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A multiclass many-server system is considered, in which customers are served according to a nonpreemptive priority policy
and may renege while waiting to enter service. The service and reneging time distributions satisfy mild conditions. Building
on an approach developed by Kaspi and Ramanan, the law-of-large-numbers many-server asymptotics are characterized as
the unique solution to a set of differential equations in a measure space, regarded as fluid model equations. In stationarity,
convergence to the explicitly solved invariant state of the fluid-model equations is established. An immediate consequence of
the results in the case of exponential reneging is the asymptotic optimality of an index policy, called the c�/� rule, for the
problem of minimizing linear queue-length and reneging costs. A certain Skorohod map plays an important role in obtaining
both uniqueness of solutions to the fluid-model equations and convergence.
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1. Introduction. A multiclass system with many servers is studied under a law-of-large-numbers (LLN)
scaling. In this system, customers of various classes are served according to a fixed nonpreemptive priority
policy; they may leave the system while waiting to enter service. The goal is to study the scaling limit of the
queue length and other processes of the model via the approach of Kaspi and Ramanan [14] and Kang and
Ramanan [12, 13]. In this approach, developed in Kaspi and Ramanan [14] for the G/G/N queue, and extended
in Kang and Ramanan [12] to include customer reneging, the scaling limit is described in terms of a fluid
model, comprising a system of differential equations in measure space. The relation to the fluid-model equations
(FME) is then used to show convergence of stationary laws of the queueing model to the invariant state of the
FME, and is applied to prove the asymptotic optimality of the so-called c�/� rule for linear abandonment and
queue-length costs, in the case of exponential reneging.

Although multiserver queues are important as they arise in many applications, they are harder to analyze than
single server queues. As was first observed by Halfin and Whitt [9], letting the number of servers increase to
infinity may sometimes simplify the system’s description. In particular, in Halfin and Whitt [9], a G/M/N queue
was studied with scaled-up number of servers and arrival rate, and a central limit theorem (CLT) was established
in which the limiting dynamics were identified as a one-dimensional diffusion process. It is well understood
that, whether in LLN or CLT scale, it is the exponential distribution assumption on the service time that enables
to describe the limiting dynamics in terms of a (deterministic or stochastic) ordinary differential equation in
one real variable. In Kaspi and Ramanan [14], the G/G/N queue was analyzed in a many-server LLN scaling,
and the limit behavior was shown to be governed by a (deterministic) differential equation in measure space. In
this approach, the Markovian state descriptor of the queueing model consists of the number-in-system process
and a measure-valued process that records the age in service of each of the customers being served. The FME
characterize the dynamics of the limits of a properly scaled version of these quantities. The extension by Kang
and Ramanan [12] to a setting with reneging has an additional ingredient in the state descriptor, that accounts for
the age in system of customers prior to reneging, and accordingly an extended set of FME. The limiting behavior,
in LLN and CLT scales, was also identified by a different approach by Reed [17] and Puhalskii and Reed [16]
(see Kaspi and Ramanan [14], Kang and Ramanan [12] for further references on many-server limit results).

This paper extends the results of Kaspi and Ramanan [14] and Kang and Ramanan [12] to the setting of
multiclass systems with reneging, where the service allocation adheres to a fixed nonpreemptive priority among
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the customer classes. Convergence of the scaled queueing model processes to a suitable set of FME is established,
on a finite time interval, and in stationarity. The approach and much of the technique build on Kaspi and
Ramanan [14] and Kang and Ramanan [12, 13], including the Markovian formulation, representation formulas
for solutions to the FME, tightness of various processes, and the analysis of stationary measures and their
convergence. In fact, this paper can be viewed as an attempt to demonstrate the applicability and versatility of
the approach.

Yet the techniques developed in the above papers alone fall short of covering the model under consideration,
particularly the uniqueness of solutions to the FME and the convergence of the queueing model processes to
the FME solution do not follow directly from these treatments. As we show, a certain Skorohod map (SM) can
be used to represent some of the model’s processes (queue length, idleness, arrival into service) as images of
others (exogenous arrivals, departure, reneging). This representation turns out to capture a useful property of the
priority policy. Indeed, continuity and other properties of the SM play a key role in the proofs of uniqueness
and convergence alluded to above. Although this is a simple example of a SM, to the best of our knowledge it
has not been used before in a queueing setting.

A major motivation for this study arises from a natural dynamic control problem in which scheduling is to be
determined so as to (asymptotically) minimize a linear abandonment/queue-length cost in stationarity. Although
the problem is interesting under any reneging time distribution, we focus in this part of the paper on the relatively
simple case of the (class-dependent) exponential distribution. Under this assumption, the cost can be expressed
solely as a queue-length cost. This problem was considered in Atar et al. [1, 2] in the case where also the
service times are (class-dependent) exponential, in which the Markovian state descriptor is finite dimensional.
Denoting by ci, �i, and �i > 0, respectively, the cost per customer per unit time, the rate of service, and the rate
of reneging for a class-i customer, it was shown that a policy that prioritizes classes in the order of the index
ci�i/�i (with highest priority to the largest index) achieves asymptotic optimality. In addition, a lower bound on
the cost was established in Atar et al. [2] for general service time distributions. It was proposed in Atar et al. [1]
to refer to this policy as the c�/� rule, as it is reminiscent of the well-known c� rule (which is, under suitable
assumptions, optimal for multiclass scheduling in systems without reneging). It follows from the main results of
the present paper that the aforementioned lower bound is achieved, in an asymptotic sense, by the c�/� rule for
a general service time distribution. Here, �i now stands for the reciprocal mean class-i service time. Although
the priority rule is simple to state, the proof of the asymptotic optimality result is not so simple, and in fact uses
the main results of this paper to their full strength.

In summary, the main contribution of this paper is the treatment of a multiclass many-server queueing system
with nonpreemptive priorities, with general service and reneging distribution, based on the approach of Kang
and Ramanan [12] and Kaspi and Ramanan [14] and significantly extending it. This extension, that we believe
may be of broader interest in the analysis of priority queues, includes the following:

• The formulation of a set of FME for the multiclass many-server system with reneging, under a nonpreemp-
tive priority policy. We establish uniqueness of solutions to this set of equations (Theorem 3.1), and identify
their invariant state (Theorem 3.3). Although the formulation of the FME follows the approach of Kang and
Ramanan [12]–Kaspi and Ramanan [14], and several tools are borrowed from these works (Proposition 3.2),
a crucial new tool is a certain two-dimensional Skorohod map, that effectively captures the nature of the priority
discipline (§3.2).

• Convergence analysis. We establish convergence in law of the scaled queueing processes to the FME
solution (Theorem 4.3), and consequently the convergence of any invariant state distribution of the scaled
queueing processes to the invariant state of the FME (Theorem 4.4). Here, the methodology follows closely the
framework of Kang and Ramanan [12]–Kaspi and Ramanan [14]. Continuity properties of the Skorohod map,
alluded to above play a role here.
As a corollary of the convergence results, we obtain

• Asymptotic optimality of the c�/� priority rule for exponential reneging and general service time distribu-
tion (Theorem 5.1), significantly extending a known result for the case of exponential service.

We use the following notation. For x ∈�, x+ = max4x105 and x− = max4−x105. For x ∈�k, �x� =
∑k

i=1 �xi�.
For y2 �+ →�k and t > 0, �y�t = sups∈601 t7 �y4s5�. The modulus of continuity of y is defined as

w4y1�1 t5= sup
{

�y4s5− y4u5�2 s1 u ∈ 601 t71 �s − u� ≤ �
}

1 �1 t > 00

If y2 �+ → � is locally of bounded variation, we write �y�t for the variation of y over 601 t7. Note that we
sometimes use y4t5 and yt interchangeably as convenient.

Given a nondecreasing, right-continuous function f 2 601�5→ 601�5, denote f∗ = supt≥0 f 4t5 and, in the case
when f∗ = �, define f −12 601�5 → 601�5 by f −14t5 = inf8s ≥ 02 f 4s5 ≥ t9 for t ∈ 601�5. When f∗ < �, let
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f −12 601�5 → 601�7 be defined as above for t ∈ 601 f∗7, and set f −14t5 = � for t ∈ 4f∗1�5. This is the left-
continuous inverse of f . For a measure m over 601H5 (some H ∈ 401�7), we will write m6a1b5 as shorthand
for m46a1b55 and m6a1b7 for m46a1b75. We write F m4x5 for m601 x7 and denote

�f 1m� =

∫

601H5
f dm1 f 2 601H5→�0 (1)

Note that
4F m5−14y5= inf8x ≥ 02 m601 x7≥ y90 (2)

For a ∈�, �a denotes the unit mass at a. For an event A ∈F, 1A denotes the indicator of A.
Given a Polish space E, its Borel �-field E, and an E-valued random variable X on the probability space

4ì1F1�5, the probability measure ,4X5 on 4E1E5, defined as ��X−1, is referred to as the law of X. Given
random variables X1X11X21 : : : taking values in E, we write Xn ⇒ X for convergence in law defined as the
weak convergence of the laws, ,4Xn5→,4X5, as probability measures over 4E1E5. The sequence 8Xn9 is said
to be tight if the corresponding laws form a tight sequence in P4E1E5. Denote by DE601H5 the space of RCLL
paths from 601H5 to E, equipped with the usual Skorohod topology. A sequence Xn of random variables taking
values in this space is said to be C-tight if it is tight and every subsequential limit has continuous paths w.p.1.

We write MF 601H5 for the space of finite measures on 601H5, and endow it with the topology of weak
convergence. All stochastic processes in this paper are assumed to have RCLL sample paths.

Finally, the dependence on t ∈ 601�5 of a process, say Xi, will be denoted by Xi1 t and Xi4t5 interchangeably,
whichever notation is more convenient.

The paper is organized as follows. The queueing model is introduced in §2. Section 3 describes the FME,
establishes their uniqueness, and identifies the invariant state. In §4 the convergence results are stated and
proved. The results are then applied in §5 to prove the asymptotic optimality of the c�/� rule under exponential
reneging. Finally, certain properties of the SM are proved in the appendix.

2. The N -server system. In this section we give a precise description of the model. The system has N
identical servers that serve customers of J classes. Each customer has a single service requirement and leaves
the system once his service is completed. Another possibility for a customer to leave the system is by reneging
while waiting to be served. The system is considered under a work conserving, nonpreemptive priority policy.
Thus, customers that arrive into the system when one of the servers is idle are immediately assigned a server.
Otherwise they are queued in a buffer (with infinite room and are sent to the service as soon as a server
becomes available. The order in which the customers are assigned to service follows a priority rule, where
each class i has priority over all the classes i + 11 : : : 1 J . Within the class, customers are sent to servers in a
first-come-first-served manner.

The model is defined on a probability space 4ì1F1�5. For the jth customer of class i to enter the system
we let

• ri1 j be the patience time of the customer, and
• vi1 j be the service time requirement of the customer.

This means that the customer reneges if he waits in the queue ri1 j units of time, and if the customer is assigned
a server, he keeps the server busy for vi1 j units of time. We assume that the patience times of class-i customers,
8ri1 j 2 j = 1121 : : : 9, are independent and identically distributed (i.i.d.) random variables with distribution Gr

i ,
density gri , finite mean �−1

i , and hazard rate function hr
i 4x5= 41−Gr

i 4x55
−1gri 4x5, where, by convention, 0/0 = 0.

We denote H r
i = inf8x2 Gr

i 4x5 = 19. Similarly, the service times of class-i customers, 8vi1 j 2 j = 1121 : : : 91 are
i.i.d. random variables with distribution Gs

i 1 density gsi 1 finite mean �−1
i 1 and hazard rate function hs

i 4x5 =

41 −Gs
i 4x55

−1gsi 4x5. Also, H s
i = inf8x2 Gs

i 4x5= 19.
We refer to the system containing N servers as the N -server system, or simply the N th system. For each fixed

N we consider the following arrival processes associated with the N th system:
• 4eNi1 j5, where eNi1 j is the time of arrival into the system of the jth customer of class i, and
• EN

i , the corresponding counting process of class-i arrivals into the system for t ≥ 0, so that EN
i 4t5 is the

number of class-i arrivals in 601 t7.
We further denote by EN

i10 the number of class-i customers that have arrived before t = 0. We assign to these
customers negative indices between −EN

i10 + 1 and 01 and to those that arrive at or after time 0 positive indices
from 1 to �0 Hence eNi1 j = 4EN

i 5
−14j5 for j ≥ 1.

