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Abstract

We consider the non-cooperative choice of arrival times by individual users, who
seek service at a first-come first-served queueing system that opens up at a given time.
Each user wishes to obtain service as early as possible, while minimizing the expected
wait in the queue. This problem was recently studied within a simplified fluid-scale
model. Here we address the unscaled stochastic system, assuming a finite (possibly
random) number of homogeneous users, exponential service times, and linear cost
functions. In this setting we establish that there exists a unique Nash equilibrium,
which is symmetric across users, and characterize the equilibrium arrival-time dis-
tribution of each user in terms of a corresponding set of differential equations. We
further establish convergence of the Nash equilibrium solution to that of the associ-
ated fluid model as the number of users is increased. We finally consider the price of
anarchy in our system and show that it exceeds 2, but converges to this value for a
large population size.

1 Introduction

The so-called concert queueing game, presented in [9], addresses the strategic choice of

arrival times to a service facility that opens up at a given time, and serves its users (or
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customers) according to the order of their arrival to the queue. Users wish to conclude

their service as early as possible, while minimizing their wait in the queue. Accordingly,

the cost function of each user is composed of a penalty term for late completion times, or

tardiness, and a penalty term for long waits in the queue, where both terms are taken to

be linear in their variables. The motivation for this model comes from queues that form in

front of concert and movie theater box offices, in banks before opening, in cafeterias before

lunch, in shops upon the launching of a popular gadget, etc. The above-mentioned paper

considers a simplified fluid model, where the users are points in a continuum. This model

was extended in [10] to multiple classes of users, which differ in their cost parameters, and

in [8] to networks of parallel queues. Our goal here is to extend the analysis of the basic

fluid model to a finite-population stochastic queueing system. We shall restrict attention

to a homogeneous (single-class) user population, and a single-server queue.

Fluid models that address the strategic choice of arrival time to a shared facility have been

extensively treated in the transportation literature, starting with the seminal formulation of

the bottleneck model in [20]. In this model, also known as the morning commute problem,

it is usually assumed that travelers have a target time at which they wish to get to their

destination, and are accordingly penalized for being too early or too late. For details see

[16, 13] and references therein. We note that the (multiclass) fluid model in [10] can be

seen as special cases of this class of models, where the users prefer to complete their service

as early as possible. The main contribution being the explicit derivation the equilibrium

solution and some of its properties for this model.

The strategic choice of arrival times into queues with a limited service period were ap-

parently first considered in [3], where a Poisson-distributed number of homogeneous users

with exponential service requirements arrive at a service facility with known opening and

closing time, and wish to minimize their own waiting time. This work showed that the

arrival profile in the symmetric equilibrium is a continuous probability distribution that

extends over a finite interval before and after the opening time, and derived a set of dif-

ferential equations that characterizes it. Several variations of this model have since been

considered. The recent paper [6] analyzes the same model except that queueing before the

opening time is not allowed. Consequently, the equilibrium arrival distribution includes a

point mass at the opening time. The related work in [18, 19] studies models with discrete

arrival instances and deterministic service durations. Their theoretical predictions were

compared to empirical finding in controlled laboratory experiments, which provide support

for the symmetric mixed-strategy equilibrium solution on the aggregate level (although not

on the individual level). More details on these papers and other related work can be found
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in [6]; see also [5] (Chapter 6).

The above-mentioned queueing models did not incorporate an explicit tardiness penalty in

the cost function, but rather assumed a known closing time which provides the incentive for

users to arrive early (or at least not too late). The recent paper [7] studies several variants

of the queueing and fluid model with the same cost function as in [10]. Similar to [3] and

[6], a Poisson number of homogeneous arrivals is assumed, and the symmetric equilibrium

is analyzed. Both versions with and without early arrivals are considered, along with their

fluid analogues.

In the present paper we focus on the stochastic queueing model with tardiness costs, ex-

ponential service, early arrivals, and no closing time. We note that the latter two model

assumptions are made here for concreteness and brevity, and the essential part of the analy-

sis should carry over to other variants of the model that modify these assumptions. Our

main contributions with respect to the above-mentioned literature are the following.

1. General population size: We consider a general distribution of N , the number of

customers, rather than restrict attention to a Poisson-distributed number. To this

end, we first address in detail the model with deterministic N , and then generalize

on this basis to an arbitrary distribution. This extension requires, in particular, to

modify the differential equations that describe the symmetric equilibrium.

2. Equilibrium analysis: We provide a more complete analysis of the existence and

uniqueness of the equilibrium arrival profile. While previous work focused at the

outset on symmetric arrival distributions (i.e., identical for all users), we first es-

tablish that any equilibrium must be symmetric (under a mild technical condition).

We further provide a rigorous analysis existence and uniqueness of solutions to the

differential equation that defines the symmetric equilibrium.

3. Convergence to the fluid model solution: We show that as N increases to infinity, the

equilibrium arrival profile converges to the solution of the fluid model in [10], and

provide bounds for the rate of convergence.

4. Price of Anarchy (PoA): We show that the PoA (defined as the ratio of the social

cost of the worst-case non-cooperative equilibrium to the optimal social cost) in our

stochastic model is always larger than 2, and converges to this value as N increases

to infinity.

It should be emphasized that non-existence of asymmetric equilibria, as established here,
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cannot be taken for granted. As is well known, multiple non-symmetric equilibria may

arise even in the simplest symmetric games (e.g., consider two-person coordination game

with payoff matrix whose rows are [a, 0] and [0, b], a, b > 0, identical for both players).

More specifically, in the single-class fluid model studied in [10], while the aggregate arrival

profile of the user population is uniquely determined, the individual user decisions are not.

Indeed, the (continuous) user population may be split into any number of groups, with one

arriving before the other.

The results on convergence of the equilibrium solution to that of the fluid model are ap-

parently new for the considered class of arrival-time queueing games. As shown in [10],

the fluid model is extremely useful in providing simple and elegant equilibrium solutions

to a variety of what-if perturbations and associated optimizations to the concert queuing

game. Our convergence results lend credibility to such analysis, at least when a large num-

ber of customers are involved. In the transportation literature, the relation between the

extensively-studied fluid bottleneck model and a finite population model has been studied

numerically, e.g., in [17]. However, we are not aware of analytical studies of convergence

to the fluid model. Asymptotic (diffusion and fluid scale) analysis of strategic equilibrium

in queues with rational customers has been the subject of several recent papers, including

[2, 14, 11, 1], however the models there are quite different from ours and mainly pertain

to discrete arrival and routing decisions. In another direction, our results may be related

to the evolving discipline of Mean-Field Games [12], which studies the limit of N -player

dynamic games as N increases to infinity. Our model may be considered as a middle ground

between static (normal-from) games and fully dynamic games, in the sense that, while the

temporal aspect is certainly present, each player takes a single decision prior to the start

of the game.

The paper is organized as follows. Section 2 describes the basic model and defines the

relevant notion of a Nash equilibrium profile. Section 3 presents some relations and pre-

liminary results related to the queue process and user costs. In Section 4 we establish that

any equilibrium profile must be user-symmetric, characterize the equilibrium arrival distri-

bution in terms of a set of differential equations, and establish existence and uniqueness

of the equilibrium profile. Section 5 addresses the computation of the equilibrium distrib-

ution. Explicit expressions are derived for the case of N = 2 (two-user system), while for

the general case a numerical procedure is suggested, and the results illustrated for different

values of N . In Section 6 we outline the extension to the random-N model. Section 7

establishes the convergence of the equilibrium profile to the corresponding fluid solution,

while Section 8 addressed the PoA for this model. We conclude the paper in Section 9 with
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a brief summary and future research directions.

To facilitate the presentation, some of the more technical proofs in Sections 3 and 4 are

relegated to the Appendices.

2 Model Description

We consider a service system that caters to arriving users on a first-come first-served basis.

