DQN. 

While considering the problem of learning a striking policy 

in air hockey, we came across a general issue in learning control 

with artificial neural networks. The motor control problem is a 

continuous problem (in states and actions spaces) with 

dynamics and as such presents challenges which can be 

neglected in discrete-action problems without inertia such as 

the Atari games. In reinforcement learning, the learning agent 

has to figure out on its own (based on the rewards) the task's 

goal. In large continuous problems it can result in a time 

consuming exhaustive search. A common approach is to learn 

from demonstration, which shows the agent exactly what to do. 

But the construction of the demonstration database is hard and 

requires an expert, and the agent learns only what it sees, a fact 

that when transitioning to the on-line RL phase can confuse the 

exploration mechanism. The need to devise a method more 

smooth and which does not require the presence of an expert is 

evident. We proposed to merge the demonstrations in an on-line 

fashion with crude demonstrations which are easy to construct. 

The other challenge that arises is the forgetting of old 

experience and its affect. One approach that can be taken to 

address that is to increase the size of the experience replay 

buffer, but it will always have a limit, and that also presents 

technical problems of handling such large chunks of memory. 

We showed that the target network plays a key role in the 

forgetting phenomenon. By changing the update rate of the 

target network, the forgetting problem is prevented completely, 

without increasing the replay buffer capacity or introducing 

time expensive computations in order to keep important old 

 
 

Fig. 10 DDQN with static replay buffer, DDQN with static target network and standard DDQN results for the air hockey striking problem. 
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samples. 

The approach presented in this paper is goal-oriented, and 

will work for other goals beyond the static setting of striking a 

stationary puck. A natural step in this research direction is to 

apply our approach to a dynamic setting of a moving puck. We 

believe our approach is suitable for that task with no more than 

minor adaptations. Furthermore, we believe that our ideas can 

be used as the basis for learning end-to-end how to play a 

complete air hockey game. 
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