

Abstract—We consider in this paper the application of deep

reinforcement learning techniques to learning closed loop control and

goal-oriented trajectory planning in a robotic application. We employ

an end-to-end (from the motor input the required task) model free

approach using a deep Q-learning framework to learn a motoric skill.

We propose several improvements to the naive deep Q-learning

algorithm which otherwise fails. First we use some rough prior

knowledge we have on the goal of the task to heuristically explore the

environment. Second we manage to prevent the so-called catastrophic

forgetting of neural networks. We present our simulation results for

accurate striking task in air hockey, and show the success and stability

of our learning algorithm due to the proposed modifications. We also

present simulations that further support our claim of successfully

mitigating the problem of catastrophic forgetting.

Keywords—Air hockey, catastrophic forgetting, deep

reinforcement learning, model free control, robot learning.

I. INTRODUCTION

HE problem of learning a skill, a mapping between states

and actions to reach a goal in a continuous world, lies at the

heart of every interaction of an autonomous system with its

environment. In this paper, we consider the problem of a robot

learning how to strike effectively the puck in a game of air

hockey. Air hockey is a fast competitive game where two

players face each other on a low-friction table. Players are

required to develop and perfect skills such as blocking and

striking in order to play and win. Classical approaches for

striking the puck involve a hierarchical process of planning and

execution. A common approach involves, first, planning a

strategy based on the goal and skill, e.g., calculating the best

point of collision to achieve the goal, then planning a path and

trajectory, and finally executing the low level motoric control

[23]. Each part requires full knowledge of the mechanical and

physical models, which might be complex or unavailable. In

this paper, we apply a model free reinforcement learning to a

goal-oriented robotic task of striking a puck effectively towards

a target point in an air hockey simulated environment. We

propose doing the planning and the control simultaneously with

end-to-end learning, which offers a model-free way to learn

from the final result. Specifically, we employ a deep Q-learning

approach, inspired by the spectacular success it had in the Atari

2600 video games [19]. The result will be given in a form of

reward at the end of each strike attempt, and will serve as the

reinforcement signal for the learning the correct striking policy.

When dealing with continuous robotic problems, policy

gradients methods [39] are a popular approach, where a

mapping between states and actions is learned with gradient

ascent optimization on the accumulated reward, with or without

keeping track of the value function. Another popular approach

is Learning from Demonstration (LfD) [27], [3] sometimes

refereed as imitation learning [21] and apprenticeship learning

[2]. In LfD a human expert (or a programmed agent) is recorded

and the learning agent learns on the recorded data in a

supervised fashion. Sometimes this process is used as an

initialization for a second reinforcement learning stage for

improvement. In a similar application to ours [5] used imitation

learning to learn primitive behaviors for a humanoid robot in air

hockey.

The driving force of all reinforcement learning algorithms is

the reward signal. The performance objective is also formulated

as a maximization of the total reward. A learning agent

evaluates each state and action according to the amount of

reward that can be collected until reaching the goal state. When

there are no rewards along the way, only at the end of an

episode, it is hard for such an agent to distinguish between good

and bad transitions. E.g., an episode which ended in a "bad"

terminal state, might still contain good transitions. Thus, such

problems have given rise to reward shaping and reward

engineering techniques [17], [24] in order to guide the learning

in cases otherwise prone for failure. This problem occurs

especially when the state space is high dimensional, the action

policy is complicated and the learning episode duration is long.

Control and planning in robotics suffers from all of the above.

Exploration has been a standing problem since the early days

of reinforcement learning and intelligent control [34]. The role

and necessity of exploration have been discussed in length, and

also how to perform the exploration efficiently [35].

Exploration has several aspects. The first is that the agent has

to explore the environment to figure out on its own what is the

required task based on the gathered rewards. Another aspect is

once a policy is found that achieve some reward which is better

than a random policy (that might be viewed as understanding

the task), gradually improve the policy toward reward

maximization. The 𝜖-greedy exploration which is the most

basic exploration method used, is not highly efficient in motor

tasks, since a dynamical system functions as a low pass filter

and once in a while using a random action might have little

Learning to Strike Accurately with DQN-based

Algorithms

Ayal Taitler and Nahum Shimkin

T

This work was supported in part by a research grant from KLA-Tencor.
 A. Taitler is with the Faculty of Electrical Engineering, Technion–Israel

Institute of Technology, Haifa 32000, Israel (phone: +97248294739; email:

ataitler@technion.ac.il).
N. Shimkin is with the Faculty of Electrical Engineering, Technion–Israel

Institute of Technology, Haifa 32000, Israel (email: shimkin@technion.ac.il).

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 11, 2017

ISSN: 1998-0140 158

mailto:ataitler@technion.ac.il
mailto:shimkin@technion.ac.il

effect on the output of the system. We combined several types

of explorations including integration of prior knowledge on the

goal only as part of the learning process without any

information on the robot's internal model or the problem

structure, we also used 𝜖-greedy and local exploration, for

better exploration in systems with limited bandwidth operating

in continuous spaces.

Deep neural networks are currently the most successful

machine-learning tools for solving complex tasks. One

weakness of such models is that, unlike humans, they are unable

to learn continuously throughout complex tasks while keeping

old information. The weights learned in the earlier stages of the

task are being changed by later stages updates, causing for

performance degradation in the states learned earlier. In this

work we have dealt with this problem and practically prevented

this degradation in performances completely.

We propose a deep Q-learning algorithm suitable for learning

complex policies in dynamic physical environments. The

algorithm combines 𝜖-greedy exploration with a temporally

correlated noise [16] for local exploration, which proved to be

essential for effective learning. We further propose two novel

contributions. We suggest a more relaxed approach to LfD

which does not have the same limitations as standard LfD and

can be learned from experience as regular RL as an exploration

enhancing mechanism. We also manage to overcome the

instability of the learning algorithm due to the non-stationarity

of the observed data and the forgetting of old data, by gradually

expending the target network update period. The target network

is used to stabilize the learning and prevent oscillations as part

of the deep Q-learning algorithm, and as we show affect the

forgetting of the algorithm.

We compare our results with other deep reinforcement

learning algorithms, namely Double DQN and Deep

Deterministic Policy Gradients, and achieve significant

improvements. We are able to reach near optimal performance,

and keep the performance over time without suffering from a

drop in the score function and the policies obtained. We also

conduct experiments to understand the effect of our algorithm

on the forgetting phenomenon.