The user population is finite and of size N ≥ 2, which is taken for the time being to

be a deterministic number. Thus, each user supposes that there are M = N − 1 other

users that are due to arrive1. Service starts at time t = 0, and proceeds until all users

are served. The required service times of all users are independent and exponentially

distributed. Customers may arrive and queue up both before and after the opening time.

Thus, each user i ∈ {1, . . . , N} may choose his arrival time ti, possibly randomly according

to some probability distribution on the real line, with cumulative distribution function

(CDF) Fi(t). If several users arrive simultaneously, they are randomly ordered.

When choosing their arrival times, users weigh the benefit of early service completion with

the cost of a long wait in the queue. Suppose user i arrives at time ti, waits in the queue

for wi time units, and enters service at time τi (hence wi = τi − ti). His cost function is

then

ci(wi, τi) = αwi + βτi

where α > 0, β > 0 are the respective cost sensitivities. Thus, we focus here on linear

costs. We further suppose that users are homogeneous in terms of their cost functions, so

that α and β are identical for all users.

An arrival profile F = {Fi} is a collection of arrival time distributions of all users. Given

F and the above system description, both wi and τi may be seen to be well-defined random

variables, and we may consider the expected cost

Ci(F) = EF(αwi + βτi) ,

where EF is the expectation induced by F .

As usual, we say that the arrival profile F = {Fi} is a Nash equilibrium if no user can

improve his expected cost by a unilateral change of his arrival time distribution. Formally,

1The relation between N and M is more intricate in the stochastic case, as discussed in Section 6.
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Definition 1 An arrival profile F = {Fi , i = 1, . . . , N} is a Nash equilibrium point

(NEP) if

Ci(F) ≤ Ci(F̃i,F−i) (1)

for every user i and every CDF F̃i on the real line. Here (F̃i,F−i) stands for the profile F
with Fi replaced by F̃i.

Our main objective is to characterize the NEPs and study their properties.

A somewhat more explicit characterization of the equilibrium will be useful. Let Ci(t,F−i)

denote the expected cost of user i if he joins the queue at time t, while all others follow

their arrival distributions as specified in F−i. Evidently

Ci(F) ≡ Ci(Fi,F−i) =

∫
Ci(t,F−i)dFi(t) .

It is now easily seen that the NEP can be characterized as follows.

Lemma 1 An arrival profile F = {Fi} is a Nash equilibrium point if, and only if, for every

user i there exists a constant ci so that

(i) Ci(t,F−i) ≥ ci for all t.

(ii) Ci(t,F−i) = ci on a set Ai of Fi-measure 1, namely
∫

Ai
dFi(t) = 1.

We refer to ci as the equilibrium cost for user i, at a given equilibrium point.

Recall that the support of a probability measure is defined as the smallest closed set of

probability 1. Let Ti denote the support of Fi (i.e., of the measure represented by Fi). The

following technical assumption will henceforth be imposed on the arrival time distributions.

Assumption 1 For each Fi, the corresponding support Ti can locally (i.e., on any finite

interval) be represented as a finite union of closed intervals and points.

This assumption rules out elaborate distributions that are supported on an infinite number

of distinct components over a finite span. Such elaborate constructs can arguably be ruled

out as reasonable arrival distributions even for the mathematically-inclined user. The

assumption will be used in Lemma 15 and Proposition 1 to establish uniqueness of the

equilibrium profile. We conjecture that uniqueness still holds without this assumption, but

currently have no proof for that.
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3 Preliminaries

3.1 Basic Queueing Relations

We briefly recall some relevant queueing relations for our system, and establish some useful

relations between the arrival profile and the queue size. Fix an arrival profile F = {Fi}.
The cumulative arrival process A(t) can be expressed as A(t) =

∑N
i=1 1{Ti≤t}, where the

Ti’s are independent random variables, distributed as Ti ∼ Fi. Clearly,

E(A(t)) =
∑

i

Fi(t)
4
= F (t) ,

where F (t) =
∑

i Fi(t) is the aggregate arrival distribution.

Let (Vi : i ≥ 1) denote the i.i.d., exponentially distributed sequence with mean µ−1, where

Vi for i ≤ N is the service time of the user which is the i-th to be served. Let Q(t) denote

the number of users in the queue at time t (including the one in service). For any set C,

let 1{C} denote its indicator function. Further define the following processes:

S(t) = 1{t≥0} max
m≥0

{
m∑

i=1

Vi ≤ t}

B(t) = 1{t≥0}

∫ t

0

1{Q(s)>0}ds

I(t) = t1{t≥0} − B(t) = 1{t≥0}

∫ t

0

1{Q(s)=0}ds .

Here S(t) denotes the number of service completions if the server is busy for t ≥ 0 time

units (recalling that service commences at t = 0) and there are infinitely many users (we

are not restricting S(t) to N simply for notational convenience), B(t) denotes the time that

the queue has been busy up to time t, and I(t) is the idle time process. The queue length

process satisfies the following sample path equality: Q(t) = A(t) − S(B(t)) . According to

these definitions, all processes are continuous on the right with left limits.

Taking expected values, we obtain

E(S(t)) = µt1{t≥0} (2)

E(I(t)) = 1{t≥0}

∫ t

0

P{Q(s) = 0}ds (3)

Q(t)
4
= E(Q(t)) = F (t) − µE(B(t)) (4)

= F (t) − µt1{t≥0} + µE(I(t)) .
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We next point out a few properties of the queue process that will prove useful in the sequel.

The following lemma relates the discontinuities of the expected queue size Q(t) to those of

the aggregate arrival profile F (t).

Lemma 2 Let F (t−) denote the left limit of F at t, and similarly for Q(t−). For every t,

Q(t) − Q(t−) = F (t) − F (t−) .

That is, Q(t) is continuous where F (t) is, and at points of discontinuity of F , Q has upward

jumps of equal magnitude.

Proof: The claim follows immediately from (4), once we note that B(t) is a continuous

process. ¤

The next result addresses the monotonicity of the queue size in the arrival distribution.

Lemma 3

(i) Let F = {Fi} and F̃ = {F̃i} be two arrival profiles, and let Q(t) and Q̃(t) be the

respective expected queue sizes. Suppose F dominates F̃ up to some time t, in the

sense that Fi(s2) − Fi(s1) ≥ F̃i(s2) − F̃i(s1) for all s1 < s2 ≤ t and all i. Then

Q(t) ≥ Q̃(t).

(ii) Furthermore, if strict inequality holds for some s1 < s2 ≤ t and i, then Q(t) > Q̃(t).

(iii) Assertions (i) and (ii) continue to hold when Q(t) is replaced by the probability

P{Q(t) > 0}, and Q̃(t) by P{Q̃(t) > 0}.

Proof: The claim follows by a stochastic coupling argument, see Appendix A. ¤

The following continuity result is key to the existence and uniqueness of solutions to the

differential equation (12), which will describe the equilibrium distribution. Let

‖f‖t = sup
0≤s≤t

|f(s)|

denote the sup-norm of a real function f on [0, t].

Lemma 4 P{Q(t) = 0} is Lipschitz continuous in the arrival distribution, in the sense

that there exists a constant K > 0 such that

|P{Q(t) = 0} − P{Q̃(t) = 0}| ≤ K
N∑

i=1

‖Fi − F̃i‖t

for any pair of arrival profiles F = (Fi) and F̃ = (F̃i), and all t ≥ 0.
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Proof: The proof of this lemma again relies on stochastic couplings between the perturbed

systems. It is given in Appendix A. ¤

We next consider the evolution of the queue length probabilities P{Q(t) = k}, under a

given arrival profile F . Some care is required in writing the evolution equations since the

arrival distributions are not memoryless, and the arrival intensity depends on which users

already arrived. Let N (t) ∈ 2{1,...,N} denote the set of users that arrived up to time t

(inclusive). Let pt(k,N ) = P{Q(t) = k, N (t) = N} denote the probability that at time t

there are k users in the queue and the set N of users have arrived. Suppose for the time

being that Fi admits a density F ′
i , and recall that Hi(t) = F ′

i (t)/(1 − Fi(t)) is hazard rate

function associated with Fi. It is now easily verified that the pair (Q(t),N (t)) forms a

Markov chain, with flow balance equations as summarized in the following lemma.