We assume that the arrival processes 8EN
i 2 i = 11 : : : 1 J 9 are mutually independent renewal processes with

mean interarrival times 4�N
i 5

−1, respectively. It is further assumed that the collections ri10 , vi10 , and eNi10 (equiv-
alently, EN

i ), i = 11 : : : 1 J , are mutually independent for each N . At this point of the article we are interested in
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the evolution of the systems for t ≥ 0 starting from a given initial state, a term that refers to quantities associated
with customers that are present in the system at time 0 (including their number, arrival time, and time already
spent in service). Therefore, the distribution of the initial state is not specified. Starting at §4, the initial state
will be considered with a (generic) distribution. We will assume that, given the ages of the customers in service
(as part of the initial state), their residual service time distribution is that of independent random variables with
densities gsi 4x+ y5/41 −Gs

i 4x55 for a customer of class i with age x in service. A similar statement holds for
ages in queue, with gri and Gr

i replacing gsi and Gs
i .

We proceed to define some additional processes for the N th system that depend on the above primitive
variables, starting with the following:

• sNi1 j , the time of entrance into service of the jth customer of class i. If the customer reneges before entering
service we set sNi1 j = �.

• KN
i , the counting process of class-i customers that enter service for t ≥ 0.

Define next the age-in-service measures, denoted by �N
i1 t4dx5. For class i and t ∈ 601�5, �N

i1 t puts a unit mass at
every x ∈ 601�5 for which a class-i customer, that is in service, has been there x units of time at time t. More
precisely,

�N
i1 t4dx5=

EN
i 4t5
∑

j=−EN
i10+1

�aNi1 j 4t5
4dx5180≤t−sNi1 j<vi1 j 9

1 (3)

where 80 ≤ t − sNi1 j < vi1 j9 indicates that the customer entered service but has not completed it yet, and

aN
i1 j4t5=

(

4t − sNi1 j5∨ 0
)

∧ vi1 j (4)

represents the age in service of the respective customer at time t. Next, consider the potential queue measures,
�N
i1 t4dx5. These measures represent the age in queue, under a policy that never assigns servers to any customers

(this policy is not actually implemented in our model, and is mentioned only as a means of describing the
potential queue measures). Therefore, these measures encode information about arrival and reneging, but not
service. Specifically,

�N
i1 t4dx5=

EN
i 4t5
∑

j=−EN
i10+1

�wN
i1 j 4t5

4dx5180≤t−eNi1 j<ri1 j 9
1 (5)

where 80 ≤ t − eNi1 j < ri1 j9 indicates that a customer has arrived prior to t but has not reneged yet, and wN
i1 j are

the potential waiting times, defined by

wN
i1 j4t5=

(

4t − eNi1 j5∨ 0
)

∧ ri1 j 0 (6)

Although �N
i1 t encodes the age in queue under a fictitious policy, the information about the ages of customers in

queue under the actual policy can be recovered from it, using additional ingredients of the system description,
as we shall see below.

Let BN
i 4t5 = �11 �N

i1 t� denote the total mass of �N
i1 t , representing the number of class-i customers that are in

service at time t, or equivalently, the number of servers busy with class-i customers. Let QN
i 4t5 denote the

number of class-i customers in the queue at time t. Let

XN
i 4t5=QN

i 4t5+BN
i 4t5 (7)

denote the total number of class-i customers in the system at time t. Then we require that

N −

J
∑

i=1

BN
i 4t5=

(

N −

J
∑

i=1

XN
i 4t5

)+

1 t ≥ 00 (8)

This relation asserts that servers do not idle when there are customers waiting in the queue. It thus expresses
the work conservation property.

Introduce the process �N
i 4t5 representing the waiting time of the “oldest” class-i customer in the queue, and

set it equal to zero when the class-i queue is empty. Namely,

�N
i 4t5= inf

{

x ≥ 02 �N
i1 t601 x7≥QN

i 4t5
}

= 4F �N
i1 t 5−14QN

i 4t551 (9)

where we recall the definition of the inverse in (2). Evidently,

QN
i 4t5= �N

i1 t601 �
N
i 4t570
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The cumulative class-i departure-from-service process, denoted DN
i , is given by

DN
i 4t5=

EN
i 4t5
∑

j=−EN
i10+1

∑

s∈601 t7

184daNi1 j/dt54s−5>01 4daNi1 j/dt54s+5=091 (10)

where we denote by 4df /dt54t+5 and 4df /dt54t−5 the right and left, respectively, derivative of f at t. The
cumulative potential reneging of class-i customers in 601 t7, denoted SN

i 4t51 is equal to

SN
i 4t5=

EN
i 4t5
∑

j=−EN
i10+1

∑

s∈601 t7

184dwN
i1 j/dt54s−5>01 4dwN

i1 j/dt54s+5=090 (11)

The cumulative reneging of class-i customers in 601 t7, denoted RN
i 4t51 is equal to

RN
i 4t5=

EN
i 4t5
∑

j=−EN
i10+1

∑

s∈601 t7

18wN
i1 j 4s5<�N

i 4s−51 4dwN
i1 j/dt54s−5>01 4dwN

i1 j 5/dt4s+5=090 (12)

Additional relations satisfied by these processes are the so-called balance equations, obtained by counting cus-
tomers in the system (13), in the potential queue (14), and in service (15). Namely,

XN
i =XN

i10 +EN
i −DN

i −RN
i 1 (13)

�11�N
i � = �11�N

i10� +EN
i − SN

i 1 (14)

BN
i = BN

i10 +KN
i −DN

i 0 (15)

The nonpreemptive priority rule is expressed as

KN
i 4t5=

∫

601 t7
18
∑i−1

k=1 Q
N
k 4s5=09 dK

N
i 4s51 i ≥ 21 t ≥ 00 (16)

This relation imposes a necessary condition for a class-i customer to be sent to service at time s, namely, that
at time s no class-k customers are present in the queue, for k < i.

Remark 2.1. Although (16) captures precisely the nature of the priority rule, it may seem that the following
variant is also a valid condition, namely,

KN
i 4t5=

∫

601 t7
18
∑i−1

k=1 Q
N
k 4s−5=09 dK

N
i 4s51 i ≥ 21 t ≥ 00 (17)

Here the respective queues are observed just before time s. However, as we explain below, (16) and (17) are not
equivalent, and (17) is not the right condition.

(a) Condition (17) does not agree with the priority policy. Fix k < i. Consider a scenario when two arrivals,
of class k and class i, occur at the same time. Assume that just prior to this time the queues are all empty
and there is exactly one free server. The policy should assign the server to the new class-k customer. However,
condition (17) allows for the class-i customer to be sent to service rather than k. Condition (16) prohibits this
behavior.

(b) Condition (17) contradicts work conservation. Suppose two servers become idle at the same time, and
just before that time there is one class-k customer and one class-i customer in the queue. Both should enter
service. However, (17) prohibits this.

We further consider the departure-from-service marked point processes, defined for bounded measurable � on
601H s

i 5×�+ via

DN
i1�4t5=

EN
i 4t5
∑

j=−EN
i10+1

∑

s∈601 t7

184daNi1 j/ds54s−5>01 4daNi1 j/ds54s5=09�4a
N
i1 j4s51 s51 (18)

and similarly the potential reneging marked point processes, defined for bounded measurable � on 601H r
i 5×�+ via

SN
i1�4t5=

EN
i 4t5
∑

j=−EN
i10+1

∑

s∈601 t7

184dwN
i1 j/ds54s−5>01 4dwN

i1 j/ds54s5=09�4w
N
i1 j4s51 s50 (19)
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Let
RN

i1�4t5= SN
i1 �Ni �

4t51 (20)

where 4�N
i �54x1 s5= �N

i 4x1 s5�4x1 s5, and

�N
i 4x1 s5= 14x1�54�

N
i 4s−550 (21)

Then, the reneging process RN
i is given by

RN
i 4t5=RN

i11 = SN
i1 �Ni

4t50 (22)

For h ∈ 401�7, we denote by C111
c 4601 h5 × �+5 the space of compactly supported functions � for which

the directional derivative limã→044�4x + ã1 t + ã5 − �4x1 t55/ã5 exists for all x ∈ 601 h51 t ∈ �+, and lies in
Cc4601 h5×�+5. We shall abuse the notation slightly and denote this directional derivative by �x +�t whether
the partial derivatives �x and �t exist or not. For � ∈C111

c 4601H s
i 5×�+5, the measure-valued processes satisfy

the following relations:

��4·1 t51 �N
i1 t� = ��4·1051 �N

i10� +

∫ t

0
��x4·1 s5+�t4·1 s51 �

N
i1 s�ds −DN

i1�4t5+

∫ t

0
�401 s5dKN

i 4s51 (23)

where �x +�t is the directional derivative alluded to above. Similarly, for � ∈C111
c 4601H r

i 5×�+5,

��4·1 t51�N
i1 t� = ��4·1051�N

i10� +

∫ t

0
��x4·1 s5+�t4·1 s51�

N
i1 s�ds − SN

i1�4t5+

∫ t

0
�401 s5dEN

i 4s50 (24)

The proof that, given KN
i and EN

i , (23)–(24) are satisfied by the measure-valued processes, is identical to that
of Theorem 5.1 of Kaspi and Ramanan [14]. The construction of collection of processes satisfying the N -server
system Equations (3)–(16), (18)–(22) is very similar to that in Appendix A of Kang and Ramanan [12], with
obvious adaptations to address the priority policy.

Although the detailed proofs appear in Kang and Ramanan [12] and Kaspi and Ramanan [14], it is in order
to give an explanation of the various terms in the above equations. First, �N

i 4x1 s5 is the indicator of the event
that the waiting time of the customer at the head of the queue, just before s, is larger than x. Hence SN

i1 �Ni
4t5

is the potential reneging applied to the function �N
i , which counts all reneging of customers while they are

in queue, that is, the actual reneging in 601 t7. Equations (23)–(24) describe the evolution of the measures �N
i

and �N
i , where the second, third, and fourth terms on the right correspond to three different causes of evolution.

The second term is due to the fact that ages of customers in service (respectively, waiting times of customers
in queue) increase at rate 1. The variables 4x1 t5 for the test functions � (respectively, �) correspond to age
(respectively, waiting time) and time. Since both these elements are affected by the flow of time, the directional
derivative as defined above appears in these expressions. Clearly, in the special case when � (respectively, �) is
a function of the space variable x alone, only the term ��x4 · 51 �

N
i1 s� (respectively, ��x1�

N
i1s�) will appear. Next,

those customers that have left the system in 601 t7 because of end of service in (23) and because of reneging
in (24), should be subtracted, resulting in the third term on the r.h.s. Finally, the last term represents entrance
to the service (respectively, the system) during 601 t7. The test functions appear here as �401 s5 (respectively,
�401 s5) because of the fact that at the time customers enter, their age (respectively, waiting time) is equal to 0.

3. The fluid model. In this section we analyze a deterministic fluid model that will be shown, in later
sections, to govern the LLN behavior of the N -server system, as N → �. It consists of a set of equations derived
from the equations satisfied by the N -server model. The main issue addressed here is showing that the solution
of the fluid-model equations is unique. We also provide here some additional properties of the fluid model and
characterize its invariant state.

3.1. The fluid-model equations. Write D+

�J 4�+5 for the set of members of D�J 4�+5 that are nonnegative
and nondecreasing (componentwise). We are given data E ∈ D+

�J 4�+5 and initial conditions Xi10 ∈ 601�5,
�i10 ∈ MF 601H

s
i 5 and �i10 ∈ MF 601H

r
i 5, for i = 11 : : : 1 J . Set Bi10 = �11 �i10�. We consider equations satisfied

by 4B1X1Q1D1K1R1�1�5, where B = 4Bi5i=11 : : : 1J , etc., and, for each i, Bi1Xi1Qi1Di1Ki1Ri are members of
D�4�+5, and �i and �i are members of DMF 601H

s
i 5
4�+5 and DMF 601H

r
i 5
4�+5, respectively.