II. RELATED WORK

Related research on learning in robotics and autonomous

systems was conducted in several directions. Traditionally

reinforcement learning has been divided roughly into model-

based learning and model-free learning. In model-based

learning the learning agent estimates a dynamic model as part

of the learning process, then exploit the estimated model to

calculate the optimal policy [4], [32]. In model-free learning the

agent tries to estimate an effective policy, without learning an

explicit model, either by learning it directly [39] or estimating

the value function [33]. Popular methods in model free learning

for learning the value function calculate the temporal difference

(TD) error for the updates. The TD can be used in on-policy

algorithms such as TD(0) and Sarsa, which learn the value

function of a given policy, and gradually attempt to improve the

policy. The TD can also be used in off-policy algorithms which

learns from samples in order to learn directly the optimal value

function [38] for deriving the optimal policy directly.

Policy learning methods for episodic (finite duration)

problems usually estimate the policy directly from full episode

roll-outs by using stochastic policies. Policy gradient methods

have evolved in several directions, including natural gradients

and actor-critic methods, where the last attempts to keep track

of the value function for better policy updates. In recent years a

class of deterministic policy gradients have also been developed

[31]. Policy gradients were very successful in many domains

but struggled as the number of parameters increased. For a

comprehensive survey see [14], [8].

Since the groundbreaking results shown by Deep Q-Learning

[19] for learning to play computer games on the Atari 2600

arcade environment such as Breakout and Demon Attack, there

has been extensive research on deep reinforcement learning.

Deep Q-learning in particular seeks to approximate the Q-

values using deep networks, such as deep convolutional neural

networks. There has been work on better target (see Sec. III)

estimation [37], improving the learning by prioritizing the

experience replay buffer to maximize learning [28] and

preforming better gradient updates with parallel batch

approaches [18], [22]. Policy gradient methods have also

enjoyed the success of deep neural networks, and several

approached have been introduced such as [15] which learns

with the help of DDP generated trajectories, and more recently

[29] which attempt to keep track of the advantage function

instead of the commonly used Q-function. An attempt to

combine between the deterministic policy gradients with deep

neural networks and the ideas presented in the DQN algorithm

have produced the deep deterministic policy gradients [16],

which will be used for comparison in this work. Several

benchmark studies such as [9] have made comparisons between

continuous control algorithms.

Our work has been influenced mainly by the recent work on

deep Q-networks [19], [20], [30], [37], and the adaptation for

continuous domains of deep deterministic policy gradients [16].

In This paper we focus on the on-line DQN-based approach,

and extend it to the domain of continuous state optimal control

for striking in air hockey.

Imitation learning is a popular approach when concerning

robotics and dynamical systems in general. In application

related to ours, a humanoid was taught to play air hockey from

expert's recordings [5]. In [21] a robot playing table tennis was

taught how to play using motor primitives. A recent work used

deep reinforcement learning with imitation learning [21] for

learning control policies in Atari and simple control problems,

and have successfully transitioned between the imitation stage

and the on-line stage where the agent continues to learn on its

own.

In the on-line scheme of learning the exploration is a critical

part. In high dimensional continuous spaces often methods

involving optimism or directed exploration are used. Often is

the case that the environment does not supply an interacting

agent with continuous flow of rewards. The scarcity of rewards

affects the ability of the agent to efficiently explore the

environment. A popular approach is to augment external

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 11, 2017

ISSN: 1998-0140 159

received rewards with internal generated rewards [7]. Recently

a curiosity-based, approach where the agent rewards itself

based on a curiosity measure [26] has gained popularity. In this

case the reward maximization is done over the total

accumulated rewards of internal and external received rewards.

Catastrophic Forgetting (CF) [10] is a problem observed in

neural networks when learning in high dimensional continuous

spaces, such as in the case of control of dynamical systems.

Paper [11] have proposed a neuron selection technique which

keeps local representation of the value function. When learning

several tasks, older tasks tend to be forgotten. In order to

address that [13] have proposed a regularization term which

penalized deviations of the neural network weights from the

previous learned ones.

III. DEEP Q-NETWORKS

We consider a standard reinforcement learning setup

consisting of an agent interacting with the environment in

discrete time steps. At each step the agent receives an

observation 𝑠𝑡 ∈ ℝ𝑛 which represents the current physical state

of the system, takes a discrete action 𝑎𝑡 ∈ 𝐴 which it applies to

the environment, receives a scalar reward 𝑟𝑡 = 𝑟(𝑠𝑡 , 𝑎𝑡), and

observes a new state 𝑠𝑡+1 which the environment transitions to.

It is assumed that the next state is according to a stochastic

transition model 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡). The action set 𝒜 is assumed to

be discrete.

The goal of the agent is to maximize the sum of rewards

gained from interaction with the environment. Our problem is a

finite horizon problem in which the game terminates if the agent

reached some predefined time 𝑇. We define the future return at

time 𝑡 as 𝑅𝑡 = ∑ 𝑟𝑡′
𝑇
𝑡′=𝑡 , where 𝑇 is the time at which the game

terminates. The goal is to learn a policy which maximizes the

expected return 𝔼[𝑅0] from the initial state.

The action-value function 𝑄∗(𝑠, 𝑎) is used in many

reinforcement learning algorithms. It describes the expected

return after taking an action 𝑎 in state 𝑠 and thereafter following

an optimal policy. The optimal state-action value function 𝑄∗

obeys the equality known as the Bellman's equation:

   1
'

* , max , ' ,t t t t t t
a

Q s a r s a s a
  
 

 (1)

For learning purposes it is common to approximate the value

of 𝑄∗(𝑠, 𝑎) by using a function approximator, such as a neural

network. We refer to the neural network function approximator

with weights 𝜃 as a Q-network. A neural network representing

the Q-function can be trained by considering the loss function:

      
1

2

, , , ~ , ;
t t t ts a r s D t tL y Q s a  



  
 

 (2)

Where

   

     
1

1

, is terminal

, max , ; otherwise

t t t

t t t
a

y r s a s

y r s a Q s a



 







 
 (3)