Lemma 5 Suppose Fi(t0) = 0 for some t0 small enough and for all i. Then

d

dt
pt(k,N ) = −

(
µ1{t≥0, k>0} +

∑
i 6∈N

F ′
i (t)

1 − Fi(t)

)
pt(k,N ) (5)

+ 1{k>0}
∑
i∈N

F ′
i (t)

1 − Fi(t)
pt(k − 1,N \ {i})

+ µ1{t≥0, k<N}pt(k + 1,N )

for all 0 ≤ k ≤ N , N ∈ 2{1,...,N} and t ≥ t0, with initial conditions pt0(0, ∅) = 1.

Remark 1 The equations above can be easily modified when the density of Fi(t) is not well

defined everywhere, by writing dFi(t) in place of F ′
i (t)dt.

The following lemma establishes that the probability of an empty queue is increasing when

there are no arrivals.

Lemma 6 Suppose d
dt

F (t) = 0 (equivalently d
dt

Fi(t) = 0 for all i) for some t ≥ 0, where
d
dt

denotes here the right-hand derivative. Then d
dt

P{Q(t) = 0} ≥ 0, with strict inequality

if P{Q(t) = 0} < 1 (equivalently, if F (t) > 0).

Proof: Since service in on from t = 0 and F ′
i (t) is the arrival density at time t, then with

F ′
i (t) = 0 for all i we obtain from Lemma 5,

d

dt
P{Q(t) = 0} = µP{Q(t) = 1} ,
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which is strictly positive if P{Q(t) = 1} > 0. Now, P{Q(t) = 0} < 1 implies (and is

implied by) positive probability for arrivals up to t, namely F (t) > 0, in which case there

is positive probability for one user remaining in the queue, or P{Q(t) = 1} > 0. ¤

3.2 Cost Properties

Consider a user who arrives at time t and sees a queue of size q (including the one in service)

ahead of him. To enter service, he needs to wait till these q users get served, and if t < 0 he

needs to wait in addition (−t) time units till service starts. Therefore, his expected waiting

time is given by E(w) = µ−1q − t1{t<0}. As this user will enter service at τ = w + t, we

also have E(τ) = µ−1q + t1{t≥0}. Therefore, the expected cost of this user would be

E(αw + βτ) = α(µ−1q − t1{t<0}) + β(µ−1q + t1{t≥0})

= (α + β)µ−1q − αt1{t<0} + βt1{t≥0} .

Given an arrival profile F , recall that Q(t) denotes the expected queue size at time t, and

let Q−i(t) denote the expected queue size with the arrival of user i excluded. Evidently

Q−i(t) depends on F−i only; it will play a central role in determining user i’s cost. Consider

a potential arrival of user i at time t. If Q−i(t) is continuous at t, then the expected number

of users that i will see before him is precisely Q−i(t), and his expected cost for arriving at

t would be

Ci(t,F−i) =
α + β

µ
Q−i(t) − αt1{t<0} + βt1{t≥0} . (6)

If Q−i(t) has an upward jump at t (due to a corresponding jump in F−i, see Lemma 2),

then the expected number of users before i would be Q̄−i(t) = 1
2
(Q−i(t−) + Q−i(t)). The

above expression still holds with Q−i replaced by Q̄−i. Thus, in general,

Ci(t,F−i) =
α + β

µ

Q−i(t−) + Q−i(t)

2
− αt1{t<0} + βt1{t≥0} . (7)

The following observations are immediate from the last expression and Lemma 2.

Lemma 7 Ci(t,F−i) is continuous in t, except at points where Q−i(t) has an (upward)

jump. These discontinuity points are, equivalently, the points where F−i =
∑

j 6=i Fj has a

point mass. At points of discontinuity, Ci(t,F−i) is continuous from the right and has left

limit, and Ci(t−,F−i) < Ci(t,F−i) (i.e., upward jumps only).
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4 Existence, Uniqueness and Structure

We establish in this section the existence and uniqueness of the equilibrium profile. We

first observe that the equilibrium profile must be symmetric, namely identical for all users.

We will denote by G the arrival distribution in a symmetric equilibrium, so that Fi ≡ G

and F = GN . Our main results identify general structural properties of G, and fully

characterize it as the solution of a differential equation with boundary value conditions.

The key finding of this section are summarized in the following theorem. Recall that

M = N − 1, the number of other users as seen by any single user.

Theorem 1

(i) The equilibrium profile F exists, is unique, and has the symmetric form F = GN .

(ii) The support TG of G is a single finite interval, denoted [ta, tb], with ta < 0 and tb > 0.

(iii) G(t) is continuous, and admits a right-derivative G′(t) for all t. Further, G′(t) is

continuous (hence coincides with the full derivative) everywhere except at t = ta and

t = 0.

(iv) For ta ≤ t < 0, G′(t) is constant and given by M
µ

G′(t) = α
α+β

.

(v) For 0 ≤ t ≤ tb, G′(t) satisfies the functional differential equation (FDE)

M

µ
G′(t) =

α

α + β
− P{Q−i(t) = 0} , (8)

where Q−i is the queue length process that corresponds to F−i = GM .

(vi) G(t) obeys the terminal conditions G(tb) = 1 and G′(tb) = 0.

(vii) Properties (ii)-(vi) above uniquely determine the equilibrium distribution G

Figure 1 illustrates the structure of G as outlined above. We note that G′ has a downward

jump of magnitude µ
M

P{Q−i(0) = 0} > 0, as follows from (iv) and (v).

The rest of this section is devoted to the proof of the last theorem. We start the analysis in

the next subsection by showing that any equilibrium profile must be symmetric. Focusing

on the symmetric case thereafter, in Subsection 4.2 we show that GN is an equilibrium

profile if and only if the distribution function G satisfies properties (ii)-(vi) of Theorem 1.

Finally, in Subsection 4.3 we show that such a G exists and is unique.
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Figure 1: Sketch of the equilibrium arrival-time density.

4.1 Symmetry

We first establish that any equilibrium profile must be symmetric.

Proposition 1 Any equilibrium profile F = {Fi} is symmetric, in the sense that Fi = Fj

for all i, j. Furthermore, the Fi’s do not contain any point masses.

The proof proceeds through several lemmas, and is presented in Appendix B. Essentially,

after establishing some auxiliary claims in Lemmas 12 and 13, we show in Lemma 14 that

the equilibrium cost ci of all users must be identical, as otherwise users with inferior costs

could improve their positions. Observing the cost expressions in equations 6-7, we infer

from Lemma 15 that the expected queue sizes Q−i(t) as view by all users must be identical,

which leads to identity of the arrival profiles. We mention that the last step, in particular,

is far from trivial, and our proof of the latter lemma is intricate and nuanced.

4.2 Characterization

Let us fix some notation. Given an arrival profile F = {Fj}N
j=1, recall that F−i denotes the

same collection with Fi excluded, and F−i =
∑

j 6=i Fj. Let Q−i(t) denote that queue-length

process that corresponds to F−i. Evidently, for a symmetric arrival profile with Fi ≡ G

we obtain F−i = MG, and Q−i(t) does not depend on i. However, it will be convenient

to retain this notation with a generic index i. We shall write Ci(t) for Ci(t,F−i) with
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F−i = GM . The common value of equilibrium costs ci is denoted by c0.