The measures �i and �i are assumed to satisfy
∫ t

0
�hs

i 1 �i1 ��d� <�1
∫ t

0
�hr

i 1�i1 ��d� <�1 t ≥ 00 (25)
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Balance equations and basic relations (in analogy with (7), (13), (14), (15)) are expressed by

Bi = Bi10 −Di +Ki1 (26)

Xi =Xi10 −Di +Ei −Ri1 (27)

Qi =Xi −Bi1 (28)

Qi and Bi are nonnegative. (29)

Work conservation and nonpreemptive priority (8), (16), correspond to

I 2= 1 −

J
∑

i=1

Bi =

(

1 −

J
∑

i=1

Xi

)+

1 (30)

Ki are nonnegative, nondecreasing (31)

Ki1 t =

∫

601 t7
18
∑i−1

j=1 Qj1 s=09 dKi1 s1 i ≥ 21 t ≥ 00 (32)

Note that one can deduce that Xi are nonnegative from the nonnegativity of Qi and Bi, and that
∑

Bi ≤ 1
from (30). Also note that (30) imposes an assumption on the initial condition.

Furthermore, in analogy with (23) and (24), we write the following integral equations. Namely, for � ∈

C111
c 4601H s

i 5×�+5 and � ∈C111
c 4601H r

i 5×�+5,

��4·1 t51 �i1 t� = ��4·1051 �i10� +

∫ t

0
��x4·1 s5+�t4·1 s51 �i1 s�ds

−

∫ t

0
�hs

i 4 · 5�4·1 s51 �i1 s�ds +

∫ t

0
�401 s5dKi1 s1 (33)

��4·1 t51�i1 t� = ��4·1051�i10� +

∫ t

0
��x4·1 s5+�t4·1 s51�i1 s�ds

−

∫ t

0
�hr

i 4 · 5�4·1 s51�i1 s�ds +

∫ t

0
�401 s5dEi1 s0 (34)

Finally,

Bi1 t = �11 �i1 t�1 (35)

Di1 t =

∫ t

0

∫ �

0
hs
i 4x5�i1 s 4dx5ds1 (36)

Ri1 t =

∫ t

0

∫ �

0
hr
i 4x518�i1 s 601 x7<Qi1 s9

�i1 s 4dx5ds0 (37)

Equations (25)–(37) are called the fluid-model equations. A tuple 4B1X1Q1D1K1R1�1�5 satisfying these equa-
tions is said to be a solution to the FME with initial conditions 4X01 �01�05 and data E.

Remark 3.1. (a) Uniqueness of solutions to the FME is established in the next subsection. We do not address
existence of solutions in this section. However, we will show (in Theorem 4.3), under suitable assumptions, that
fluid-scaled versions of the processes associated with the N -server system do converge weakly to solutions to
the FME, by which existence follows.

(b) As in the case of the N -server system equations, the evolution of the fluid measures �i1 t and �i1 t is due
to three sources. First is the motion resulting from the age (respectively, waiting times) increasing at unit rate.
This accounts for the second term of (33) (respectively, (34)). The second is due to departures (respectively,
potential reneging), which correspond to the third term, and finally the last term is due to beginning of new
service (respectively, new arrivals into the system).

(c) Equation (36) describes the fluid departure process. Note that �i1 s4dx5 represents the fluid mass of cus-
tomers with ages in 6x1 x+dx5 at time s and hs

i 4x5 represents the rate at which mass with age x departs from the
system. Thus �hs

i 1 �i� gives the departure rate, which explains (36). A similar explanation holds for the reneging
process, Equation (37), except that in this case the indicator of 8�i1 s601 x7 < Qi1 s9 appears. This factor corrects
for the fact that � corresponds to the potential, not the actual queue. Fluid mass of customers with waiting time
within 6x1 x+dx5, where �i601 x7 >Qi, does not appear in the actual queue, and therefore its fictitious reneging
must be deleted.
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We next recall Theorem 4.1 and Remark 4.3 of Kaspi and Ramanan [14], which we state here as Proposi-
tion 3.1. This result establishes a representation of the solution to equations of the form (33) and (34).

Proposition 3.1 (Theorem 4.1 and Remark 4.3 of Kaspi and Ramanan [14]). Let G be a cumulative
distribution function on �+ with density function g and hazard rate h= g/41 −G5. Let H = sup8x2 G4x5 < 19.
Suppose that 8�̄t9t≥0 ∈ DMF 601H5601�5 has the property that for every m ∈ 601H5 and T ∈ 601�5 there exists
C4m1T 5 <� such that

∫ �

0
��4·1 s5h4 · 51 �̄s�ds ≤C4m1T 5����1

for every � on 601H5×�+ continuous with support contained in 601m7× 601 T 7, where ���� = sup601H5×�+
���.

Then given any �0 ∈ MF 601H5, z that is locally of bounded variation on 601�5 with z405 = 0, one has that
8�̄t9t≥0 satisfies the integral equation

��4·1 t51 �̄t� = ��4·1051 �0� +

∫ t

0
��x4·1 s5+�s4·1 s51 �̄s�ds −

∫ t

0
�h4 · 5�4·1 s51 �̄s�ds +

∫ t

0
�401 s5dz4s51

for every � ∈C1114601H5×�+5 and t ∈ 601�5, if and only if 8�̄t9t≥0 satisfies

∫

601H5
f 4x5�̄t 4dx5=

∫

601H5
f 4x+ t5

1 −G4x+ t5

1 −G4x5
�0 4dx5+

∫ t

0
f 4t − s541 −G4t − s55dz4s51

for every bounded, continuous function f on 601H5 and t ≥ 0. Moreover, for any bounded differentiable function
f on 601H5 and t ≥ 0,
∫ t

0
f 4t − s541 −G4t − s55dz4s5= f 405z4t5+

∫ t

0
f ′4t − s541 −G4t − s55dz4s5−

∫ t

0
f 4t − s5g4t − s5z4s5ds0

Applying the above results to 4Gs
i 1 h

s
i 1 �i101 �i1Ki5 and (33) and to 4Gr

i 1 h
r
i 1�i101�i1Ei5 and (34) and Di in

(37) we obtain the following.

Proposition 3.2. Any solution to the FME satisfies the following for � ∈ C111
c 4601H s

i 5 × �+5 and � ∈

C111
c 4601H r

i 5×�+5,

��4·1 t51 �i1 t� =

∫

601�5

1 −Gs
i 4x+ t5

1 −Gs
i 4x5

�4x+ t1 t5�i10 4dx5+

∫ t

0
41 −Gs

i 4t − s55�4t − s1 t5dKi1 s1 (38)

��4·1 t51�i1 t� =

∫

601�5

1 −Gr
i 4x+ t5

1 −Gr
i 4x5

�4x+ t1 t5�i10 4dx5+

∫ t

0
41 −Gr

i 4t − s55�4t − s1 t5dEi1 s1 (39)

Di1 t =

∫

601�5

Gs
i 4x+ t5−Gs

i 4x5

1 −Gs
i 4x5

�i10 4dx5+

∫ t

0
gsi 4t − s5Ki1 s ds0 (40)

Proof. Identical to the proof for the case of one class, from Kang and Ramanan [12] and Kaspi and
Ramanan [14]. See Kaspi and Ramanan [14, Theorem 4.2, Corollary 4.4] for their proofs. �

Equation (39) uniquely determines �. Indeed �i10 is part of the system initial conditions and E is the data.
Clearly, a similar statement cannot be made about � and (38), since K is a part of the solution, rather than
the data.

3.2. Uniqueness of solutions. In this subsection we prove uniqueness of solutions to the FME. The proof
is based on a representation of Q and K as images of 4E1D1R5 under a certain continuous mapping involving
a two-dimensional Skorohod map. The crux of the argument shows up in the case of two classes (J = 2) and
no reneging, that is presented first. The continuity property is lifted to a general number of classes, by using
essentially the same, two-dimensional argument. Uniqueness is addressed (for the full model, including reneging)
by combining the continuity property with Proposition 3.2. An additional property (42) regarding the modulus
of continuity is proved along the way; it is used in the next section.

The Skorohod problem (SP) of interest is concerned with constraining paths that reside in �2 to

G= 8x ∈�22 x1 ≥ 0 or x2 ≤ 091

via the fixed constraint direction d = e1 − e2 (see Figure 1). Here, x = 4x11 x25 ∈ �2, e1 = 41105, e2 = 40115.
Denote the interior of the set G by Go.
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G

E2

Q1 – I

E1

Q2

�–D1 – D2

Figure 1. The dynamics of Q̃ = 4Q1 − I1Q25. The boundary of the set G is shown (thick line) along with the constraint direction e1 −e2.
When Q1 > 0 (equivalently, Q1 − I > 0), an increase in E1 (E2) contributes to an increase in Q1 (Q2), whereas an increase in either D1 or
D2 decreases Q1.

Definition 3.1 (The SP 4G1d5). Let � ∈ D�24�+5. Then 4�1�5, � ∈ D�24�+5, � ∈ D�+
4�+5 are said to

solve the SP for � if
• � = �+ 4e1 − e25�,
• �t ∈G for all t ≥ 0,
• � is nondecreasing, and

∫

601�5
18�s∈G

o9 d�s = 0.

As shown in the appendix, this problem is uniquely solvable. The solution map � 7→ � is denoted throughout
by â . The solution map � 7→ 4�1�5 is denoted by â̂ . The following two properties, crucial to our treatment, are
shown in Proposition A.1 in the appendix:

There exists a constant c such that

�� − �̄�t ≤ c��− �̄�t1 t ≥ 01 whenever � = â4�5 and �̄ = â4�̄5, (41)

w4�1�1 t5≤ cw4�1�1 t51 �1 t > 01 whenever � = â4�5. (42)

The model without reneging is obtained by setting hr
i and Ri to zero (of course, Equation (34) then becomes

redundant). Consider the model without reneging, with two classes (J = 2). Given a solution to the FME, denote

Q̃ = 4Q1 − I1Q250 (43)

Note, as an immediate consequence of (28) and (30), that

Q = Q̃+1 (44)

where for x = 4x11 x25 ∈ �2 we write x+ for 4x+

1 1 x
+

2 5. The main observation regarding the SP is the following
fact, involving only Equations (26)–(32). As a convention, for H = B1X1Q1D or K and H̄ = B̄1 X̄1 Q̄1 D̄ or K̄,
respectively, (possibly corresponding to solutions with different data, say E and Ē), we write ãH for H − H̄
(as well as ãE =E − Ē).

Lemma 3.1. Consider the model without reneging, with J = 2. Given E ∈D+

�24�+5, let the tuple (B1 X1 Q1

D1 K) satisfy Equations (26)–(32). Then 4Q̃1K25 solve the SP for

Ẽ 2= Q̃0 +E − 4D1 +D21050 (45)

As a consequence, given E and Ē, the corresponding solutions (with common initial conditions) satisfy

�ãQ�t ≤ c4�ãE�t + �ãD�t51 t > 00 (46)

Moreover,
w4Q1�1 t5≤ c

(

w4E1�1 t5+w4D1�1 t5
)

1 t1 � > 00 (47)

Proof. Verifying the first bullet in the definition of the SP amounts to showing

Q1 − I =Q110 − I0 +E1 −D1 −D2 +K21 and Q2 =Q210 +E2 −K20 (48)
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For the first equality, note by (26)–(28) (recalling we have set R= 0), that

Q110 − I0 +E1 −D1 −D2 +K2 =Q110 − 1 +B110 +B210 +X1 −X110 +B2 −B210 =Q1 − 1 +B1 +B20

The second statement in (48) follows similarly.
That Q̃ resides in G will be shown by arguing that, for all t ≥ 0,

Q̃t ∈ G̃⊂G1 t ≥ 01

where
G̃= 84x11 x25 ∈G2 x2 ≥ 090

Since Q̃2 is nonnegative (see (43) and (29)), it suffices to show that Q̃24t5=Q24t5 > 0 implies Q̃14t5=Q14t5−
It ≥ 0. By (28) and (30), if Q24t5 > 0 then indeed It = 1 −

∑

i Bi1 t = 0. This shows Q̃t ∈ G̃ for all t.
Finally, K2 is clearly nonnegative and nondecreasing by (31). Moreover, since Q̃t ∈ G̃, the condition Q̃t ∈Go

implies Q̃14t5 > 0, and, in turn, Q14t5 > 0. Hence
∫

18Q̃s∈G
o9 dK21 s ≤

∫

18Q11 s>09 dK21 s = 01

by (32). This completes the proof of the first assertion.
The second and third assertions follow from the first on using (41), (42), and (44). �
Remark 3.2. A review of the proof shows that the nonnegativity and the nondecreasing property of E are

not used. Thus the result continues to hold when E1 Ē ∈D�24�+5. This observation will be used when the model
with reneging is considered.