During training each transition of state, action, reward and

next state < 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1 > is stored in an experience replay

buffer 𝐷 from which samples are drawn uniformly in order to

reduce time correlations to train the network. 𝑦(𝜃) is called the

target value and is also a function of 𝜃. The 𝑚𝑎𝑥 operator in the

target makes it hard to calculate derivatives with respect to the

weights, so the target is kept constant and the derivatives are

calculated only with respect to 𝑄(𝑠𝑡 , 𝑎𝑡; 𝜃). This loss function

has the tendency to oscillate and diverge. In order to keep the

target stationary and prevent oscillations, the DQN algorithm

makes use of another network, called a target network with

parameters �̂�−. The target network is the same as the on-line

network except that its parameters are copied every 𝐶 updates

from the on-line network, so that �̂�−. are kept fixed during all

other updates. The training of the network in this case is

according to the following sequence of loss functions:

      1

2

, , , ~
ˆ , ;

t t t ti i s a r s D i t t iL y Q s a  


 
   

 (4)

The target used by DQN is then

     1
ˆ ˆ, max , ;i i t t t i

a
y r s a Q s a  

  (5)

And the on-line network weights can be trained by stochastic

gradient descent (SGD) and back-propagation

 1 ii i i iL       (6)

Where 𝛼 is the learning rate. An improvement on that has

been proposed in the Double DQN (DDQN) algorithm. The

estimation of the next value, and the selection of the action,

have been decoupled. This separation decreases the problem of

value overestimation, thus the following target has been used:

     

 

1 1

1 1

ˆ ˆ, , ;

ˆarg max , ;

i i t t t t i

t t i
a

y r s a Q s a

a Q s a

 



 

 



 

 



 (7)

In our work unless specified otherwise all learning updates

have been done according to the double DQN learning rule.

To explore the environment, the basic 𝜖-greedy exploration

scheme is used. Given a state, a deep Q-network (DQN)

predicts a value �̂�(𝑠, 𝑎) for each action 𝑎. The agent chooses

the action with the highest value with probability 1 − 𝜖 and a

random action with probability 𝜖.

IV. STRIKING IN AIR HOCKEY

We next introduce the striking problem and our learning

approach.

A. The Striking Problem

The striking problem deals in general with interception of a

moving puck and striking it in a controlled manner. We

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 11, 2017

ISSN: 1998-0140 160

specialize here to the case where the puck is stationary. We wish

to learn the control policy for striking the puck such that after

the impact, the puck trajectory will have some desired

properties. We focus on learning to strike the puck directly to

the opponent's goal. We also considered some other different

modes of striking the puck, Such as hitting the wall first. These

are not presented here, but the same learning scheme fits them

as well. We refer to these modes as skills, which a high level

agent can choose from in full air hockey game. The learning

goal is to be able to learn these skills with the following desired

properties

 The puck's velocity should be maximal after the

impact with the agent.

 The puck's end position at the opponent's side

should be the center of the goal.

 The puck's direction should be according to the

selected skill.

The agent is a planar robot with 2 degrees of freedom, X and

Y (gantry like robot). We used a second order kinematics for

the agent and puck. The state vector of the problem is 𝑠𝑡 ∈ ℝ8,

which includes all the position and velocities of the agent and

the puck in both axes, i.e., 𝑠𝑡 =

[𝑚𝑥, 𝑚𝑉𝑥, 𝑚𝑦 , 𝑚𝑉𝑦 , 𝑝𝑥, 𝑝𝑉𝑥 , 𝑝𝑦 , 𝑝𝑉𝑦]
𝑇
. Here 𝑚∗ stands for the

agent's state variables and 𝑝∗ stands for the puck's state

variables. The actions are 𝑎𝑡 ∈ ℝ2, and include the

accelerations in both axes for the agent.

The striking problem can be described as the following

discrete time optimal planning problem:

 

 
 

 

 

1

min max

min max

0

minimize ,

subject to ,

, 1, ,8

, 1,2

0

k

T
a

k k k

i i i

k

j j j

k

s T

s f s a

s S S i

a A A j

s s



 

   

   



 (8)

Here the objective function 𝜙(𝑠𝑇 , 𝑇) represents the value of

the final state 𝑠𝑇 (in terms of velocity and accuracy), and the

final time 𝑇 which we desire to be small. The function 𝑓(⋅) is

the physical model dynamics. 𝑆𝑚𝑖𝑛
(𝑖)

, 𝑆max
(𝑖)

 and 𝐴min
(𝑗)

, 𝐴𝑚𝑎𝑥
(𝑗)

 are

the constraints on the state (table boundaries and velocities) and

action spaces (accelerations/torques) respectively. 𝑠0 is the

initial state. We assume that 𝑓(⋅), the collision models and the

table state constraints are hidden from the learning algorithm,

The best known collision model is non-linear and hard to work

with [25]. Solving analytically such a problem when these

function are known is a challenging problem, when they are

unknown it is practically impossible with analytic tools. In the

simulations specific models were specified as explained in

Section V.

In order to fit the problem as stated in IV-A to the DQN

learning scheme, where the outputs are discrete Q values

associated with discrete actions, we discretized the action space

by sampling a 2𝐷 grid with 𝑛 actions in each dimension (each

dimension represents an axis in joint frame). Thus, we have 𝑛2

actions. We make sure to include the marginal and the zero

action, so our class of policies we search in will include the

Bang-Zero-Bang profile which is associated with time optimal

problems. Each action is associated with an output of the neural

network, where each output represents the Q-values of each

action under the input state supplied to the network, e.g., if state

𝑠 is supplied to the network, output 𝑖 is the Q-value of

𝑄(𝑠, 𝑎𝑡; 𝜃). Thus, for every given state we have 𝑛2 Q-values

from the network, associated with the 𝑛2 actions.