Lemma 8 Let T o
G denote the interior of the support of G. Then

M

µ
G′(t) =

α

α + β
− P{Q−i(t) = 0}1{t≥0} , t ∈ T o

G . (9)

Here G′ denotes the derivative of G, which exists and is continuous for all 0 6= t ∈ T o
G. For

t = 0, G′(0) refers to the right-derivative.

Proof: As G has no point masses (Proposition 1), then Q−i(t) is continuous by Lemma 7,

so that Equation (6) is in effect. Using the relations in (4) and (3), along with F−i = MG,

obtains

Ci(t) = (α + β)
[
µ−1F−i(t) + E(I−i(t))

]
− αt

= (α + β)

[
M

µ
G(t) + 1{t≥0}

∫ t

0

P{Q−i(s) = 0}ds

]
− αt .

Therefore,
d

dt
Ci(t) = (α + β)

[
M

µ
G′(t) + P{Q−i(t) = 0}1{t≥0}

]
− α (10)

wherever the derivatives exist (which is almost everywhere since G is monotone). Now, by

Lemma 13, Ci(t) is constant on Ti = TG, so that d
dt

Ci(t) = 0 in T 0
G , and (9) follows. Further,

P{Q−i(t) = 0} is continuous in t (again, since G contains no point masses), so that the

right-hand side of (9) is continuous for all t, except for a possible discontinuity at t = 0

due to the indicator function. This establishes the claim regarding pointwise existence and

continuity of G′(t). ¤

Proposition 2 Let F = GN be an equilibrium arrival profile. Then G satisfies properties

(ii)-(vi) of Theorem 1.

Proof: The enumeration below refers to properties (ii)-(vi) of Theorem 1.

(ii) Boundedness of the support was established in Lemma 13. Recall that the support is

closed by definition. To show that it consists of a single interval, we thus need only show

that it has no “gaps”. Consider t1 < t2 < t3 so that [t1, t2] is contained in TG, while (t2, t3)

is not. We will show that t3 cannot be in the support. Since (t2, t3) is not in TG we have

G′(t) = 0 there, so that (10) reduces to

d

dt
Ci(t) = (α + β)P{Q−i(t) = 0}1{t≥0} − α . (11)
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Further, by Lemma 1, Ci(t) ≡ c0 on [t1, t2], while Ci(t) ≥ c0 on (t2, t3). Therefore
d
dt

Ci(t2+) ≥ 0, implying that P{Q−i(t2) = 0}1{t2≥0} − α ≥ 0. Clearly this cannot

hold for t2 < 0 since α > 0. Suppose then that t2 ≥ 0. As there are no arrivals

on (t2, t3), then P{Q−i(t) = 0} is strictly increasing there (due to departures; notice

that P{Q−i(t2) = 0} < 1 due to arrivals on [t1, t2]), so that d
dt

Ci(t) > 0 there. Hence

Ci(t3) > Ci(t2) = c0, implying that t3 is not in the support of the equilibrium distribution

G. It follows that TG indeed consists of a single interval.

It remains to show that ta < 0 and tb > 0. Observe that c0, the common equilibrium

cost, is strictly larger than 0 (as no wait for all is impossible). Suppose ta ≥ 0. Then

an arrival at t = 0 would incur zero cost, namely Ci(0) = 0 < c0. But this contradicts

the minimal cost property of the equilibrium (Lemma 1). Hence ta < 0. Suppose next

that tb < 0. Since (tb, 0) 6⊂ TG then (11) is in effect, and we obtain that d
dt

Ci(t) < 0

there. This means that Ci(t) < Ci(t2) = c0 on (tb, 0), again contradicting the minimal cost

property of equilibrium. Finally, suppose that tb = 0. This means that (all) arrivals occur

before t = 0 with probability 1, and as there is no service by that time it follows that

P{Q−i(0) = 0} = 0. Then (11) again implies that d
dt

Ci(t) < 0 for t = 0+, which conflicts

with the minimal cost property as before.

(iii) Outside of [ta, tb] we obviously have G′(t) = 0. Continuity of G′(t) on (ta, tb) \ {0}
follows by Lemma 8. Continuity of G′(t) at tb is claimed in (vi), which is establishes

subsequently.

(iv) and (v): Follow directly from (9), as T o
G = (ta, tb).

(vi) That G(tb) = 1 is obvious by definition of tb. Consider G′(tb) = 0. Let G′(tb−) denote

the left limit of of G′(t) at tb, which exists as follows from (11). Suppose G′(tb−) > 0.

Observe that G′(tb+) = 0 (as t > tb lies outside the support of G). Thus, by (10),

C ′
i(tb+) < C ′

i(tb−) = 0 (the latter holds since Ci(t) = c0 on (ta, tb)). But this implies that

Ci(tb + ε) < Ci(tb) = c0, hence G cannot be an equilibrium distribution. ¤

Proposition 3 now establishes the converse to Proposition 2.

Proposition 3 Suppose a probability distribution function G(t) satisfies properties (ii)-(vi)

of Theorem 1. Then F = GN is an equilibrium profile.

Proof: We will show that Ci(t) = Ci(t, G
N) satisfies the requirements of Lemma 1. That

Ci(t) ≡ c (a constant) for t ∈ [ta, tb] follows by (iv) and (v) by construction, as seen from

(10). It remains to show that Ci(t) ≥ c for t 6∈ [ta, tb]. For t < ta < 0, (10) implies that
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C ′
i(t) = −α < 0, hence indeed Ci(t) > Ci(tb) = c. Consider t > tb > 0. At t = tb we have

by (v) and (vi) that P{Q−i(t) = 0} = α
α+β

. Further, since there are no arrivals for t > tb

(as G(tb) = 1), then P{Q−i(t) = 0} is strictly increasing there. It then follows from (10)

that for t > tb, C ′
i(t) = (α + β)P{Q−i(t) = 0} − α > C ′

i(tb) = 0. ¤

The last two propositions establish claims (ii)-(vii) of Theorem 1. These properties provide

the general form of the symmetric equilibrium distribution G(t), which we repeat here in

a more explicit form:

1. G(t) = 0 up to some point ta < 0.

2. For t ∈ [ta, 0), G′(t) = g0 where g0 = α
α+β

µ
M

, a uniform distribution. Hence G(t) =

g0(t − ta). Note that ta uniquely determines the equilibrium cost (and vice versa),

via c0 = α|ta|.

3. At t = 0, G′(t) has a downward jump of magnitude µ
M

P{Q−i(0) = 0}. Since there is

no service up to t = 0, we have P{Q−i(0) = 0} = (1 − G(0))M .

4. For t > 0, G(t) evolves according to the FDE (8), up to the point tb where G(tb) = 1

and G′(tb) = 0.

It remains to establish existence and uniqueness of the equilibrium. Essentially, we will

utilize monotonicity properties of the FDE (8), and show that there exists a unique ta

(equivalently, c0) so that the solution G(t) of that equation satisfies the required boundary

conditions.

4.3 Existence and Uniqueness

We next show that there exists a unique probability distribution G that satisfies properties

(ii)-(vi) of Theorem 1. In view of Propositions 2 and 3, this would imply the existence and

uniqueness properties of the equilibrium as stated in claims (i) and (vii) of Theorem 1, and

thereby complete the proof of that theorem.

We thus proceed to construct G(t) that satisfied properties (ii)-(vi), and establish its

uniqueness. For t ∈ [ta, 0), property (iv) implies that G′(t) = g0 with g0 = α
α+β

µ
M

, hence

G(0) = |ta|g0. We will henceforth consider G(0) ∈ (0, 1) as a parameter. We then have

|ta| = g0/G(0), which determines G(t) for t < 0.
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Consider the differential equation (8) for t ≥ 0. In general, P{Q−i(t) = 0} is a function

of (G(s) : s ≤ t). But since there is no service up to t = 0, the distribution of Q−i(0) is

fully determined by G(0), as P{Q−i(0) = k} =
(

M
k

)
G(0)k(1 − G(0))M−k for 0 ≤ k ≤ M .