We next argue that for general number of classes J , results similar to Lemma 3.1 continue to hold. To this
end, fix i0 ∈ 82131 : : : 1 J 9 and write

B415
=

i0−1
∑

j=1

Bj1 B425
=

J
∑

j=i0

Bj1 (49)

with a similar convention for X1 Q1 D1 K, and E. The key point that allows reducing the problem to a two-
dimensional one is this. Given any solution 4Bi1Xi1Qi1Di1Ki1Ei5, i = 1121 : : : 1 J to (26)–(32), the quantities
4B4i51X4i51Q4i51D4i51K4i51E4i55, i = 112 satisfy precisely the same relations. As a result, Lemma 3.1 is applicable.
Since i0 is arbitrary, we conclude that there exists a constant c1, such that whenever 4B1X1Q1D1K5 and
4B̄1 X̄1 Q̄1 D̄1 K̄5 are two solutions corresponding to some E and Ē,

�Q− Q̄�t ≤ c14�E − Ē�t + �D− D̄�t51 t > 01 (50)

and
w4Q1�1 t5≤ c14w4E1�1 t5+w4D1�1 t551 t1 � > 00 (51)

Finally, for the full model (J ≥ 2, with reneging) we have the following:

Proposition 3.3. Given E and Ē in D+

�J 4�+5, let

S = 4B1X1Q1D1K1R5 and S̄ = 4B̄1 X̄1 Q̄1 D̄1 K̄1 R̄5

be corresponding solutions (with common initial conditions) to Equations (26)–(32). Then

�ãQ�t ≤ c1

(

�ãE�t + �ãD�t + �ãR�t

)

1 t > 01 (52)

and
w4Q1�1 t5≤ c1

(

w4E1�1 t5+w4D1�1 t5+w4R1�1 t5
)

1 t1 � > 00 (53)

Proof. This follows from (50) and (51) upon replacing E by E−R, and recalling Remark 3.2 by which the
data need not be nondecreasing. �

We can now prove the following:

Theorem 3.1. Assume hr
i are bounded. Let S and S̄ be two solutions to the FME (25)–(37), corresponding

to the same initial conditions and the same data E. Then S = S̄.
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Proof. The structure of the FME is such that given any T > 0 and a solution 8St9t≥0 corresponding to data
8Et9t≥0 (and some initial condition), 8ST+t9t≥0 is a solution corresponding to the data 8ET+t −ET 9t≥0 and initial
condition 4XT 1 �T 1�T 5. Therefore, by the usual argument by contradiction, it suffices to prove that uniqueness
holds over 601 T 7 for however small T > 0.

By (26)–(28), ãK = −ãQ−ãR. Thus by Proposition 3.3, with c2 = c1 + 1,

�ãK�t ≤ c24�ãD�t + �ãR�t51 t ≥ 00 (54)

By (40),

ãDi1 t =

∫ t

0
gsi 4t − s5ãKi1 s ds1

so
�ãD�t ≤

∑

i

∫ t

0
gsi 4s5ds�ãKi�t ≤

1
4c2

�ãK�t1

provided t > 0 is sufficiently small. Hence

�ãD�t ≤
1
4 4�ãD�t + �ãR�t50

Next, by (37), if c3 is an upper bound on hr
i ,

�ãRi1 t� ≤ c3

∫ t

0
�ãQi1 s�ds0

Thus, making t > 0 even smaller if necessary, we have

�ãR�t ≤
1
4 4�ãD�t + �ãR�t50

As a result, for some t > 0,
�ãD�t + �ãR�t ≤

1
2 4�ãD�t + �ãR�t50

Thus ãD = ãR = 0 on 601 t7; by (52) and (54) a similar conclusion holds for ãQ and ãK. Finally, by (38),
� = �̄ on 601 t7. This completes the proof. �

We end this subsection with two properties of the FME not directly related to uniqueness (but used later
in §4), regarding the two-dimensional versions of the form (49). Recall the map â̂ defined in the paragraph
following Definition 3.1.

Lemma 3.2. Let data E ∈D+

�J 4�+5 be given.
(i) Let S = 4B1X1Q1D1K1R5 be the corresponding solution to (26)–(32). Fix i0 ∈ 82131 : : : 1 J 9 and consider

4B4i51X4i51Q4i51D4i51K4i51R4i51E4i551 i = 1121

defined as in (49) and in the discussion that follows (with the additional component R4i5 defined similarly).
Define

Q̂ = 4Q415
− I1Q4255

(in analogy with (43)). Define

Ê 2= Q̂405+ 4E4151E4255− 4R4151R4255− 4D415
+D425105

(in analogy with (45), but taking into account R). Then 4Q̂1K4255 = â̂ 6Ê7, namely, 4Q̂1K4255 solve the SP for
Ê. (The transformation we have just defined from 4B1X1Q1D1K1R5 to 4Q̂1K4251 Ê5 will be denoted by ä.)

(ii) Let now S = 4B1X1Q1D1K1R5 satisfy (26)–(31) (i.e., not including relation (32)). Assume, moreover,
that for every i0 ∈ 82131 : : : 1 J 9,

J
∑

i=i0

Ki1 t =

∫

601 t7
1
8
∑i0−1

j=1 Qj1 s=09 d

( J
∑

i=i0

Ki1 s

)

1 t ≥ 00 (55)

Then S satisfies (32).

Proof. (i) This follows from Lemma 3.1, the discussion following Remark 3.2 and considering E − R in
place of E.
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(ii) Owing to the nonnegativity of Qj , the assumed condition (55) is equivalent to

∫

601 t7
1
8
∑i0−1

j=1 Qj1 s>09 d

( J
∑

i=i0

Ki1 s

)

= 01 t ≥ 00

Thus
∫

601 t7
1
8
∑i0−1

j=1 Qj1 s>09 dKi01 s
= 01 t ≥ 00

Since this holds for every i0 ∈ 82131 : : : 1 J 9, (32) follows. �

3.3. Some properties of the solution. We show that the entrance into service can be represented in terms
of the entrance and departure (processes) in a way that reflects the priority discipline.

Theorem 3.2. Assume that for every i, Ei is nondecreasing and absolutely continuous, and denote �i4t5=

4d/dt5Ei4t5. Denote �4t5 = 4d/dt5
∑J

i=1 Di1 t =
∑J

i=1�h
s
i 1 �i1 t� (see (36)). Then Ki are absolutely continuous,

and the derivatives �i satisfy a.e., for j = 1121 : : : 1 J ,

j
∑

i=1

�i4t5=







































�4t5 if
j
∑

i=1

Qi1 t > 01

�4t5∧

j
∑

i=1

�i4t5 if
j
∑

i=1

Qi1 t = 01
J
∑

i=1

Bi1 t = 11

j
∑

i=1

�i4t5 if
J
∑

i=1

Bi1 t < 10

The second entry in the above formula corresponds to the case where the system is critically loaded, namely,
all servers are busy and all queues are empty. The rate at which mass is sent to service is then the minimum
between the rate of arrival and the rate at which servers become available, as one intuitively might guess.
However, as shown in the proof below, it is legitimate to replace the expression �4t5∧

∑j
i=1 �i4t5 by the simpler

one
∑j

i=1 �i4t5.

Proof. Since Ei are absolutely continuous, so are Xi by (27), (36), and (37). As a result, so is 41−
∑J

i=1 Xi5
+.

In view of (30) and (26), one has that
∑J

i=1 Bi, and, in turn,
∑J

i=1 Ki are absolutely continuous. But since Ki

are nondecreasing (31), it follows that each Ki must be absolutely continuous. Denote by �i the corresponding
densities.

If
∑J

i=1 Bi1 t < 1 for some t, then by the work conservation condition (30),
∑J

i=1 Xi1 t < 1, and by the continuity
of the latter in t, this holds on a neighborhood of t. In such a neighborhood, it is seen, by combining (28) and
(30), that Qi = 0, and by (37), that Ri do not increase. Hence using (26), (27), and (28), for s in a neighborhood
of t,

Ki1 s −Ki1 t =Qi1 s −Qi1 t +Ei1 s −Ei1 t =Ei1 s −Ei1 t0

This shows �i4t5= �i4t5, for all i.
On the other hand, if

∑j
i=1 Qi1 t > 0, then the same is true in a neighborhood, by continuity of Qi (which

follows from (26), (27), and (28), using the continuity of Ki, Ei and Ri). By (32), Ki remains constant on
any such interval, for all i ≥ j + 1. Moreover, using (28) and (30),

∑J
i=1 Bi is equal to one. Hence for s in a

neighborhood of t,

j
∑

i=1

4Ki1 s −Ki1 t5 =

J
∑

i=1

4Ki1 s −Ki1 t5=

J
∑

i=1

4Bi1 s −Bi1 t +Di1 s −Di1 t5

=

J
∑

i=1

4Di1 s −Di1 t51

where we used (26) for the second equality. This shows
∑j

i=1 �i4t5= �4t5 if
∑j

i=1 Qi1 t > 0.
Finally, since

∑J
i=1 Bi and

∑j
i=1 Qi are absolutely continuous, it follows that 4d/dt5

∑J
i=1 Bi = 0 a.e. on

A1 2= 8t2
∑J

i=1 Bi1 t = 19 and 4d/dt5
∑j

i=1 Qi1 t = 0 a.e. on A2 2= 8t2
∑j

i=1 Qi1 t = 09 (Dupuis and Ellis [8, Theo-
rem A.6.3]). But

d

dt

J
∑

i=1

Bi =

J
∑

i=1

�i − �1
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and
d

dt

j
∑

i=1

Qi =

j
∑

i=1

(

�i −�i −
d

dt
Ri

)

0

Note by (37), that a.e. on 8t2 Qi4t5 = 09, 4d/dt5Ri = 0. Thus a.e. on A = A1 ∩A2, we have
∑j

i=1 �i =
∑j

i=1 �i

and
∑J

i=1 �i = �. Hence a.e. on A,
∑j

i=1 �i =
∑j

i=1 �i = �∧
∑j

i=1 �i. �

3.4. Characterization of the invariant state. We now consider the case where, for all i, Ei4t5 = �it for
t ≥ 0, where �i > 0 are constants. Recall that �i ∈ 401�5 denote the reciprocal expected service times, that is,

1
�i

=

∫ �

0
41 −Gs

i 4x55dx1 i = 11 : : : 1 J 0

For each i, let �i = �i/�i.
A tuple è0 = 4X01 �01�05 is said to be an invariant state if any solution

S = 4B1X1Q1D1K1R1�1�5

to the FME with initial condition è0, satisfies 4X4t51 �4t51�4t55= 4X01 �01�05 for all t ≥ 0. If è0 is an invariant
state and S is the corresponding solution then Bi10 2= Bi405= �11 �i10� and Qi10 2=Qi405=Xi10 −Bi10, as dictated
by (35) and (28).