B. Reward Definition

The learning is episodic and in this problem the agent

receives success indication only upon reaching a terminal state

and finishing an episode. The terminal states are states in which

the mallet collide with one of the walls (table boundaries

violation), and the states in which the mallet strikes the puck

(the agent does not perform any actions beyond this point). Any

other state including the states in which an episode terminates

due to reaching the maximal allowed steps, are not defined as

terminal states. At the terminal state of each episode the agent

receive the following reward:

terminal c v dR r r r   (9)

𝑅𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 consists of three components. The first is 𝑟𝑐 , which

is a fixed reward indicating a puck striking. The second

component is a reward which encourages the agent to strike the

puck with maximum velocity, and given by

  2

vr sign V V  (10)

Where 𝑉 is the projection of the velocity on the direction of

a desired location 𝑥𝑔 on the goal line of the opponent. The last

component is a reward for striking accuracy, which indicates

how close the puck reached 𝑥𝑔.

 g

g

d d x x w

g

c x x w
r

c e x x w
   

  


 
  

 (11)

Where 𝑥 is the actual point the puck reaches on the

opponent's side on the goal line, 𝑐 is a scaling factor for the

reward, 𝑤 is the width of the window around the target point

which receives the highest reward and 𝑑 is a decay rate around

the desired target location. Naturally, if the episode terminates

without striking the puck 𝑅𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 is zero. In order to

encourage the agent to reach a terminal state in minimum time,

the agent receives a negative small reward −𝑟𝑡𝑖𝑚𝑒 for each time

step of the simulation until termination. The accumulative

reward for the entire episode then is 𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 − 𝑛 ⋅
𝑟𝑡𝑖𝑚𝑒 , where 𝑛 is the number of time steps for that episode.

C. Exploration

The problem of Exploration is a major one, especially in the

continuous domain. We address the issue from two angles,

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 11, 2017

ISSN: 1998-0140 161

completely random exploration and local exploration.

1) Completely Random Exploration:

 We use 𝜖-greedy exploration (see Section III) in order to

allow experimenting with arbitrary actions. In physical systems

with inertia it is not efficient since the system acts as a low pass

filter, but it does give the agent some sampling of actions it

would not try under normal conditions.

2) Local Exploration

The main type of exploration is what we refer to as local

exploration. Similarly to what was done in [16], we added a

noise sampled from a noise process 𝒩 to our currently learned

policy. Since the agent can apply only actions from a discrete

set of actions 𝒜, we projected the outcome on the agent's action

set:

  arg max , ;t t
a

t Q s aa   (12)

We used for 𝒩 an Ornstein-Uhlenbeck process [36] to

generate temporally correlated exploration noise for exploring

efficiently. The noise parameters should be chosen in such a

way that after the projection the exploration will be effective.

Small noise might not change the action after the projection, but

large noise might result in straying too far from the greedy

policy. Thus, the parameters of the noise should be in

proportion to the actions range and the aggregation.

D. Prior Knowledge as Exploration Guiding Heuristic

In a complex environment, learning from scratch has been

shown to be a hard task. Searching in a continuous high

dimensional spaces with local exploration might prove futile. In

many learning problems prior knowledge and understanding are

present and can be used to improve the learning performance.

A common way of inserting priors into the learning process

uses LfD. For that purpose, multiple samples of expert

performance should be collected, which is not always feasible

or applicable.

In many cases the prior knowledge can be translated to some

reasonable actions, although usually not an optimal policy.

Examples for that can be seen in almost every planning

problem. In games, the rules give us some guidance to what to

do, e.g., in soccer, "Kick the ball to the goal," so for an agent to

spend time on learning the fact that it has to kick the ball is a

waste. In skydiving, the skydivers are told to move their hands

to the sides in order to rotate, they are not required to search

every possible pose to learn how to rotate. Furthermore, the

basic rotating procedure taught to new skydivers is not the

correct way to do it, it is taught as a basic technique, an

initialization for them to modify and find the correct way.

We propose showing the agent a translation of the prior

knowledge as a heuristic teacher policy which in only aware on

the goal of the task, and has no knowledge of the models

involved. In some episodes instead of letting the agent to act

according to the greedy policy, it does what the teacher policy

suggests. The samples collected in those episodes are stored in

the experience replay buffer as any other samples, allowing the

learning algorithm to call upon that experience from the replay

buffer and learn from it in within the standard framework.

For the problem of air hockey, we used a policy

encapsulating some very crude knowledge we have of the

problem's goal. We just instruct the agent to move in the

direction of the puck, regardless of the task at hand (aiming to

the right\left\middle) and the dynamic model, since this

knowledge was simple, and robust enough. The guidance policy

we constructed has the following form:

maxVelocity

a = maxForce
next agent

next agent

puck agent

next

puck agent

V V

T

V V

T

P P
V

P P










 





 (13)

Where 𝑃𝑜𝑏𝑗𝑒𝑐𝑡 is the 𝑥, 𝑦 position vector of the object, and

MaxVelocity, MaxForce are physical constraints of the

mechanics. The agent acts by the projection of the policy on its

action space 𝒫𝒜{⋅} This policy will result with an impact

between the agent and puck, but by no account will be

considered as a "good" strike since there is no reason the puck

will move in the goal's direction (except in the special case

when the puck lays on the line between the agent and the goal).

The guidance policy is shown (the agent acts by it) and stored

in the replay buffer with probability 𝜖𝑝.

E. Non-Uniform Target Network Update Periods

The deep reinforcement learning problem is different from

the supervised learning problem in a fundamental way, as the

data which the network uses during the learning changes over

time. At the beginning, the experience replay buffer is empty,

the agent starts to act and fills the buffer, when the buffer

reaches its maximal capacity new transitions overwrite the

older ones. It is obvious that the data is changing over time, first

changing in size and then changing in distribution. As the agent

learns and gets better, the data in the buffer reflects that and the

samples are more and more of good states which maximize the

reward.

Recall that the value the neural network tries to minimize is

the loss function stated in (2). In order to stabilize the

oscillations a target network with fixed weights over constant

update periods were introduced. That led to the stationarity of

the target value. The choosing of update period length became

of the parameters that had to be set. Small update period result

with instability since the target network changes too fast and

oscillates, large update periods may be too stationary and the

bootstrap process might not work properly. Thus, a period that

is somewhere in the middle is chosen so the updates are stable.