In particular, P{Q−i(0) = 0} = (1 − G(0))M . Therefore, we may consider P{Q−i(t) = 0}
as a function of Gt

4
= (G(s) : 0 ≤ s ≤ t) only. Let P0(Gt) = P{Q−i(t) = 0} denote the

probability of an arrival finding the queue empty at time t given Gt. We thus obtain the

FDE
M

µ
G′(t) =

α

α + β
− P0(Gt) , (12)

with initial conditions G(0). We aim to find a solution to this equation over an interval

[0, tb] such that G(tb) = 1 and G′(tb) = 0 (conforming to property (vi) of Theorem 1), and

show that such a solution is unique.

Let γmin ∈ (0, 1) be the unique solution of (1 − γmin)
M = α

α+β
. Recalling that P0(G0) =

(1 − G(0))M , it follows by (12) that G′(0) < 0 if G(0) < γmin. We therefore need only

consider G(0) ∈ [γmin, 1].

We next determine the interval [0, τ ] on which (12) is defined. Recall that equation (12) is

valid up to the point where G(t) = 1 (as there are no arrivals beyond that point). Further,

the probability P0(Gt) is well defined as long as G′(t) ≥ 0. Now, according to Lemma 6,

if G′(t0) = 0 at some point t0 then d
dt

P0(Gt0) > 0 at that point, so that by (12) we obtain

G′(t) < 0 for t beyond t0, and the equation cannot be continued beyond that point. Thus,

we need consider equation (12) for 0 ≤ t ≤ τ , where

τ = inf{t ≥ 0 : G(t) = 1 or G′(t) = 0} . (13)

We shall refer to τ as the final time for the differential equation. We sometimes write τ(γ)

for τ to make explicit the dependence on the initial conditions G(0) = γ.

Recall that

‖F − G‖t = sup
0≤s≤t

|F (s) − G(s)|,

It follows from Lemma 4 that P0(Gt) is Lipschitz continuous, in the sense that

|P0(Ft) − P0(Gt)| ≤ K‖F − G‖t (14)

for some K > 0 and all t ≥ 0.

As a direct consequence we obtain some basic properties of the FDE.

Lemma 9
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(i) The FDE (12) with initial conditions G(0) ∈ [γmin, 1], admits a unique solution G(t),

t ∈ [0, τ ]. Further, both G(t) and G′(t) are continuous in t.

(ii) For fixed t, G(t) and G′(t) are continuous functions of the initial condition G(0).

Further, continuity is uniform over finite time intervals.

(iii) For fixed t, G(t) and G′(t) are strictly increasing functions of the initial condition

G(0).

Proof: See Appendix C. ¤

We next establish some key properties of the the final time τ . In particular, the following

proposition shows that a transition from G′(τ) = 0 to G(τ) = 1 occurs at a unique value

of G(0).

Proposition 4 There exists a unique γ∗ ∈ (γmin, 1) so that the solution G(t) of the FDE

(12) with initial condition G(0) satisfies the following:

(i) If G(0) ∈ (γ∗, γmin), then G′(τ) = 0, G(τ) < 1, and τ is a strictly increasing function

of G(0).

(ii) If G(0) ∈ (γ∗, 1], then G(τ) = 1, G′(τ) > 0, and τ is a strictly decreasing function of

G(0).

Proof: See Appendix C. ¤

Proposition 4 shows that there can be at most one value G(0) = γ∗ for which both terminal

conditions can hold simultaneously. A continuity argument is required to show that such a

value does indeed exist. (We note that continuity of τ in G(0) would suffice for that purpose.

However, as τ is determined by level-crossing, its continuity is not straightforward from

continuity of G and G′, and a more refined argument is required.) This is taken up in the

next theorem, which is main result of this section. Its proof is given in Appendix C.

Theorem 2 There exists a unique number γ∗ ∈ (γmin, 1) so that the solution G(t) of the

differential equation (12) with initial condition G(0) = γ∗ satisfies both terminal conditions

G(τ) = 1 and G(τ) = 0.
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5 Computation

In this section we demonstrate the explicit computation of the symmetric equilibrium dis-

tribution G(t), or equivalently its density g(t) = G′(t). For the two-user case (N = 2) we

will be able to obtain closed-form solutions, while for N > 2 we will resort to numerical

computation.

5.1 N = 2

Consider the case of two arriving users. Let [ta, tb] denote the support of g, and recall that

ta < 0 and tb > 0 by Theorem 1. For t < 0, by item (v) of that Theorem with N = 2 we

obtain

g(t) = µ
α

α + β
, t ∈ [ta, 0) . (15)

For t ≥ 0, by (8) we have

g(t) = µ
α

α + β
− µP0(t) ,

where P0(t) denotes P{Q−i(t) = 0} for notational ease. We will obtain an expression for

P0(t) directly from the cost relations at equilibrium. Let c0 be the equilibrium cost. Since

the cost of the first arrival at ta is −αta, we have c0 = −αta. Now, observing the cost

expression expression (6) and recalling that Ci(t) = c0 on the support of g in equilibrium,

we obtain

Ci(t) =
α + β

µ
Q−i(t) + βt = c0 = −αta , t ∈ [0, tb] . (16)

But for N = 2 each user i sees only one additional user in the system, so that Q−i(t) =

P{Q−i(t) = 1} = 1 − P{Q−i(t) = 0}. Therefore

P{Q−i(t) = 0} = 1 +
µ

α + β
(βt + αta) ,

a linear function of t. Thus,

g(t) = µ
α

α + β
− µP0(t)

= −µ
β

α + β
− µ2

α + β
(βt + αta) , t ∈ [0, tb] . (17)

It remains to determine ta and tb. These can be obtained from (15) and (17) by using the

terminal conditions g(tb) = 0 and G(tb) =
∫ tb

ta
g(t)dt = 1. After some computation, we
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obtain

−ta = µ−1

√
(2α + β)β

α2
= µ−1

√
β

α
(2 +

β

α
)

tb =
α

β
(−ta) − µ−1 = µ−1(

√
1 +

2α

β
− 1) .

5.2 N > 2

Recall that the equilibrium distribution G(t) for t ≥ 0 is specified by the differential

equation (8), which involves the empty-queue probabilities P0(t)(
4
= P{Q−i(t) = 0}). We

first present the evolution equations that allow to compute P0(t) for a symmetric profile

F−i = GN−1. These are in fact a simplified version of Lemma 5, which utilizes the symmetry

in the arrival distributions. Thus, we consider the system with M = N−1 users, and arrival

profile F−i = GM . Let m(t) denote the number of users that arrive up to time t (inclusive),

and let pt(k,m) denote the probability that at time t there are k users in the queue and that

m users have arrived. Then (k(t),m(t)) is a Markov chain, and the flow balance equations

yield

d

dt
pt(k,m) = −

(
µ1{k>0} + (M − m)

G′(t)

1 − G(t)

)
pt(k,m) (18)

+ 1{k>0}(M − m + 1)
G′(t)

1 − G(t)
pt(k − 1,m − 1)

+ µ1{k<m}pt(k + 1,m)

for 0 ≤ k ≤ m ≤ M . As there is no service before t = 0, the initial conditions at t = 0

are readily seen to be: p0(m,m) =
(

M
m

)
G(0)m(1 − G(0))M−m, and p0(k,m) = 0 if k 6= m.

Clearly P0(t) =
∑M

m=0 pt(0,m).

To compute the equilibrium distribution G, we may consider G(0) ∈ (0, 1) as a parameter,

and compute G(t) for t > 0 using the differential equation (8), coupled with (18). These

may be integrated up to the first time τ where either G′ = 0 or G = 1. The equilibrium is

obtained if both conditions occur simultaneously.