Denote

L= inf
{

j2
j
∑

i=1

�i ≥ 1
}

0 (56)

Theorem 3.3. Let the hypotheses of Theorems 3.1 and 3.2 hold, and suppose that Gr
L is strictly increasing

in 601H r
L5. Then there exists a unique invariant, given as follows:

(i) �i104dx5= �i41 −Gr
i 4x55dx =2 �i1∗4dx5.

(ii) If
∑J

i=1 �i ≤ 1 then �i104dx5= �i41 −Gs
i 4x55dx, Xi10 = �11 �i10�, Qi10 = 0 for all i.

(iii) If
∑J

i=1 �i > 1, let �̂=
∑L−1

i=1 �i < 1 (note that L≤ J in this case). Then

�i104dx5= �i41 −Gs
i 4x55dx1 i = 1121 : : : 1L− 11 (57)

�L104dx5=�L41 − �̂541 −Gs
L4x55dx1 (58)

�i104dx5= 01 i > L0 (59)

Moreover, Xi10 = �11 �i10� = �i for i ≤ L − 1, XL10 = �11 �L10� + QL10 = 1 − �̂ + b, where b > 0 is uniquely
determined (owing to the strict monotonicity of Gr

L) by

Gr
L4�L4b55=

∑L
i=1 �i − 1
�L

1 (60)

�L4y5= inf8x2 �L1∗601 x7≥ y90

Finally, for i > L, one has Xi10 =Qi10 ≥ 0, Ri4t5= �it, Ki4t5= 0, and

Qi10 = �i

∫ �

0
41 −Gr

i 4x55dx0 (61)

Proof. First we show that any invariant state satisfies assertions (i)–(iii) above. Suppose that 4X01 �01�05 is
an invariant state. Since X4t5 = X0, �4t5 = �0, it follows that B4t5 = B0 and Q4t5 = Q0, t ≥ 0. In addition, by
Proposition 3.2, for f ∈Cb601�5, �f 1�i10�<�,

�f 1�i10� =

∫

601�5

1 −Gr
i 4x+ t5

1 −Gr
i 4x5

f 4x+ t5�i10 4dx5+�i

∫ t

0
41 −Gr

i 4t − s55f 4t − s5ds1 t ≥ 00

As t → �, the first integral converges to zero by dominated convergence, and the second converges to
�i

∫ �

0 41 −Gr
i 4u55f 4u5du. Thus

�i104dx5= �i41 −Gr
i 4x55dx = �i1∗4dx50
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In addition,
∫ �

0
hr
i 4x518�i1 s 601 x7<Qi1 s9

�i1 s 4dx5=

∫ �

0
hr
i 4x518�i10601 x7<Qi109

�i10 4dx5=2 pi1 (62)

so that, by (37),
Ri4t5= pit0

Owing to the strict monotonicity of Gr
L on 601H r

L5,

QL10 > 0 implies pL > 00 (63)

By (26), (27), and (28),
Ki1 t =Qi10 −Qi1 t +Ei1 t −Ri1 t = 4�i −pi5t0

It follows, again by Proposition 3.2, that

�f 1 �i10� =

∫

601�5

1 −Gs
i 4x+ t5

1 −Gs
i 4x5

f 4x+ t5�i10 4dx5+ 4�i −pi5
∫ t

0
41 −Gs

i 4t − s55f 4t − s5ds1

which converges, as t → �, to 4�i −pi5
∫ �

0 f 4u541 −Gs
i 4u55du. Hence

�i104dx5= 4�i −pi541 −Gs
i 4x55dx = 4�i −pi5�i1∗4dx50

Let us show that for all j < L, Qj10 = 0. Arguing by contradiction, assume Q110 + · · · +Qj10 > 0, for some
j < L0 Then by Theorem 3.2,

�14t5+ · · · +�j4t5= �4t5=

J
∑

i=1

�hs
i 1 �i1∗� =

J
∑

i=1

4�i −pi51

and �j+14t5= · · · = �J 4t5= 0. This implies that for i > j , �i = pi, so that �i10 = 0. But

J
∑

i=1

Bi10 =

J
∑

i=1

�11 �i10� =

j
∑

i=1

�11 �i10� =

j
∑

i=1

�i −pi

�i

≤

j
∑

i=1

�i

�i

< 10

Because of the work conservation condition (30), this contradicts the assumption
∑j

i=1 Qi10 > 0. This shows
Qj10 = 0 for all j < L. If

∑L
j=1 �j = 1 and QL10 > 0, then by (63) pL > 0, and this, together with �L+14t5= · · · =

�J 4t5= 0, implies that
J
∑

i=1

Bi10 =

J
∑

i=1

�11 �i10� =

L
∑

i=1

�i −pi

�i

<
L
∑

i=1

�i

�i

= 11

which, again, contradicts the work conservation assumption.
As a result, for j < L, Rj4t5= 0, pj = 0, and thus �j4t5= �j , and if

∑L
j=1 �j = 1 then also QL10 = 01 RL4t5= 0,

pL = 0 and �L4t5= �L0
So assume from now on that

∑L
j=1 �j > 10 Suppose that QL10 = 0. Then RL4t5 = 0 and pL = 0 so that

�L10 = �L�L1∗ and
J
∑

i=1

�11 �i10� ≥

L
∑

i=1

�11 �i10� =

L
∑

i=1

�i

∫ �

0
41 −Gs

i 4x55dx =

L
∑

i=1

�i

�i

> 11

which is impossible. Thus QL10 > 0 so that
∑J

i=1�11 �i10� = 1. It follows by Theorem 3.2 that Ki4t5 = 0 for
i ≥ L+ 1 and therefore �i10 = 0 for i ≥ L+ 1 and

1 =

J
∑

i=1

�11 �i10� =

L
∑

i=1

�11 �i10� =

L−1
∑

i=1

�i

∫ �

0
41 −Gs

i 4x55dx+ 4�L −pL5
∫ �

0
41 −Gs

L4x55dx

=

L−1
∑

i=1

�i

�i

+
�L −pL

�L

0

Hence

pL =

( L
∑

i=1

�i

�i

− 1
)

�L0
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Since by its definition in (62) for all j , pj = �jG
r
j 4�j4Qj1055, it follows that QL10 = b where b is such that

Gr
L4�L4b55= 4

∑L
i=1 �i − 15/�L.

For j ≥ L+ 1, since �j10 = 0, we have Xj10 =Qj10. But pj = �jG
r
j 4�j4Qj1055 so that

�j4Qj105= inf8x2 Gr
j 4x5= 19=H r

j 0

That is

inf
{

y2 �j

∫ y

0
41 −Gr

j 4u55du≥Qj10

}

=H r
j 0

Hence Qj10 = �j

∫ H r
j

0 41 −Gr
j 4u55du.

We have thus shown that any invariant state satisfies (i)–(iii) above. It can be easily checked using similar
calculations that the tuple 4X01 �01�05 specified by (i)–(iii) is an invariant state for the FME. �

4. Convergence of scaled processes. The goal of this section is to argue that the processes underlying the
N -server model, normalized in fluid scale, converge to the corresponding quantities of the fluid model, both on
a finite time interval and in stationarity. Given our treatment from §3, the main results presented here follow
almost immediately from those of Kaspi and Ramanan [14] and Kang and Ramanan [12, 13].

4.1. The N -server system as a Markov process. For i = 11 : : : 1 J 1 let

�N
i 4t5= inf8s > t2 EN

i 4s5 > EN
i 4t59− t1

be the forward recurrence time at time t of the arrival process of class-i customers. Consider

Y N
=
(

�N 1XN 1 �N 1�N
)

=
{

�N
i 4t51X

N
i 4t51 �

N
i 4t51�

N
i 4t52 i = 11 : : : 1 J 1 t ≥ 0

}

0

This process takes values in Y = �J
+

× �J × ×J
i=1 MD601H

s
i 5 × ×J

i=1 MD601H
r
i 5, where we recall that, for

0 ≤ a < b ≤ �, MF 6a1 b5 is the space of finite measures on the measurable sets of 6a1 b5 and let MD be the
subset of MF that consists of measures of the form

∑l
1=1 �xi

, where �x is a point mass at x (x ∈ 6a1 b5). If we
endow �+ with the Euclidean topology, � with the discrete topology, and MD6a1 b5 with the weak topology,
then Y, endowed with the product topology, is a Polish space.

We hereafter consider Y N as a stochastic process over t ≥ 0, with initial conditions Y N 405. As implied by the
system description in §2, it is assumed that Y N 405 is independent of 8ri1 j1 vi1 j1 e

N
i1 j+1 −eNi1 j1 i = 11 : : : 1 J 1 j ≥ 19,

namely, the patience and service times of future arrivals, as well as their interarrival times.

Theorem 4.1. Y N is a strong Markov process on the state space Y.

Proof. The proof of this theorem follows along the lines of Appendices A and B of Kang and Ramanan [12]
for the one-class model, relying on the process being a piecewise deterministic Markov process (as defined,
e.g., in Jacobsen [10]). The construction of the process from the model primitives in our case is slightly more
involved because of the priority classes, and differs because of the component �N being the forward rather than
backward recurrence time, but is quite straightforward, and we have therefore chosen to omit it here. Also, as in
Kang and Ramanan [12], the deterministic functions that govern the process between its jumps are continuous.
Thus the strong Markov property then follows by Theorem 7.5.1 of Jacobsen [10]. �

From here to the end of the next subsection we fix N , consider the Markov process Y N 1 and suppress N

from our notation. We denote by �y its law given Y 405 = y and, given any probability measure � over Y, let
�� =

∫

�x4 · 5� 4dx5. We denote by Ɛy and Ɛ� the corresponding expectations.
For each bounded measurable function � on Y and � > 01 let U ��4y5 = Ɛy6

∫ �

0 e−�t�4Yt5dt7 denote the
�-potential of the process Y applied to the function �.

The state space contains points that we call “special.” These are points y = 4�1X1�1�5 ∈ Y, having the
property �i = �j for some two distinct indices i and j . When starting from such a point, customers of two
classes are scheduled to arrive at the same time. Write Ys for the set of special points and Yc

s =Y\Ys .
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Assumption 4.1. For each i, the class-i interarrival distribution has a density.

Lemma 4.1. Let Assumption 4.1 hold. Then for each bounded, continuous function � on Y, the function
y 7→U ��4y5 is continuous at any y ∈Yc

s .

Proof. For e� an exponentially distributed random variable with parameter � that is independent of Y , we
can write

U ��4y5=
1
�
Ɛy �4Y 4e�550

Suppose that ym → y0 ∈ Yc
s as m → �, that Y m (respectively, Y 0) is the process Y that starts at time 0 at ym

(respectively, y0).
For each m ∈�+, let Y m be the state descriptor of a multiclass N -server queue with initial state

Y m405= ym =

(

�m1 xm1 i1
km1 i
∑

j=1

�um1 i
j
1
lm1 i
∑

j=1

�zm1 i
j
1 i = 11 : : : 1 J

)

∈Y1

for some km1 i ∈ 801 : : : 1N 9, lm1 i ∈ �, i = 11 : : : 1 J . Suppose that all 8Y m2 m ∈ �+9 are defined on the same
probability space constructed using all the interarrival, service and patience times as primitives. Suppose further
that ym → y0. This immediately implies that xm1 i = x01 i, km1 i = k01 i, lm1 i = l01 i for m sufficiently large and that
�m1 i → �01 i, um1 i

j → u01 i
j , zm1 i

j ′ → z01 i
j ′ for 0 ≤ j ≤ k01 i, 0 ≤ j ′ ≤ l01 i. We may assume without loss of generality

that km1 i = k01 i, lm1 i = l01 i, xm1 i = x01 i, that the residual service the jth customer of class i in service has the
density gs1 i4um1 i

j + t5/41 −Gs1 i4um1 i
j 55 and the residual patience of the j ′th customer of the class i in the queue

is gr1 i4zm1 i
j + t5/41 −Gr1 i4zm1 i

j 55. It is further assumed that
• all interarrivals after the first one, �m1 i, are identical for each N -server process Y m;
• all service times of customers that arrive after time zero are identical for each N -server process Y m.