In many domains such as in the air hockey and also in some

of Atari games, DQN still suffers from a drop in the score as the

learning process progresses (see, e.g., Fig. 2). We argue that this

drop is not only due to value overestimation (it happens for

Double DQN updates as well), but also for issues with the target

value. Choosing a middle value for the update period may result

in slow learning in the beginning and a drop in the score later

in the learning due to oscillations.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 11, 2017

ISSN: 1998-0140 162

We show that by adjusting the update period over time, we

manage to stabilize the learning and prevent completely the

drop in the score. We start with a small update period since the

replay buffer 𝐷 is empty and we want to learn quickly, we then

keep expanding the period as the buffer gets larger, and we need

more sampling to cover it. As the agent gets better and the

distribution stabilizes, we also expand the update period in

order to filter oscillations and keep the agent in the vicinity of

the good learned policy. The expansion of the update period is

done at each target weights update according to

, 1r rC C C C   (14)

Where 𝐶𝑟 is the expansion rate. When 𝐶𝑟 = 1 the updates are

uniform as in the standard DQN.

At the beginning every sample contains new information that

should affect the learning. As the learning progresses and the

optimal policy hasn't been obtained yet, the samples in the

replay buffer are diverse allowing the agent to learn from good

samples and bad samples as well. At later stages when the agent

has already learned a good policy, and the distribution of

samples in the replay buffer resembles that policy. The network

at the point if learning continuous, might suffer from what is

known as the catastrophic forgetting [10] of neural networks.

Freezing the target network before that stage, stabilize the

learning and allows the network fine tune its performances,

even though the distribution in the replay buffer is undiverse.

The target network contains then the knowledge gained in the

past from bad examples. At that stage of the learning the update

period should be large for that purpose. This is achieved by

gradually increasing the update period from an initial small

period at the beginning during the learning.

F. Guided-DQN

Putting the above-discussed features together produces the

guided-DQN algorithm we used in the air hockey problem. The

algorithm is given in algorithm 1.

As an input the algorithm gets the guidance policy, which

encapsulated the prior knowledge we have on the problem, and

will be used as a heuristic guidance. The algorithm should also

be supplied with the expansion rate 𝐶𝑟 which controls the

expansion rate of the target update periods. Before the

algorithm begins the finite capacity replay buffer is initialized

to be empty, the on-line neural network is initialized with

random uniformly distributed values in each layer according the

fan-in of the layer. The values of the target neural networks are

copied from the on-line network so at the beginning the

networks are identical.

The algorithm has several parameters which define its

operation. The first is the number of episodes or striking tries

𝑀 the algorithm will perform. A basic update rate 𝐶 for the

target network, a very small number since it is expending over

the course of the algorithm. A learning rate 𝛼 for the gradient

updates. A batch size 𝑁 for the sampling of transitions from the

replay buffer. And finally two probabilities which define the

exploration mechanism, 𝜖𝑝 is the rate in which a full guided

episode is performed, and 𝜖 which is the rate in which the 𝜖-

greedy exploration chooses an action at random.

At each episode, with probability 𝜖𝑝 the entire episode will

be executed with the guidance policy 𝜋(𝑠), or with probability

1 − 𝜖𝑝 according to the greedy policy, in case of a greedy policy

episode the actions are augmented with a time correlated

exploration noise for the local exploration. In either case, a

guided episode or a greedy episode, at each step the algorithm

executes the selected action, observes the new transitioned state

and reward, and stores the transitions in the replay buffer. Then

a batch of samples from the replay buffer are selected randomly

with uniform probability, and a learning step according the

Double DDQN loss and gradient descent is performed on the

on-line Q network. Every 𝐶 updates the target Q network is

updated with the weights of the on-line Q network, and 𝐶 is

expanded with a factor of 𝐶𝑟 so the next time the target network

gets updated, it will be after a longer period than the previous

update. The algorithm ends after 𝑀 episodes.

Algorithm 1: Guided Deep Q-Network

 input : Guidance policy 𝜋(𝑠), expansion rate 𝐶𝑟

1 Initialize replay memory 𝐷

2 Initialize states-actions value function 𝑄 with random

weights 𝜃

3 Initialize target states-actions value function �̂� with

weights �̂�− = 𝜃

4 for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1, 𝑀 do

5 Observe initial state from environment 𝑠0

6 Initialize random process 𝑛 for action exploration

7 with probability 𝜖𝑝 decide if this episode is guided or

 not

8 while 𝑡 < 𝑁 and 𝑠𝑡 is not terminal do

9 if guided episode then

10 Select 𝒫𝒜 {argmax
𝑎

 𝜋(𝑠𝑡)}

11 else

12 With probability 𝜖 select random action 𝑎𝑡

 otherwise select

 𝒫𝒜 {argmax
𝑎

 𝑄(𝑠𝑡 , 𝑎) + 𝑛𝑡}

13 Execute action 𝑎𝑡 in environment and observe

 reward 𝑟𝑡, next state 𝑥𝑡+1 and if terminal 𝑑𝑡+1

14 Set new state 𝑠(𝑡+1) = 𝑠𝑡 , 𝑥𝑡+1

15 Store transition < 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1 > in 𝐷

16 Sample random mini-batch of transition

 < 𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑠𝑗 +1 > from 𝐷

17 Set 𝑦𝑡 = 𝑟𝑡 + �̂�(𝑠𝑗+1, argmax
𝑎

𝑄(𝑠𝑗+1, 𝑎; 𝜃); �̂�−)

18 Perform gradient descent step on

 (𝑦𝑗 − 𝑄(𝑠𝑗 , 𝑎𝑗; 𝜃))
2

 with respect to the network

 weights 𝜃

19 Every 𝐶 steps reset �̂� = 𝜃, and set 𝐶 = 𝐶 𝐶𝑟

20 return Q

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 11, 2017

ISSN: 1998-0140 163

The projection operator 𝒫𝒜 projects the continuous actions

onto the agent's discrete set, by choosing the action with the

lowest Euclidean distance. The learning rule is a Double DQN

learning rule. Note that if the algorithm is not provided with a

guidance policy (equivalent to setting 𝜖𝑝 to zero), 𝐶𝑟 = 1, and

the temporal correlated process is 𝒩 ≡ 0, the GDQN algorithm

reduces to the standard Double DQN algorithm.

V. EXPERIMENTS

The simulation was fashioned after the robotic system in Fig.

1.