A search procedure is required in order to find the correct value of G(0) that satisfies

the boundary conditions. Such a procedure may be efficiently implemented by using the

monotonicity properties in Theorem 1; from these, if G′ = 0 occurs before G = 1 then G(0)

should be increased, and vice versa.

In Figure 2, we plot the equilibrium density G′(t) that was obtained numerically for several

values of N , with system parameters α = 2, β = 1 and µ = Nµ0 with µ0 = 1. Note that the
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Figure 2: Numerically computed equilibrium arrival densities G′(t) for λ = 2, β = 1 and

µ = N , comparing several values of N .

service rate is scaled by the number of users, so that the total service-time requirement is

kept constant; this convenient for comparison purposes2. The fluid solution for this model

(with µ = 1) is a uniform distribution on [−0.5, 1], and is depicted in the dotted line. The

numerically-obtained result for N = 2 coincides with the analytical solution above. For

t < 0, a uniform density of value µ
M

α+β
β

= 2
3

N
N−1

is obtained, in accordance with Theorem

1(iv). The first arrival time ta can be seen to be always smaller than its fluid value (see

Lemma 10 below), although it is relatively insensitive to the value of N . It may further

be seen that both ta and tb are not monotone in N . As expected, the normalized densities

approach the uniform fluid solution as N is increased.

6 Random Population Size

Up till now it was assumed that N , the number of arrivals to the system, is a deterministic

constant. Consequently, each user supposes that there are M = N − 1 other arrivals.

Here we consider the more general case where the number of arrival may be stochastic,

2Exactly the same result is obtained if we keep µ fixed, and then scale the resulting distribution G(t)
as G(Nt).
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and consequently users only have some probability distribution on M , the number of other

arrivals. Let pM = (pM(m),m ≥ 0) denote this probability distribution, assumed identical

for all users, with finite mean E(M).

Let us first clarify the relation between M and N in the stochastic case3. Here the simple

relation M = N − 1 is not valid any more. Following [15], let us derive the distribution

of M based the distribution pN of N . Assume for the moment that N is bounded by a

constant N0. Consider a specific user, say C1, in this group of N0 potential arrivals, and

let A1 denote the event that C1 is an actual arrival. Then, invoking symmetry, we obtain

for n ≥ 1:

pM(n − 1) = P{N = n|A1} =
P{A1|N = n}P{N = n}

P{A1}

=
n

N0
pN(n)∑

n′≥1
n′

N0
pN(n′)

=
npN(n)∑

n′≥1 n′pN(n′)

=
1

E(N)
npN(n) . (19)

By a limit argument, the same formula holds when N is unbounded. By inverting this

relation, pN can be derived from pM , with pN(0) serving as a free parameter. We note

that for a binomial distribution, N ∼ B(N0, p), we obtain M ∼ B(N0 − 1, p), so that

E(M) = E(N) − p. For the Poisson distribution, N ∼ Pois(λ), we interestingly obtain

that M has the same distribution, hence E(M) = E(N). These relations can be explained

of course by the independence and memoryless properties of the distributions involved.

Further discussion on this matter can be found in [7], where it is also pointed out that the

Poisson distribution is the only one with this property.

Suppose first that M is bounded by some M0 < ∞. We can essentially repeat our arguments

for the deterministic case, to obtain the following result.

Theorem 3 Suppose M is a bounded random variable, with P{M = 0} < 1. Then Theo-

rem 1 holds as stated, with M replaced by E(M).

Proof: (Outline) We will not repeat the detailed arguments, but rather point to some

required differences. The arrival profile F = (Fi, i = 1, . . . , N0) now contains the arrival

time distribution of all potential arrivals. The evolution equations in Lemma 5 still hold

separately for each possible set of eventual arrivals, and can be averaged to obtained the

3Note that only M is required to determine the equilibrium arrival distribution. N then determines the
overall system load.
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unconditioned probabilities pt(k, n). From these the expected queue size Q(t). Repeating

the same procedure with user i excluded, we may compute Q−i(t) and P{Q−i(t) = 0}.
Equation (7) for the cost then remains the same. The expected number of arrivals F (t) =

E(A(t)) can be similarly computed by averaging over the set of eventual arrivals, and

similarly for F−i(t). As a consequence, the required properties of Q−i, P{Q−i(t) = 0} and

F−i are inherited from the deterministic case, and the proof of symmetry (Proposition 1)

follows as before. Focusing on the symmetric case where Fi ≡ G, it is easily seen that

F−i(t) = E(M)G(t). It therefore follows that Lemma 8 holds with M replaced by E(M),

and this extends to all the equilibrium properties in Theorem 1. ¤

When N is unbounded, the set of evolution equations in Lemma 5 equations is countable,

and some care may be required to obtain the continuity properties used in our arguments.

While we maintain that the above results carry through, we will not go into the detailed

arguments here and postulate this as a conjecture.

We finally address the computation of the symmetric equilibrium for random N case, which

requires the solution of the analog of the evolution equations (18). As mentioned above,

one option is to compute the respective probabilities conditioned on each possible value

of eventual arrivals M , and then average of M to obtain the unconditioned probabilities

pt(k,m). A more efficient option is as follows. Let Rt(m) = E(M − m|m(t) = m) denote

the expected number of remaining arrivals, given that m already arrive by time t. By Bayes

rule, for k ≥ 0,

P (M = m + k|m(t) = m) =
P (m(t) = m |M = m + k)P (M = m + k)

P (m(t) = m)

=

(
m+k

m

)
G(t)m(1 − G(t))kpM(m + k)∑

k≥0

(
m+k

m

)
G(t)m(1 − G(t))kpM(m + k)

so that

Rt(m) =
∑
k≥0

k P (M = m + k |m(t) = m) .

Equations (18) can now be seen to hold for 0 ≤ k ≤ m ≤ M0, where M0 is the maximal

value that M can attain, after replacing (M −m) by Rt(m), and (M −m+1) by Rt(m−1).

Two special cases are of interest. When M ∼ B(M0, p) is Binomial, it may be verified

that p(k)
4
= P (M = m + k|m(t) = m) has B(M0 − m, 1 − G(t)) distribution, so that
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Rt(m) = (M0 − m)(1 − G(t)). Substituting in (18) and eliminating (1 − G(t)) gives

d

dt
pt(k,m) = −

(
µ1{k>0} + (M0 − m)G′(t)

)
pt(k,m) (20)

+ 1{k>0}(M0 − m + 1)G′(t)pt(k − 1,m − 1)

+ µ1{k<m}pt(k + 1,m) .

Finally, when M is Poisson with mean Λ, we obtain (either through the above formula,

or directly using the memoryless property) that Rt(m) = Λ(1 − G(t)), independent of m.

Consequently, by averaging over m we can obtain the following evolution equations in terms

of Pt(k) (probability that there are k users in queue at time t) directly:

d

dt
Pt(k) = −

(
µ1{k>0} + ΛG′(t)

)
Pt(k) (21)

+ 1{k>0}ΛG′(t)Pt(k − 1) + µPt(k + 1) , k ≥ 0 .

These indeed coincide with the equations that were used in [3] for the Poisson case.

7 Convergence to the Fluid Limit

We next consider the system as the number of users N increases, and show that the

equilibrium arrival profile, suitably scaled, converges to the uniform equilibrium profile

of the fluid system that was studied in [9, 10].

Recall that in the single-class fluid model, the user population has mass Λ, with each user

represented by a point in the interval [0, Λ]. The cost function is identical to the present

paper. Service is deterministic at rate µ, so that the entire user population may be served

in Λ
µ

time units. Take Λ = 1 for simplicity. In this setting, the aggregate equilibrium arrival

profile is uniform between times [− β
αµ

, 1
µ
]. That is, users arrive at a constant rate of µ α

α+β

over that interval. In particular, a fraction β
α+β

of the user population arrives before the

opening time at 0.