Since zm1 i
j → z01 i

j and um1 i
j → u01 i

j , it follows that the remaining patience of customers in the queue at time 0
and the remaining service times of customers in service at time 0 converge in distribution to those associated
with z01 i

j and u01 i
j . Since we are looking for the convergence of U ��4ym5 to U ��4y05 that is the convergence of

Ɛym4�4e�55 to Ɛy04�4e�55 we may as well assume that
• for each j ′ = 11 : : : 1 l01 i the remaining patience times of the customer associated with �zm1 i

j′
converges almost

surely as m→ � to the remaining patience time associated with the point mass �z01 i
j′

and for j = 11 : : : 1 k01 i the
remaining service time of the customer associated with �um1 i

j
converges almost surely to the remaining service

time associated with the point mass �u01 i
j

(by using the Skorohod representation theorem).

Observe that for y0 ∈Ys , two customers of different classes arrive at the same time �01 i = �01 i′ . If the number of
busy servers at that point of time is equal to N −1, say, then it is possible that, for a subsequence m′ along which
�m′1 i <�m′1 i′ for m′ large, customer from class i will go into service at time �m′1 i, and for another sequence m′′,
having �m′′1 i >�m′′1 i′ the opposite will occur. This may cause 8Y m4�m1 i59 to have two limit points, which may
in turn cause two different limits of Y m4�m1 i + t5. To avoid this possibility we have assumed that y0 ∈Yc

s . Since
we have assumed that all interarrival time distributions have densities, the following event has probability zero,
namely, that the arrivals of two customers of different classes, at least one of which is not a first arrival after
time 0, coincide. Furthermore, Kang and Ramanan [13, Lemma 4.2] and the fact that the interarrival times and
service times have densities, exclude the possibility that arrivals and departures will coincide. Those proofs carry
over with no change to our situation of multiclass queues and via the same argument one can prove that arrivals
and reneging do not coincide when the patience times have densities.

Let 8�m
n 2 n = 1121 : : : 9 be the jump times of Y m and 8�0

n 2 n = 1121 : : : 9 be the jump times of Y 0. Since
� is bounded, by dominated convergence it suffices to show that �4Y m4e�55 → �4Y 04e�55 a.s. Since e� is an
exponential r.v., independent of the processes Y m, m= 1121 : : : , and Y 0, it suffices to show that

Y m4t5→ Y 04t5 for every t, a.s. (64)

Combining now the facts that: (1) the deterministic functions that govern the motion between the jumps are
all continuous functions on Y; (2) for all t, Y 04t5 ∈ Yc

s as we have explained above; and (3) no arrivals
of two customers (for the process Y m), beyond possibly those at �m1 i, coincide, one can now use the same
argument as the one used in Kang and Ramanan [13, Lemma 4.1] to prove that for each i ∈ �, �m

n → �0
n , and

Y m4�m
n 5→ Y 04�0

n5.
Finally, if t is not a jump time of Y 0 then there is an n so that �0

n < t < �0
n+1 and therefore for sufficiently

large m, �m
n < t < �m

n+1. By the continuity of the deterministic functions that govern the motion between jumps,
it follows that Y m4t5→ Y 04t5 a.s. as m→ �, for such t, as we set out to prove. This completes the proof. �
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4.2. Stationary distributions. In this subsection we show that the process Y has a stationary distribution.
Since Y is a Markov process, this can be done by finding invariant distributions to its semigroup. For that
we shall use the Krylov-Bogoliubov theorem (see Da Prato and Zabczyk [7, Theorem 3.1.1]). The statement
of this theorem requires the semigroup of the process to be Feller, a condition not met in our case, since we
work with the forward recurrence time �N . We therefore argue that the Krylov-Bogoliubov candidate for the
invariant measure is invariant with respect to the 1-potential operator U 1 defined above, proven in Lemma 4.1 to
map bounded continuous functions to bounded functions that are continuous on Yc

s . We then use Azema et al.
[4, Lemma 1, p. 159] to conclude that any measure that is invariant with respect to U 1 is invariant with respect
to the Markovian semigroup Pt�4y5= Ɛy4�4Yt55, and therefore a stationary measure for Y .

For each measurable set B ⊂Y and t > 0 define

L�
t 4B5=

1
t

∫ t

0
��4Y 4s5 ∈ B5ds1 (65)

where � is any initial distribution for the process Y . Obviously, for each t, Lt is a probability measure on the
measurable sets of Y0

Theorem 4.2. Let Assumption 4.1 hold. Assume, in addition, that for all i = 11 : : : 1 J , one has Ɛ��11�i10�<
�. Then the family of measures 8L

�
t 9t>0 is tight. Any subsequential limit of this family is an invariant measure

for U 11 and thus for the semigroup of Y .

Proof. The proof of the first assertion follows along lines similar to those of Kang and Ramanan
[13, Lemmas 4.4–4.8], proved for all classes in our case, and we shall not repeat it here. Since in the Krylov-
Bogoliubov Theorem it is required that the semigroup be Feller, we shall show how to adjust its proof to our
setting. Let tn → � as n→ � be a subsequence along which the sequence of probability measures L�

tn
converges

weakly to a measure �.
Since by Assumption 4.1 the interarrival times have densities, with probability one, no two arrivals occur at

the same time, except possibly the first arrivals of some of the classes (i.e., in the case of starting at a special
point of the state space). Hence

lim
t→�

��4Yt ∈Ys5= 01

and therefore any limit of L�
tn

does not charge the set of special points, Ys .
Let � be a bounded continuous function on Y. Then U 1� is bounded, and by Lemma 4.1, it is continuous

on Yc
s . Denote by 4Pr5r≥0 the semigroup of Y . Then

�U 1�1�� =

〈

U 1�1 lim
tn→�

L�
tn

〉

= lim
tn→�

〈

U 1�1
1
tn

∫ tn

0
��4Ys ∈ ·5ds

〉

= lim
tn→�

〈

∫ �

0
e−rPr� dr1

1
tn

∫ tn

0
��4Ys ∈ ·5ds

〉

= lim
tn→�

∫ �

0
e−r

〈

Pr�1
1
tn

∫ tn

0
��4Ys ∈ ·5ds

〉

dr

= lim
tn→�

∫ �

0
e−r

〈

�1
1
tn

∫ tn+r

r
��4Ys ∈ ·5ds

〉

dr

=

∫ �

0
e−r lim

tn→�

〈

�1
1
tn

∫ tn+r

r
��4Ys ∈ ·5ds

〉

dr

=

∫ �

0
e−r lim

tn→�

[

1
tn

〈

�1
∫ tn

0
��4Ys ∈ ·5ds

〉

+
1
tn

〈

�1
∫ tn+r

tn

��4Ys ∈ ·5ds

〉

−
1
tn

〈

�1
∫ r

0
��4Ys ∈ ·5ds

〉]

dr

=

∫ �

0
e−r

��1��dr = ��1��1

where the second equality follows from weak convergence, the fact that U 1� is bounded, and is continuous
on a set of full �-measure, the fourth by Fubini’s theorem, the fifth by the Markov property, and the sixth by
dominated convergence. �
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The following result relating integration against L�
t to integration with respect to invariant measures will be

used in §5.

Proposition 4.1. Let Assumption 4.1 hold and assume that Ɛ�4�11�i10�5 < �1 i = 11 : : : 1 J 0 Let ci1 i =

11 : : : 1 J be nonnegative constants and recall that Q11 : : : 1QJ denote the queue lengths of the various classes.
Let � be an invariant measure obtained as above, and tn the corresponding subsequence. Then

�c1Q1 + · · · + cJQJ 1 �� = lim
tn→�

1
tn

∫ tn

0
Ɛ�4c1Q14s5+ · · · + cJQJ 4s55ds0 (66)

Consequently, there exists an invariant measure �̂, such that

�c1Q1 + · · · + cJQJ 1 �̂� = lim sup
T→�

1
T
Ɛ�

[

∫ T

0
4c1Q14s5+ · · · + cJQJ 4s55ds

]

0 (67)

Proof. We first prove (66). Recall that for each i = 11 : : : 1 J , Qi4t5 = Xi4t5 − �11 �i1 t�0 Thus Qi4t5 is
obtained as a continuous function on the state space of the Markov process 4�1X1�1�50 If it were bounded the
result would follow from weak convergence. To obtain the result for the unbounded function at hand, we shall
prove that 8Qi2 i = 11 : : : 1 J 9 are uniformly integrable with respect to the sequence of measures L

�
tn

. That is,
that supn4ƐL

�
tn
4Qi18Qi>K955 → 0 as K → �1 where ƐL

�
tn

is the expected value with respect to the measure L
�
tn

.
Note that for each i, Qi4t5≤ �11�i1 t�1 and so the uniform integrability of Qi will follow from that of �11�i�0

Using Theorem 4.9 of chapter 3 of Cinlar [6], and the fact that �11�i1 t� are nonnegative, it suffices to show
that ƐL

�
tn
4�11�i�5 <�1 that ��11�i�1 ��<�, and that limtn→� ƐL

�
tn
4�11�i�5= ��11�i�1 ��0

We first recall Kang and Ramanan [13, Lemma 4.4] that proves in the single-class case that supt≥0 Ɛ4�11�t�5<�.
Their proof carries over to our case with Ɛ� replacing their Ɛ, with no changes. This immediately implies that
ƐL

�
tn
4�11�i�5 <�0 Next, recall that since � is a stationary distribution, and ��11�i�1 �� is the expectation, under

the stationary distribution, of the number of customers in a G/G/� queueing system with the arrival process
EN

i and service distribution Gr
i , it follows from the Little’s law (Little [15]) that it is equal to �N

i �
−1
i 1 where we

recall that 4�N
i 5

−1 are the mean interarrival times and �−1
i are the mean patience times. It therefore remains to

show that limtn→� ƐL
�
tn
4�11�i�5= �N�

−1
i .

To lighten the notation we restrict ourselves to one class and suppress the symbol i. From Kang and
Ramanan [13, Proposition 2.2] we have

Ɛ��11�t� = Ɛ�

(

∫ �

0

1 −Gr4x+ t5

1 −Gr4x5
�0 4dx5

)

+

∫ t

0
41 −Gr4t − s55de4s51 (68)

where e4s5 = Ɛ�4E4s551 and 4E4s55s≥0 is the arrival process (of class i customers in the N -server queue). We
shall treat the two terms of (68) separately.

We first note that since Ɛ��11�0�<� and limt→�41 −Gr4x+ t55/41 −Gr4x55= 0, it follows by dominated
convergence that

lim
t→�

Ɛ�

∫ �

0

1 −Gr4x+ t5

1 −Gr4x5
�0 4dx5= 01

and therefore that

lim
tn→�

1
tn
Ɛ�

∫ tn

s=0

∫ �

0

1 −Gr4x+ s5

1 −Gr4x5
�0 4dx5ds = 00

As for the second term in (68)

1
tn

∫ tn

t=0

∫ t

s=0
41 −Gr4t − s55de4s5dt =

1
tn

∫ tn

u=0
e4tn − u541 −Gr4u55du

=
1
tn

∫ tn/2

u=0
e4tn − u541 −Gr4u55du+

1
tn

∫ tn

u=tn/2
e4tn − u541 −Gr4u55du0

We shall treat the two terms on the right-hand side of the above equation separately. For the second term,

1
tn

∫ tn

u=tn/2
e4tn − u541 −Gr4u55du≤

e4tn/25
tn

∫ tn

tn/2
41 −Gr4u55du0
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By the elementary renewal theorem t−1
n e4tn/25→

1
2�N as tn → � whereas

∫ tn
tn/241−Gr4u55du→ 01 as tn → �1

by our assumption that the patience time has a finite expectation. As to the first term, it is equal to

∫ tn/2

u=0

e4tn − u5

tn − u

tn − u

tn
41 −Gr4u55du0

One can choose tn large enough so that �e4tn − u5/4tn − u5− �N � < 11 for all u ∈ 601 tn/27. Thus applying the
dominated convergence theorem to the above term we have

lim
tn→�

∫ tn/2

u=0

e4tn − u5

tn − u

tn − u

tn
41 −Gr4u55du= �N

∫ �

0
41 −Gr4u5du=

�N

�r
0

Summing all the above we have proved that

lim
tn→�

ƐL
�
tn
4�11��5=

�N

�r
1

as required. This being proved for each class, we have shown that �11�i�, i = 11 : : : 1 J are uniformly integrable
under ƐL

�
tn

and therefore so are Qi, i = 11 : : : 1 J . It follows that

ƐL
�
tn

( J
∑

i=1

ciQi

)

→

〈 J
∑

i=1

ciQi1 �

〉

as tn → �

as claimed.
Next, to show that (67) follows, let 8Tn9 be a sequence along which the r.h.s. of (67) is achieved. It follows

from Theorem 4.2 that the sequence 8L
�
Tn
9 is tight, and that any subsequential limit is invariant. Select one such

invariant measure and denote it by �̂. Denote by 8n′9 the corresponding subsequence. Then (67) follows from
(66) by substituting 4�̂1 8Tn′95 for 4�1 8tn95. �

4.3. Convergence. We now relate a scaled version of the N -server system to the fluid model. The scaling is
performed as follows. For the initial conditions we write X̄N

i10 =N−1XN
i10 and B̄N

i10 =N−1BN
i10. For the real-valued

processes we let X̄N
i = N−1XN

i , and define ĒN
i 1 B̄

N
i 1 D̄

N
i 1 K̄

N
i 1 R̄

N
i 1 Q̄

N
i 1 Ī

N
i analogously. For the measure-valued

processes, �̄N
i10 =N−1�N

i10, �̄N
i =N−1�N

i , and �̄N
i10 and �̄N

i are defined analogously.
The first two of the three items in the assumption below summarize the hypotheses considered in the main

results of §3. Recall L defined in (56).