In the robotic system the algorithm would learn on the real

unknown physical models, but for the purpose of simulation we

used simulation models for the agent dynamics and collision

models. The simulation models are hidden from the learning

algorithm and exist solely for the purpose of simulating the

system for learning. For the agent dynamics we used a discrete

time second order dynamics

, ,

, ,1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

m m

x m x m x

m m y k

y m y mk k

X XT

V V aT

Y Y aT

V V T


      
      

                  
      
         

 (15)

Under the following constraints

 

,

, ,

Maximumforce

Maximum velocity

, Table bounderies

x y

x y m

m m

a

V

X Y







These constraints represent the physical constraints present

in the mechanical system, where the velocity has a maximum

value, the torques are bounded and we are not allowing the

mallet to move outside of the table boundaries.

We used in the simulations an ideal impact model between

the mallet and puck in the sense that we neglected the friction

between the bodies during the impact and we assume the impact

is instantaneous with energy loss according to a restitution

coefficient 𝑒. The forces, accelerations, velocities and space

(the field's boundaries) are constrained to reflect the physical

constraints in the robotic system.

The list of parameters (learning rate, probabilities, etc.) used

throughout the simulations is given in table I.

The learning environment is a custom built simulation based

on OpenAI gym [6]. The simulation is modeled after an air

hockey robotic system with two motors and track, one for each

axis. The simulation includes visually the table, the mallet and

the puck. The environment and learning scripts were written in

python, and TensorFlow [1] for the purpose of models training.

The simulations were conducted on a computer with a single

NVIDIA Titan X GPU and 65GB of RAM. Each simulation

(100K episodes) took approximately twelve hours.

We simulated each attempt to strike the puck as an

independent episode comprised of discrete time steps. At the

beginning of each episode the puck is placed at a random

position on the table at the agent's half court with zero velocity

and the agent starts from a home position (a fixed position near

the middle of the goal) with zero velocity. Each episode

terminates upon reaching a terminal state or upon passing the

maximum number of steps defined for an episode. The

maximum steps number is 150 steps and the terminal states are

the states where the agent collides with the puck ("good" states)

or with one of the walls ("bad" states). The environment returns

a reward as described in Section IV-B. No reward is given upon

hitting a wall beyond the timely reward.

The dynamic model of the puck and agent is a second order

model as described in Section IV-A. 𝑇 is the sampling time of

the system and was set to 0.05 [𝑠𝑒𝑐] in the simulation. The

puck's rotation was neglected, thus the collision models (puck-

agent, puck-wall) are ideal with inbound and outbound angles

the same. Energy loss in the collisions was modeled with

restitution coefficient of 𝑒 = 0.99.

The controller is a non-linear neural controller, a fully

connected Multi-Layer Perceptron with 4 layers (3 hidden

Fig. 1 mapping nonlinear data to a higher dimensional feature space.

TABLE I

LIST OF HYPER-PARAMETERS USED BY THE LEARNING

ALGORITHM

Parameter Value Description

𝛼 0.00025 Learning rate

𝜖 0.1 𝜖-greedy exploration probability

𝜖𝑝 0.1 Policy demonstration probability

𝐷 2 ⋅ 105 Replay buffer size

𝑁 300 Episode's max steps

𝒜 5 × 5 Action space size

Mini-Batch 64 Mini-batch size sampled from

buffer

𝐶 Expanding Update rate of Q target network

𝐶𝑟 1.2 Expansion rate

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 11, 2017

ISSN: 1998-0140 164

layers and an output layer), the first two hidden layers are of

100 units each, the third hidden layer is of 40 units and the

output layer is of 25 units. All activations are the linear rectifier

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥). The controller is a map between states 𝑠𝑡

(the inputs to the controller) and discretized Q-values. We

choose 5 actions in each axis, yielding 25 output actions\Q-

values (see Section IV-A). We used the RMSProp algorithm

with mini-batches of size 64.

In all the simulation experiments we measured the score for

random initial positions of the puck, it will always be shown in

graph with the caption random. In addition we measured the

performances for additional 3 fix representing states of the

puck, fixed positions in the left side, the middle and the right

side of the table. In addition we estimated the average value of

all the states and present it as well. The graphs matching these

measures will be shown with appropriate captions. We present

in this paper the results for the "direct hit."

A. Striking Results

First we show the performance of the standard Double DQN

in Fig. 2 for different target network update periods. We choose

a fast period an intermediate period and a slow period calculated

such that each state in the buffer will be visited 8 times on

average before being thrown away from the buffer.

It can be seen that the Double DQN with fast updates

(𝐷𝐷𝑄𝑁200) rises the fastest but also drops quickly, the same

behavior can be observed for the intermediate updates

(𝐷𝐷𝑄𝑁1000) but the rise is slower and the drop happens less

sharply. The score value the network drops to, −150, is exactly

the value of the time penalty for a complete episode, i.e., the

agent doesn't reach a terminal state. When investigating the

policies obtained it can be seen that the agent's action oscillated

between two opposite actions which affectively cause it to stand

still. For the slow updates (𝐷𝐷𝑄𝑁5000) the case is different, the

network seems mostly indifferent to the updates, and at the end

it manages to rise a little. The average value for all three runs

oscillates and in general suffers from severe underestimation.

In Fig. 3 we compare the results of three algorithms, the

Double DQN algorithm with the intermediate update period

(the best of the three shown before), Deep-mind's Deep

Deterministic Policy Gradients (DDPG) algorithm, and our

Guided-DQN algorithm.

The DDPG algorithm manages to learn a suboptimal policy,

but oscillates strongly around it. It can be seen in the fix

positions graphs of the puck, although in the random graphs it

looks pretty stable on the suboptimal policy. Double DQN was

discussed before, and our GDQN as can be seen clearly, learns

the optimal policy and reaches the maximum score possible for

each of them. In the random puck position the score also reaches

an optimal policy in a very stable manner. Note that the score

doesn't drop at all, and even the rise at the beginning is faster

than the other two algorithms, it even faster than the rise of the

Double DQN with the fast updates shown in Fig. 2, due to the

fast updates at the beginning and the guidance of the teacher

policy. The average values of Double DQN and DDPG are

oscillating and suffering from underestimation and

overestimation respectively, where GDQN's average value is

extremely stable and does not suffer from over or under

estimation.

We measured the control signal and the trajectories for each

of the three fixed positions of the puck. In Fig. 4 we see the

results for a puck stationed in the left side of the table and in

Fig. 2 Double DQN results for the air hockey striking problem.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 11, 2017

ISSN: 1998-0140 165

Fig. 5 we can see the profile in the X-Y plane. In Fig. 6 and Fig.