Let GN denote the equilibrium arrival profile in the finite population system with N users.

We mainly consider the deterministic-N case, and will comment on the stochastic case later

in this section. Recall that GN is obtained as a solution to the differential equation (8), has

finite support [tNa , tNb ], and satisfies the boundary conditions GN(tNb ) = 1 and G′
N(tNb ) = 0.

When no confusion arises we will henceforth drop the explicit index N from G, ta and

tb. Our goal is to show that GN(Nt) ≡ G(Nt) converges to the uniform fluid profile as
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N → ∞, that is, d
dt

G(Nt) → µ α
α+β

for t ∈ (− β
αµ

, 1
µ
). Note that we scale the time axis by

N , since the total service time requirement increases proportionally to N . (Alternative we

could increase the service rate N -fold.)

The following theorem establishes the required convergence, and provides bounds on the

convergence rate.

Theorem 4 G(Nt) converges to a uniform distribution on [− 1
µ

β
α
, 1

µ
] at rate o( log N

N
), in the

sense that
N − 1

µ
G′(t) =

α

α + β
− P0(t)1{t≥0} , t ∈ [ta, tb]

is satisfied with

ta
N − 1

= − 1

µ

β

α
− o(

log N√
N

) < − 1

µ

β

α
(22)

tb
N − 1

=
1

µ
+ o(

log N√
N

) (23)

and

P0(t) ≤
1

N
for

t

N
≤ 1

µ
− o(

log N√
N

) . (24)

We proceed to prove this result. We will find it convenient to state all claims in terms

of of M = N − 1 as the index rather than N itself; this of course has no effect on the

stated rates. Given the characterization of the equilibrium in Theorem 1, the key to this

convergence result is in showing that the empty-queue probability P0(t) = P{Q−i(t) = 0}
is small as long as t is not too close to M

µ
. For that to hold, however, we need to show that

enough users choose to arrive early enough. We start by providing bounds on the support

[ta, tb] of the equilibrium distribution G.

Lemma 10 For all M ≥ 1,

G(0) =
β

α + β
+ dM for some dM > 0 , (25)

and consequently

ta = −M

µ

β

α
(1 +

α + β

β
dM) . (26)

Furthermore,
M

µ
(1 − α + β

α
dM) < tb ≤

M

µ
(1 +

α + β

β
dM) . (27)
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Proof: We first show that dM > 0. Suppose to the contrary that dM ≤ 0, or G(0) ≤ β
α+β

.

Note that an arrival at t = 0 sees an expected queue length of MG(0) and hence incurs an

expected cost of Ci(0) = (α + β)MG(0)
µ

. Thus, G(0) ≤ β
α+β

implies Ci(0) ≤ M
µ

β. Further,

G(0) ≤ β
α+β

together with (8) and P0(t) > 0 imply that G(M
µ

) < 1. Hence t∗
4
= M

µ
is in

the support of G, implying that Ci(t
∗) = Ci(0) by the equilibrium property. On the other

hand, by (6), Ci(t
∗) = βt∗ + (α + β)Q−i(t∗). Since there will be a queue at time M

µ
with

positive probability, we obtain Ci(t
∗) > β M

µ
≥ Ci(0), providing the desired contradiction.

Equation (26) follows by noting that G′(t) = µ
M

α
α+β

for t < 0, so that ta = −G(0)M
µ

α+β
α

.

To establish (27), note first that at t′ = M
µ

(1 − α+β
α

dM) we obtain

G(t′) < G(0) +
µ

M

α

α + β
t′ =

β

α + β
+ dM +

α

α + β
(1 − α + β

α
dM) = 1 ,

so that t′ < tb. To upper-bound tb, note again that Ci(0) = (α + β)MG(0)
µ

. However an

arrival at time t > 0 incurs a cost of Ci(t) > βt, and Ci(tb) = Ci(0) leads to the rightmost

inequality in (27). ¤

The following upper bound on the empty-queue probability is obtained by applying Cher-

noff’s bound to the arrival and service processes.

Lemma 11 Consider t ≥ 0 so that MG(t) > µt. Then

P0(t)
4
= P{Q−i(t) = 0} ≤ exp

(
−1

2

(MG(t) − µt)2

MG(t) + µt

)
. (28)

Proof: Fixing t, let A denote the total number of arrivals by t, and D the total number of

potential service completions (assuming no idleness) by that time. Further denote p = G(t).

Then A ∼ B(M, p)), a binomial random variable, and D ∼ Pois(µt), a Poisson random

variable independent of A. It is evident that Q−i ≥ A − D, and therefore

P0(t) ≤ P{A − D ≤ 0} .

Note that E(A − D) = Mp − µt > 0 by assumption. Now, for any v > 0,

P{A − D ≤ 0} ≤ E(e−v(A−D)) = E(e−vA)E(evD)

= (1 − p(1 − e−v))M exp(µt(ev − 1))

= exp
(
M log(1 − p(1 − e−v)) + µt(ev − 1)

)
≤ exp

(
−Mp(1 − e−v) + µt(ev − 1)

)
,
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as log(1 − x) < −x. Choosing ev =
√

Mp
µt

we obtain

P{A − D ≤ 0} ≤ exp(−(
√

Mp −
√

µt)2) .

Noting that (
√

a −
√

b)2 = (a−b)2

(
√

a+
√

b)2
≥ (a−b)2

2(a+b)
, the required bound is established. ¤

Proof of Theorem 4: Observing equation (8), we have

G(t) = G(0) +
µ

M
(

α

α + β
t −

∫ t

0

P0(s)ds) . (29)

But G(0) > β
α+β

by (25), so that

G(t) >
β

α + β
+

µ

M
(

α

α + β
t −

∫ t

0

P0(s)ds) .

We can now iterate this inequality together with (28) to upper-bound P0(t). Taking some

0 < ZM < M α
α+β

, we will show that MG(t)−µt ≥ ZM holds up to some t3 < M
µ

. For t = 0

this is true since MG(0) > M α
α+β

> ZM . Now, if MG(t) − µt > ZM for t ≤ t3 < M
µ

, then

P0(t) ≤ exp

(
−Z2

M

4M

)
4
= pM , (30)

where we have used the fact that MG(t) + µt ≤ 2M for t < M
µ

. Therefore,

G(t) ≥ β

α + β
+

µ

M
(

α

α + β
t − pM t) ≥ β

α + β
+

µ

M

α

α + β
t − pM ,

and

MG(t) − µt ≥ M
β

α + β
− µ

β

α + β
t − MpM . (31)

Inequalities (30) and (31) remain valid as as long as MG(t) − µt ≥ ZM , which by (31) is

guaranteed for all

t ≤ M

µ
− M

µ

α + β

β
(pM +

ZM

M
)

4
= t3 .

Choose now ZM =
√

4M log M , so that pM = M−1. Observe that

t3 =
M

µ
− M

µ

α + β

β
(

1

M
+

√
4M log M

M
) =

M

µ
(1 − o

(
log M√

M

)
) .

We have thus established (24). To show (22)-(23), observe that G′(t3) = µ
M

( α
α+β

−P0(t3)) ≥
µ
M

( α
α+β

− 1
M

) > 0 for M large enough, so that t3 < tb, hence G(t3) < 1. But using the

derived bound P0(t) ≤ pM in (29) gives

G(t3) ≥ G(0) +
µ

M
(

α

α + β
− pM)t3 ≥ G(0) +

µ

M

α

α + β
t3 − pM ,
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(observe that t3 < M
µ

by its definition), so that G(t3) < 1 implies

G(0) < 1 − µ

M

α

α + β
t3 + pM

=
β

α + β
+ (

1

M
+

√
4M log M

M
)
α

β
+

1

M
.