Assumption 4.2. One has the following:
• The hazard rates hr

i are all bounded.
• Gr

L is strictly increasing in 601H r
L5.

• For each i, hs
i is either bounded or lower semi-continuous on 4Ls

i 1H
s
i 5, for some Ls

i <H s
i .

Next are assumptions regarding convergence of the initial distributions and mean interarrival times (recall that
for the N th system, the class-i mean interarrival times are given by 4�N

i 5
−1). For simplicity we assume that the

limiting initial conditions are deterministic.

Assumption 4.3. As N → �,
• N−1�N

i → �i > 0, for every i;
• X̄N

i10, i = 11 : : : 1 J converges a.s.; its limit is denoted by Xi10;
• �̄N

i10 converges a.s., weakly in MF 601H
s
i 5, for every i; its limit is denoted by �i10;

• �̄N
i10 converges a.s., weakly in MF 601H

r
i 5 for every i; its limit is denoted by �i10. Moreover, for each i,

�i10601 t5 are continuous in t. Finally, one has Ɛ6�11 �̄N
i10�7→ �11�i10�, for every i;

• Xi10, �i10 and �i10 are deterministic.

Owing to the structure of the arrival processes (renewal with finite mean interarrival), ĒN
i converge a.s.,

uniformly over finite time intervals, to Ei, where, here and in what follows,

Ei4t5= �it1 t ≥ 01 i = 11 : : : 1 J 0

Recall our notation from §3 and denote by S = 4B1X1Q1D1K1R1�1�5 the solution to the FME with data E
and initial condition 4X01 �01�05. Note that S is uniquely defined under the assumptions of this section and in
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view of the results of the previous section. We can now prove convergence of the scaled N -server system over
a finite time interval. The process

4ĒN 1 S̄N 5=
(

ĒN 1 B̄N 1 X̄N 1 Q̄N 1 D̄N 1 K̄N 1 R̄N 1 �̄N 1 �̄N
)

takes values in Ŷ, where Ŷ=�7J
+

××J
i=1 MD601H

s
i 5××J

i=1 MD601H
r
i 5. We endow it with the product topology

(�+ with Euclidean, MD with weak topology). It is a Polish space. The process’s sample paths belong to
DŶ4�+5, which we endow with the corresponding Skorohod topology.

Theorem 4.3. Under Assumptions 4.1, 4.2, and 4.3,

4ĒN 1 S̄N 5=
(

ĒN 1 B̄N 1 X̄N 1 Q̄N 1 D̄N 1 K̄N 1 R̄N 1 �̄N 1 �̄N
)

=⇒
(

E1S5= 4E1B1X1Q1D1K1R1�1�
)

0

Proof. First, as mentioned above, ĒN
i converge to Ei, which have continuous sample paths, by which 8ĒN

i 9
are C-tight. Tightness of each of the sequences D̄N

i and R̄N
i follows precisely as in the case treated in Lemma 6.3

of Kang and Ramanan [12]. We thus omit the details. Note that each of the jumps of these processes is of size
N−1. As a consequence, these processes are, in fact, C-tight (see Jacod and Shiryaev [11], Proposition VI.3.26).

Note that, for each N , ĒN and the components of S̄N satisfy Equations (26)–(32), as follows from the equations
listed in §2 for the unscaled processes. As a result, Proposition 3.3 applies for the scaled processes. Thus, for
any t1 � > 0,

w4Q̄N 1 �1 t5≤ c1

(

w4ĒN 1 �1 t5+w4D̄N 1 �1 t5+w4R̄N 1 �1 t5
)

0 (69)

Using (27) and (28) we also have

�Q̄N
� ≤ 1 + �X̄N

0 � +�ĒN
� +�D̄N

� +�R̄N
�0 (70)

The C-tightness of each of the sequences ĒN
i , D̄N

i , and R̄N
i implies, in view of (69), that, for each t > 0, �> 0,

�′ > 0 there exists � > 0 such that �4w4Q̄N 1 �1 t5 > �5 < �′ for all large N . Using also the assumed convergence
of X̄N

0 gives tightness of the r.h.s. of (70) (see, e.g., Jacod and Shiryaev [11, Proposition VI.3.26 ]). As a result,
C-tightness of each of the sequences Q̄N

i follows (ibid.).
Next, recalling that the scaled processes satisfy (27), (28), and (26), it follows that each of the sequences X̄N

i ,
and in turn, B̄N

i and K̄N
i are C-tight as well.

Furthermore, the measure-valued processes are tight. The argument follows closely of that provided in Kang
and Ramanan [12, Lemma 6.6], and we thus omit the details.

Since the scaled processes satisfy (26)–(31) and (35), any subsequential limit also satisfies these equations.
The prelimit processes also satisfy (32). Let us argue via continuity of the Skorohod map that so do the limit
processes. To this end, fix a subsequential limit 4B1X1Q1D1K1R5 of 4B̄N 1 X̄N 1 Q̄N 1 D̄N 1 K̄N 1 R̄N 5. Since the
prelimit processes satisfy (26)–(32), Lemma 3.2(i) is applicable. Fix i0 ∈ 82131 : : : 1 J 9. Recalling the notation
ä from this lemma, as well as the solution map â̂ from Definition 3.1, we have 4Q̂N 1 K̂N1 4255 = â̂ 6ÊN 7, where
4Q̂N 1 K̂N14251 ÊN 5=ä4B̄N 1 X̄N 1 Q̄N 1 D̄N 1 K̄N 1 R̄N 5. Recall that â is continuous in the uniform topology (41), and
note, by Definition 3.1 and the definition of â̂ , that so is â̂ . As a result, if 4Q̂1K4251 Ê5=ä4B1X1Q1D1K1R5,
one has 4Q̂1K4255= â̂ 6Ê7. By (44),

(i0−1
∑

j=1

Qj1
J
∑

j=i0

Qj

)

= Q̂+0 (71)

Now, by the third bullet in Definition 3.1 we have, a.s.,
∫

601�5
18Q̂4s5∈Go9 dK

425
s = 00

By the structure of the set G and the nonnegativity of Q̂2, it follows that Q̂4s5 ∈ Go if and only if Q̂14s5 > 0,
which, by (71) holds if and only if

∑i0−1
j=1 Qj4s5 > 0. We thus obtain, a.s.,

∫

601�5
1
8
∑i0−1

j=1 Qj 4s5>09 dK
425
s = 00

Recalling that i0 is arbitrary and applying Lemma 3.2(ii) we obtain that the limit processes satisfy (32).
Now, any subsequential limit satisfies also Equations (33), (34), (36), and (37). The argument here follows that

of the proof of Theorem 7.1 of Kang and Ramanan [12]. More precisely, the first inequality of (25) and identity
(36) follow as that of Kang and Ramanan [12, (7.2)]. This relation corresponds to (5.49) established in Kaspi
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and Ramanan [14, Proposition 5.17] that relies on Lemmas 5.8(1) and 5.16 of that paper. Those continue to
hold in the presence of abandonments and priorities. The second inequality of (25) and identity (37) are proved
in Proposition 7.2 and Lemmas 7.3–7.6 that are a part of the proof of Theorem 7.1 of Kang and Ramanan [12]
and carry without any change for each class, to our model. The fact that (33) and (34) are satisfied follows as
in the proof of Theorem 7.1 of Kang and Ramanan [12] or Kaspi and Ramanan [14, Theorem 5.15] applied to
each class. We avoid repeating the details of these arguments here.

Having shown that any limit satisfies all of (25)–(37), we can apply Theorem 3.1, by which the limit must
be equal to 4E1S5 a.s. This shows the claimed convergence and completes the proof. �

Finally we present the result regarding convergence of invariant distributions. Let è∗
0 = 4X∗

0 1 �
∗
0 1�

∗
05 denote

the unique invariant state of the fluid model, identified in Theorem 3.3. Let L̄N
t be defined by

L̄N
t 4B5=

1
t

∫ t

0
�44X̄N

s 1 �̄
N
s 1 �̄

N
s 5 ∈ B5ds1

for any measurable set B ⊂ Ȳ = �J
+

××J
i=1 MD601H

s
i 5××J

i=1 MD601H
r
i 5. We endow �+ with the Euclidean

topology, and MD with the weak topology and Ȳ with the corresponding product topology. It follows from
Theorem 4.2 that these measures are tight in t, for each N .

Theorem 4.4. Let Assumptions 4.1, 4.2 and 4.3 hold. For each N , fix a subsequential limit �N of L̄N
t . Then

�N ⇒ �è∗
0

as N → �.

Proof. Given the result of Theorem 4.3, this follows as in Kang and Ramanan [13, Theorem 3.3]. �

5. Application: The c�/� rule. The main results of this paper are concerned with the behavior of the
system under a particular policy, namely, a policy of priority type. In this section we relate these results to a
dynamic control problem in which a control policy is sought to minimize a given cost. In Atar et al. [1, 2] such
a control problem was studied for a multiclass many-server system with abandonment, under a LLN scaling,
and a general lower bound on the asymptotic performance was obtained in Atar et al. [2] for general service
time distribution and exponential reneging time distribution (see Proposition 5.1). In addition, in the case of
exponential service time, this bound was shown to be achieved by a simple fixed priority policy (the priority
ordering is described below). The goal of this section is to show that this bound is achieved by the same policy
for general service time distribution. The proof of this fact uses the results of this paper to their full strength.

To describe the control problem we consider a queueing system analogous to the one presented in §2, under
a wide range of control policies. The fixed priority policy of §2 will be a special case. Thus, as before, N
represents the number of (identical) servers, and EN

i , BN
i , XN

i , QN
i , DN

i , RN
i are processes having the same

meaning as in §2. The probabilistic and scaling limit assumptions that we shall impose on arrival, service, and
reneging will be consistent with the general framework of this paper, except that we will only be concerned
with exponential reneging distributions.