7 the profiles and trajectories for a puck stationed in the middle

of the table can be seen, and in Fig. 8 and Fig. 9 the same for a

puck stationed in the right of the table. In all cases the X axis is

the horizontal dimension of the table, and Y axis the vertical

dimension of the table.

In all cases the agent's trajectory is following the expected

curves in order to hit the puck so it will go to the middle of the

goal. The motion is visually very similar to an S-curve. The

control signal is one of the axes is saturated, and in the other is

either saturated or zero (or small oscillations around zero) as

necessary, in compatibility with the Band-Zero-Bang profile.

Fig. 3 GDQN, DDQN and DDPG results for the air hockey striking problem.

Fig. 4 Learned profiles for a puck stationed in the left side of the

table. The rows are positions velocities and control signal send to the

agent respectively.

Fig. 5 The agent's trajectory in the X-Y plane of the table, for a left

stationed puck.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 11, 2017

ISSN: 1998-0140 166

B. Catastrophic Forgetting Analysis

Here we attempt to establish the claim that our learning

network suffers from the Catastrophic Forgetting (CF)

phenomena. In order to understand the drop in the score

function which we associate with CF, we conducted two

experiments. In the first experiment we learned with Double

DQN just to the point where the learning reaches a plateau

(8000 episodes), and then freezed the experience replay buffer,

so the transitions stored to this point will not be overwritten,

and then allowed the algorithm to continue its course (the target

network is updated but the replay buffer is fixed). In the second

experiment we did the same up to the point of the plateau, but

instead of freezing the replay buffer we froze the target

network, so the new experienced transitions will erase old

transitions in the buffer, but the target network will not be

copied any more. In Fig. 10 we show the results for these two

Fig. 6 Learned profiles for a puck stationed in the middle of the

table. The rows are positions velocities and control signal send to the

agent respectively.

Fig. 7 The agent's trajectory in the X-Y plane of the table, for a

middle stationed puck.

Fig. 8 Learned profiles for a puck stationed in the right side of the

table. The rows are positions velocities and control signal send to the

agent respectively.

Fig. 9 The agent's trajectory in the X-Y plane of the table, for a right

stationed puck.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 11, 2017

ISSN: 1998-0140 167

experiments with the results of the Double DQN algorithm for

reference. We can see clearly that both of the experiments did

not suffer from degradation in the performance (nor any

improvement as expected). From the first experiment we can

understand that the transitions not seen any more indeed affect

our learning. The old transitions were not overwritten so the

algorithm had used them for the learning, and the performances

reflected the agent's ability to exploit its current knowledge, and

so the score remained the same. In the second experiment we

allowed for experience overwriting but kept the target network

fixed, again the results were similar to the first experiment,

which lead us to associate the role of active memory

representation to the target network.

VI. CONCLUDING REMARKS

We addressed the application of striking a stationary puck

with a physical mechanism. This application proved

challenging for the standard Double DQN algorithm. Therefore

we proposed two novel improvements to this algorithm.

1. Using prior knowledge during learning to direct the

algorithm to interesting regions of the state and

action spaces.

2. Using non-uniform target update periods with

increasing duration in order to stabilize the learning

process.

3. Augmenting the plain 𝜖-greedy exploration

mechanism with a local exploration with temporally

correlated random process to better accommodate

for the physical environment.

The modified algorithm is shown to learn near optimal

performance in the motion planning and control problem of air

hockey striking. In particular, it solves completely the problem

of score drop that was observed in Double DQN.

While considering the problem of learning a striking policy

in air hockey, we came across a general issue in learning control

with artificial neural networks. The motor control problem is a

continuous problem (in states and actions spaces) with

dynamics and as such presents challenges which can be

neglected in discrete-action problems without inertia such as

the Atari games. In reinforcement learning, the learning agent

has to figure out on its own (based on the rewards) the task's

goal. In large continuous problems it can result in a time

consuming exhaustive search. A common approach is to learn

from demonstration, which shows the agent exactly what to do.

But the construction of the demonstration database is hard and

requires an expert, and the agent learns only what it sees, a fact

that when transitioning to the on-line RL phase can confuse the

exploration mechanism. The need to devise a method more

smooth and which does not require the presence of an expert is

evident. We proposed to merge the demonstrations in an on-line

fashion with crude demonstrations which are easy to construct.

The other challenge that arises is the forgetting of old

experience and its affect. One approach that can be taken to

address that is to increase the size of the experience replay

buffer, but it will always have a limit, and that also presents

technical problems of handling such large chunks of memory.

We showed that the target network plays a key role in the

forgetting phenomenon. By changing the update rate of the

target network, the forgetting problem is prevented completely,

without increasing the replay buffer capacity or introducing

time expensive computations in order to keep important old

Fig. 10 DDQN with static replay buffer, DDQN with static target network and standard DDQN results for the air hockey striking problem.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 11, 2017

ISSN: 1998-0140 168

samples.

The approach presented in this paper is goal-oriented, and

will work for other goals beyond the static setting of striking a

stationary puck. A natural step in this research direction is to

apply our approach to a dynamic setting of a moving puck. We

believe our approach is suitable for that task with no more than

minor adaptations. Furthermore, we believe that our ideas can

be used as the basis for learning end-to-end how to play a

complete air hockey game.

REFERENCES

[1] M. Abadi et al., "TensorFlow: A System for Large-Scale Machine
Learning," in Proceedings of the 12th USENIX Symposium on Operating

Systems Design and Implementation, vol. 16, 2106, pp. 265-283.

[2] P. Abbeel, and A. Y. Ng, "Apprenticeship learning via inverse
reinforcement learning," in Proceedings of the Twenty-First International

Conference on Machine learning, ACM, 2004, p. 1.

[3] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, "A survey of

robot learning from demonstration," Robotics and Autonomous Systems,

vol. 57, no. 5, 2009, pp. 469-483.

[4] C. G. Atkeson, and J. C. Santamaria, "A comparison of direct and model-
based reinforcement learning," in Proceedings of IEEE International

Conference on Robotics and Automation, vol. 4, IEEE, 1997, pp. 3557-

3564.
[5] D. C. Bentivegna and C. G. Atkeson, "A framework for learning from

observation using primitives," in Robot Soccer World Cup. Springer

Berlin/Heidelberg, 2003, pp. 263-270.
[6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J.