A control policy is usually defined as a rule for scheduling jobs. For our purpose, however, specifying the
set of rules is not necessary, and instead, a control will be associated with a collection of processes satisfying
a minimal set of relations. More precisely, given N , let NJ mutually independent renewal processes D̃i1 k,
i = 1121 : : : 1 J , k = 1121 : : : 1N , be given, where Di1 k specifies the service times of class i in server k. The
interrenewal times for each of these processes are distributed according to Gs

i (with mean �−1
i ), and Di1 k405= 0

(i.e., no renewal counted at time 0). For each i1 k, let BN
i1k be a process that takes values in 80119, and indicates

the business of server k with a class-i customer. The number of class-i service completions by server k, up to
time t, is given by

DN
i1k4t5= D̃i1 k

(

ãN
i1k405+

∫ t

0
BN
i1k4s5ds

)

1 (72)

where ãN
i1k405 denotes the time that a customer of class i that occupies server k at time 0 (if such a customer

exists) has already spent there by then. The number of class-i customers in service and number of class-i
departures, respectively, are given by

N
∑

k=1

BN
i1k = BN

i 1
N
∑

k=1

DN
i1k =DN

i 0 (73)

It is assumed that interruption of service is not possible (i.e., a server that is assigned a new customer serves it
until completion of the service requirement). The total number of customers reneging up to time t is given by

RN
i 4t5= R̃i

(

�i

∫ t

0
QN

i 4s5ds

)

1 (74)
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where R̃i are mutually independent standard Poisson processes, and �i > 0 are given parameters, representing
the per-customer reneging rate. The arrival processes 4EN

i 5 are as defined in §2.
For each N , the collections 4EN

i 5, 4R̃i5, and 4D̃i1 k5 are assumed to be mutually independent. Given are,
in addition, initial conditions 4XN

i101 �
N
01i5. We refer to these stochastic processes and initial conditions as the

primitives. Note that the initial age-in-queue measures 4�N
i105 are not relevant here because of the memoryless

property of the exponential patience distribution. The initial age-in-service measure �N
0 may be used to determine

the parameters ãN
i1k405 in (72) in an obvious way (that is, each nonzero ãN

i1k405 corresponds to a unit point mass
of �N

01 i at x = ãN
i1k405). In addition, the primitives are related to the assumptions made in the previous section.

First, for each N , EN
i are mutually independent renewal processes with interarrival distribution having mean

1/�N
i , and satisfying Assumption 4.1 (regarding density) and the first item of Assumption 4.3 (convergence).

Next, the first and second items of Assumption 4.2 are satisfied because of the exponential assumption on the
patience. The last item of Assumption 4.2, regarding the service time distribution, is assumed, as well as all
items of Assumption 4.3, regarding initial conditions. Thus, all of Assumptions 4.1–4.3 are in force. Finally, it
is assumed that the system is overloaded, in the sense that

∑

�i =
∑

�i/�i > 1. (The results below are still valid
in the underloaded case but are trivial, as the fluid cost V in (79) is zero in this case.)

Clearly, we require

XN
i =XN

i 405+EN
i −RN

i −DN
i 1 (75)

QN
i =XN

i −BN
i ≥ 01 (76)

and

BN
i ≥ 01

J
∑

i=1

BN
i ≤N0 (77)

Given the primitives, any collection of processes

� =
(

4BN
i1k51B

N 1 4DN
i1k51D

N 1RN 1XN 1QN
)

1

satisfying Equations (72)–(77) is regarded as a policy for the N th system, and the set of all policies for the N th
system is denoted by çN . The priority policy analyzed in this paper (specialized to exponential reneging) is a
valid policy according to this definition. As in the rest of this paper, normalized versions of XN , QN , and BN

are denoted by X̄N = N−1XN , Q̄N = N−1QN and B̄N = N−1BN . Fix c = 4c11 : : : 1 cJ 5 ∈ 401�5J . Given N and
policy � ∈çN , consider the long-run average, expected cost

C̄N 4�5= lim sup
T→�

1
T
Ɛ�

[

∫ T

0

∑

i

ciQ̄
N
i 4t5dt

]

1 (78)

where ciQ̄
N
i represents a linear holding cost for class i. See Remark 5.1 for the incorporation of reneging

penalties in this cost function. Let also

CN 4�5= lim inf
T→�

1
T
Ɛ�

[

∫ T

0

∑

i

ciQ̄
N
i 4t5dt

]

0

The following is a result from Atar et al. [2]. Denote �J = 8b ∈�J
+
2
∑

bi ≤ 19.

Proposition 5.1 (Atar et al. [2, Propositions 2.1 and A.1]). Under any sequence of policies �N ∈çN ,
N ∈�,

lim inf
N→�

CN 4�N 5≥ V 2= inf
{

c · q2 4q1 b5 ∈ 4�J
+
1�J 51 �iqi +�ibi = �i1 i = 1121 : : : 1 J

}

0 (79)

It is easy to see what pair 4q1 b5 achieves the infimum on the r.h.s. of (79). Namely, qi are determined from
bi via the equations �iqi +�ibi = �i, and bi are determined by the relations

j
∑

i=1

bi = 1 ∧

j
∑

i=1

�j

�j

1 j = 1121 : : : 1 J 1

where the classes are labeled in such a way that, with Li = ci�i/�i,

L1 ≥ L2 ≥ · · · ≥ LJ 0 (80)

In what follows, we assume that the labeling is as above. What is referred to in Atar et al. [1, 2] as the c�/� rule
(in analogy with the well-known c� rule) is the nonpreemptive priority policy according to the ordering (80).
The main point of this section is to show that prioritizing according to (80) is asymptotically optimal.
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Theorem 5.1. Let �∗ denote the priority policy according to the class ordering (80). Then

lim sup
N→�

C̄N 4�∗5= V 0

Proof. This is a consequence of the main results of this paper. First, by Proposition 4.1, specifically (67),
there exists, for each N , an invariant distribution �̂ = �̂N such that

C̄N1∗ 0
= C̄N 4�∗5=

1
N

〈 J
∑

i=1

ciQ
N
i 1 �̂

N

〉

=

〈 J
∑

i=1

ciQ̄
N
i 1 �̂

N

〉

0

Next, note that the hypotheses of Theorem 3.3 are satisfied and thus the invariant state of the fluid model is
uniquely given by that result. Denote the invariant state and the corresponding quantities from Theorem 3.3 by
S0 = 4B01X01Q01D01K01R01 �01�05. Arguing as in the proof of Theorem 6.2 of Kang and Ramanan [13] one
can show that any sequence of stationary measures for the processes Ȳ N is tight. Our convergence results of
the previous section (particularly, Theorem 4.4) show that any subsequence of stationary distributions of the
scaled N -server system converge to the unique stationary state of the fluid equations. Hence �

∑J
i=1 ciQ̄

N
i 1 �̂

N �

converges in distribution to
∑J

i=1 ciQi10. To deduce that

lim
N→�

C̄N1∗
= lim

N→�

〈 J
∑

i=1

ciQ̄
N
i 1 �̂

N

〉

=

J
∑

i=1

ciQi101

it suffices to show that Q̄N
i are uniformly integrable with respect to the stationary measures �̂N . Again, to show

that, it is enough to show that �11 �̄N
i � are uniformly integrable with respect to �̂N 0 As in §3, one needs to

show that supN ��11 �̄N
i �1 �̂N �<�, �11�i10�<�, where �i10 is the ith component of �0 of the unique invariant

state of the fluid, and that limN→���11 �̄N
i �1 �̂N � = �11�i10�0 But as we have shown in §4, by Little’s formula,

��11 �̄N
i �1 �̂N � = 4�N

i /N541/�i5, which converges as N → � to �̄i41/�i5= �̄i

∫ �

0 41 −Gr
i 4u55du= �11�i10�. We

have thus shown that C̄N1∗ → c ·Q0 as N → �.
It thus remains to show that V = c · Q0. In view of the discussion following Proposition 5.1, it suffices to

show that the pair 4Q01B05 satisfies the equations

�i = �iQi10 +�iBi101 i = 1121 : : : 1 J 1 (81)

j
∑

i=1

Bj10 = 1 ∧

j
∑

i=1

�j1 j = 1121 : : : 1 J 0 (82)

To this end note that, for i < L, by (57),

Bi10 = �i

∫ �

0
41 −Gs

i 4x55dx =
�i

�i

= �i1

whereas Qi10 = Xi10 −Bi10 = 0. Equation (81) thus holds in this case. Since Bi10 = Xi10 = �i, so does (82). For
i > L, by (59), Bi10 = 0, and by (61), Qi10 = �i/�i, which again shows that (81) and (82) are valid. Finally,
consider i = L. By (58), BL10 = 1 − �̂. Thus (82) holds. Moreover, QL10 = b, with �L4b5 = x, �L1∗601 x7 =

�L

∫ x

0 e−�La da= b. Along with Equation (60) this gives

QL10 =
�L

�L

�̂+�L − 1
�L

0

As a result, (81) holds for i = L as well. This shows (81) and (82), and hence C̄N1∗ → c ·Q0 = V . �
Remark 5.1. In addition to the holding cost treated above, it is reasonable to penalize abandonment of

waiting customers. That is, replace the expected value in (78) with the augmented cost

Ɛ�

[

∑

i

cai R̄
N
i 4T 5+

∑

i

∫ T

0
cbi Q̄

N
i 4t5dt

]

1

where R̄N = N−1RN is the normalized cumulative reneging process. Recalling (74), it may be verified that the
equality

Ɛ�6R̄N
i 4T 57=E�

[

�i

∫ T

0
Q̄N

i 4t5dt

]
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holds for all T ≥ 0, provided that the policy � is nonanticipative, that is, QN 4t5 is measurable on the history

8RN 4s51EN 4s51DN 4s51 s ≤ t3QN 4s51 s < t90

(The nonanticipative property is needed to ensure that the integral �t = �i
∫ t

0 Q
N
i 4s5ds is independent of the

future increments R̃i4�t + s5 − R̃i4�t5 of the Poisson process R̃i4t5.) See, e.g., Atar et al. [3, Lemma 1] for a
proof of the above equality via a martingale argument. Given this equality, the augmented cost is equivalent to
the one in (78), with ci = �ic

a
i + cbi .
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Appendix. Here we analyze the SP 4G1d5 (see Definition 3.1). Uniqueness of solutions to the SP (and Lipschitz
continuity of the solution map) in convex polyhedral domains are well understood, but on a nonconvex polyhedron sufficient
conditions are perhaps less standard. However, the particular setting under consideration is simple. Indeed, owing to the
direction of constraint being fixed, questions of uniqueness, explicit representation, and Lipschitz property can be addressed
via a one-dimensional SP on a time-varying domain.

Proposition A.1. The SP 4G1d5 is uniquely solvable for any � ∈D�24�+5. Moreover, the Lipschitz property (41) and
the statement (42) regarding the modulus of continuity hold.

Proof. The proof is based on a result from Burdzy et al. [5] regarding a one-dimensional SP with moving boundary.
Let ` ∈D�4�+5 be fixed. Let a path �̂ ∈D�4�+5 be given. A pair 4�̂1 �̂5, �̂ ∈D�4�+5, �̂ ∈D�+

4�+5, is said to solve the

SP on 6`4 · 51�5 for �̂ if
• �̂ = �̂+ �̂,
• �̂4t5≥ `4t5 for all t ≥ 0,
• �̂ is nondecreasing, and

∫

601�5
18�̂4s5>`4s59 d�̂4s5= 0.

It follows from Burdzy et al. [5, Theorem 2.6, Remark 2.7] that for any path �̂ there exists a unique pair 4�̂1 �̂5 that solves
the SP on 6`4 · 51�5 for �̂, and

�̂4t5= �̂4t5+ sup
s∈601 t7

6`4s5− �̂4s57+1 t ≥ 00

Turning to the SP 4G1d5, let � be given, and consider a solution 4�1�5. Denote ẽ1 = d/
√

2 = 4e1 − e25/
√

2 and ẽ2 =

4e1 + e25/
√

2. Let 4�11�25 and 4�11 �25 represent � and � in the coordinate system 4ẽ11 ẽ25. By Definition 3.1, we have
�2 = �2. Moreover, letting

`4t5= −��24t5�1 t ≥ 01

it is straightforward to check that 4�11
√

2�5 solves the SP on 6`4 · 51�5 for �1. Hence, by the result cited above, there exists
a unique solution 4�1�5 for the SP 4G1d5 for �, and � is given by

�14t5= �14t5+ sup
s∈601 t7

6−��24s5� −�14s57
+1 t ≥ 01

�2 = �20

Both properties (41) and (42) follow from this explicit representation. This completes the proof of the proposition. �
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