Tang and W. Zaremba, "OpenAI gym," arXiv preprint arXiv:1606.01540,

2016.
[7] N. Chentanez, A. G. Barto and S. P. Singh, "Intrinsically motivated

reinforcement learning," in Advances in Neural Information Processing

Systems, 2005, pp. 1281-1288.
[8] M. P. Deisenroth, G. Neumann and J. Peters, "A survey on policy search

for robotics," Foundations and Trends® in Robotics, vol. 2, no. 1–2,

2013, pp. 1-142.
[9] Y. Duan, X. Chen, R. Houthooft, J. Schulman and P. Abbeel,

"Benchmarking deep reinforcement learning for continuous control," in

International Conference on Machine Learning, 2016, pp. 1329-1338.
[10] R. M. French, "Catastrophic forgetting in connectionist networks," Trends

in Cognitive Sciences 3, no. 4 (1999): 128-135.

[11] B. Goodrich and I. Arel, "Mitigating catastrophic forgetting in temporal
difference learning with function approximation," in 2nd

Multidisciplinary Conf. on Reinforcement Learning and Decision
Making, 2015.

[12] T. Hester et al., "Learning from Demonstrations for Real World

Reinforcement Learning," arXiv preprint arXiv:1704.03732, 2017.
[13] J. Kirkpatrick et al., "Overcoming catastrophic forgetting in neural

networks." in Proceedings of the National Academy of Sciences, vol. 114,

2017, pp. 3521-3526.
[14] J. Kober, J. A. Bagnell and J. Peters, "Reinforcement learning in robotics:

A survey," The International Journal of Robotics Research, vol. 32, no.

11, 2013, pp. 1238-1274.
[15] S. Levine and P. Abbeel, "Learning neural network policies with guided

policy search under unknown dynamics," in Proceedings of Advances in

Neural Information Processing Systems, 2014, pp. 1071-1079.

[16] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver

and D. Wierstra, "Continuous control with deep reinforcement learning,"

arXiv preprint arXiv:1509.02971, 2015.
[17] M. J. Mataric, "Reward functions for accelerated learning," in

Proceedings of The Eleventh International Conference on Machine

Learning, 1994, pp. 181-189.
[18] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D.

Silver and K. Kavukcuoglu, "Asynchronous methods for deep

reinforcement learning," in Proceedings of The International Conference
on Machine Learning, 2016, pp. 1928-1937.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D.

Wierstra and M. Riedmiller, "Playing atari with deep reinforcement
learning," arXiv preprint arXiv:1312.5602, 2013.

[20] V. Mnih et al., "Human-level control through deep reinforcement

learning," Nature, vol. 518, no. 7540, 2015, pp. 529-533.

[21] K. Muelling, J. Kober and J. Peters, "Learning table tennis with a mixture

of motor primitives." in Proceedings of the 10th IEEE-RAS International
Conference on Humanoid Robots, 2010, pp. 411-416.

[22] A, Nair et al, "Massively parallel methods for deep reinforcement

learning," arXiv preprint arXiv:1507.04296, 2015.
[23] A. Namiki, S. Matsushita, T. Ozeki and K. Nonami, "Hierarchical

processing architecture for an air-hockey robot system," in Proceedings

of the IEEE International Conference on Robotics and Automation, 2013,
pp. 1187-1192..

[24] A. Y. Ng, D. Harada and S. Russell, "Policy invariance under reward

transformations: Theory and application to reward shaping," in
Proceedings of the International Conference on Machine Learning, vol.

99, 1999, pp. 278-287

[25] C, B, Partridge and M. W. Spong, "Control of planar rigid body sliding
with impacts and friction," The International Journal of Robotics

Research, vol. 19, no. 4, 2000, pp. 336-348.

[26] D. Pathak, P. Agrawal, A. A. Efros and T. Darrell, "Curiosity-driven
exploration by self-supervised prediction," arXiv preprint

arXiv:1705.05363, 2017.

[27] S. Schaal, "Learning from demonstration," in Proceedings of the
Advances in Neural Information Processing Systems, 1997, pp. 1040-

1046.

[28] T. Schaul, J. Quan, I. Antonoglou and D. Silver, "Prioritized experience
replay," arXiv preprint arXiv:1511.05952, 2015.

[29] J. Schulman, P. Moritz, S. Levine, M. Jordan and P. Abbeel, "High-

dimensional continuous control using generalized advantage estimation."
arXiv preprint arXiv:1506.02438, 2015.

[30] D. Silver et al., "Mastering the game of Go with deep neural networks and
tree search," Nature, vol. 529, no. 7587, 2016, pp. 484-489.

[31] D. Silver G. Lever, N. Heess, T. Degris, D. Wierstra and M. Riedmiller,

"Deterministic policy gradient algorithms," In Proceedings of the 31st
International Conference on Machine Learning, 2014, pp. 387-395.

[32] R. S. Sutton and A. G. Barto, "Reinforcement Learning: An Introduction,"

Cambridge: MIT press, 1998.
[33] Tesauro, Gerald, "Temporal difference learning and TD-Gammon,"

Communications of the ACM, vol. 38, no. 3, 1995, pp. 58-68.

[34] S. B. Thrun, "The role of exploration in learning control," Handbook of
Intelligent Control: Neural, Fuzzy and Adaptive Approaches, 1992, pp. 1-

27.

[35] S. B. Thrun, "Efficient exploration in reinforcement learning," Pittsburgh,
PA, USA, Tech. Rep., 1992.

[36] G. E. Uhlenbeck and L. S. Ornstein. "On the theory of the Brownian

motion," Physical review, vol. 36, no. 5, 1930, p. 823.
[37] H. Van, H., A. Guez and D. Silver, "Deep Reinforcement Learning with

Double Q-Learning," in AAAI, 2016, pp. 2094-2100.

[38] C. J. Watkins and P. Dayan. "Q-learning," Machine learning, vol. 8, no.
3-4, 1992, pp. 279-292.

[39] R. J. Williams, "Simple statistical gradient-following algorithms for

connectionist reinforcement learning," Machine learning, vol. 8, no. 3-4,
1992, pp. 229-256.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 11, 2017

ISSN: 1998-0140 169