Therefore

dM
4
= G(0) − β

α + β
= o

(
log M√

M

)
,

and (22)-(23) follow by Lemma 10. ¤

Remark 2 The bound on P0(t) in (24) actually becomes much tighter as we decrease t and

move away from the boundary of the support. Indeed, using the notation of the last proof,

for t < t3 we have

MG(t) − µt ≥ β

α + β
(t3 − t) + MG(t3) − µt3 =

β

α + β
(t3 − t) + ZM ,

which can be used in (30) in lieu of ZM .

We finally comment on the model with a random number of arrivals, as presented in Section

6. Suppose that (Mi) is a sequence of random variables, with E(Mi) → ∞. Suppose further

that Mi

E(Mi)
convergence to a deterministic constant (without this assumption the fluid limit,

if such exists, could be quite different from the one above). In that case, essentially the

same proof can be applied to show convergence to the fluid limit above; naturally the bound

in Lemma 11 may be different, and lead to different convergence rates. However, in the

important cases where the M ’s are Binomially distribution with fixed success probability

p, or Poisson distributed, it is readily verified that the same bound holds with M replaced

by its mean E(M). Therefore, the convergence results above should hold as stated, save

for this substitution.

8 Price of Anarchy

The price of anarchy (PoA) is a well accepted measure for the social inefficiency of the

non-cooperative equilibrium solution. It corresponds to the ratio of the social cost in the

worst Nash equilibrium, to the cost of the socially optimal solution, obtained here when

the arrival times are optimally determined by a central planner.
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The socially optimal solution naturally depends on the restrictions imposed on the central

planner. One option in our case is to assume that the arrival times must be pre-scheduled,

with no on-line feedback on service completions. While this may pose a reasonable choice

in our setting, the explicit solution of the the resulting optimization problem appear to be

hard (except in the simple case of N = 2)4, and will not be pursued here. The second option

is to allow the controller to schedule arrivals on-line based on observed service completions5.

In that case the solution is obvious: users are scheduled one after another, starting at time

0, with no waiting or idleness. It is easy to see that the social cost in this case (the sum

over the expected user costs of the N users) is given by

W ∗ =
β

µ
(1 + 2 + · + (N − 1)) =

β

µ

N(N − 1)

2
.

This will be used here for the baseline, socially optimal solution. Recall that in the homo-

geneous fluid model studied in [10], the price of anarchy is exactly 2. We then have the

following result for our finite-user model.

Proposition 5 PoA > 2 for all N ≥ 2, and it converges to 2 as N → ∞, at rate o( log N√
N

).

Proof: Recall that ta < 0 is the first point in the support of the equilibrium distribution

G(t). As an arrival at ta would be served first, the equilibrium cost for each user is −αta,

and the PoA turns out to be

PoA =
Nα(−ta)

W ∗ = 2
αµ(−ta)

β(N − 1)
.

The bound on ta in equation (22) of Theorem 4 (where M = N − 1) now imply the stated

results. ¤

We finally note that for N = 2, the explicit solution obtained in Section 5.1 yields PoA =

2
√

1 + 2α/β.

9 Conclusion

We have addressed here the strategic choice of arrival times into a transient FCFS queue,

where each user balances the benefit of early service completion with that of a short wait in

4The optimal social cost in the case of N = 2 turns out to be µ−1β
(
1 + log

(
α+β

β

))
, with the first

user arriving at t = 0 and the second at t = µ−1 log
(

α+β
β

)
. The PoA can still be seen to be larger than 2

relative to this solution.
5These two options coincide in the fluid model
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the queue. Distinct contributions include establishing the existence and uniqueness of the

equilibrium without assuming a-priori that the equilibrium is symmetric; the consideration

of a general number of arrivals, not necessarily of Poisson distribution; demonstrating

convergence to the fluid limit; and identifying the asymptotic price of anarchy for this

model.

The model we considered does not specify a closing time for the server, and allows queueing

before the opening time. However, the essential approach and results should be easily

extendable under the opposite assumptions, similarly to [3, 6, 7]. Another variant of interest

to the current model pertains to the cost function: Suppose that instead of caring for early

service completions, the users are interested to get served before others. This may be the

case, for example, in a box-office queue, where the first customers get the better seats. The

two cost variants coincide in the fluid model (as noted in [10]), in the finite-population

model this requires separate consideration, which is left to future work.

Our model may be further extended in several obvious and important directions. One is

the extension to the multi-class model, with a non-homogeneous user population. Another

is the consideration of non-linear cost functions – in particular, it will be interesting to

replace the linear tardiness cost with a V-shaped (dis)-punctuality cost, as is common in

the transportation bottleneck model. The analysis of the equilibrium in these extended

models presents a considerable challenge for future work.

Let us conclude the paper with a word on the significance of the equilibrium solution. As we

have shown, the unique equilibrium here prescribes for each user a probability distribution

over a continuous interval, in which all points identical costs. This is of course the usual

case with a (mixed) Nash equilibrium, and much has been said about the interpretation of

this equilibrium as a descriptive (rather than prescriptive) solution. In the context of our

model, it should be realized that we do not necessarily expect each user to fully randomize

his choice. Rather, the equilibrium reflects each user beliefs about the others’ choices, as

finally reflected by the queue he expects to see upon his arrival. These beliefs may be the

result of general prior experience (as, for example, in the case of one-time queue forming

for a specific gadget) – or alternatively, the result of a repeated interaction and learning

with the specific queueing system (as, for example, in the case of queueing in the cafeteria

at work, or selecting the start time for commuting to work). Proposing a specific learning

mechanism and studying its convergence properties vis-a-vis the equilibrium solution is

again a challenging task for future work.
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Appendix

A Proofs for Section 3

Proof of Lemma 3: We use stochastic coupling with the two arrival process implemented

on a common probability space, and with identical service times for all users. Noting that

A(s2) − A(s1) =
∑

i 1{s1<Ti≤s2} for s1 < s2, where Ti ∼ Fi, it follows by the assumed

dominance relation in (i) that A(s2) − A(s1) ≥ Ã(s2) − Ã(s1) for all s1 < s2 ≤ t. That

is, the number of arrivals under F = {Fi} is at least as large as under F̃ , over any time

span up to t. This clearly implies that Q(t) ≥ Q̃(t) w.p. 1, hence Q(t) ≥ Q̃(t). As for (ii),

with the same coupling it now follows that A(t) > Ã(t) with positive probability, hence

Q(t) > Q̃(t) on an event of positive probability (e.g., when there are no service completions

by time t), so that Q(t) > Q̃(t). Assertion (iii) follows by similar considerations applied to

the indicator 1{Q(t)>0} in place of Q(t). ¤

Proof of Lemma 4: It is sufficient to establish the claim for the case where the arrival

profiles are the same except for one component, as it then extends to the general case via

the triangle inequality. Suppose then that Fi = F̃i for i ≥ 2, we need to show that

|P{Q(t) = 0} − P{Q̃(t) = 0}| ≤ K‖F1 − F̃1‖t .

Suffices to show that P{Q(t) > 0} = 1−P{Q(t) = 0} is Lipschitz continuous. In particular,

we argue that

|P{Q(t) > 0} − P{Q̃(t) > 0}| ≤ 2‖F1 − F̃1‖t. (32)

To see this, note that (32) holds whenever, ‖F1 − F̃1‖t > 1
2
, since,

|P{Q(t) > 0} − P{Q̃(t) > 0}| ≤ 1.

Now suppose that (F̃1(s) : s ≤ t) satisfies the constraint ‖F1 − F̃1‖t ≤ ε ≤ 1
2
. Then, it

maximizes P{Q̃(t) > 0} when

F̃1(s) = max(0, F1(s) − ε)

for 0 ≤ s < t and F̃1(t) = min(1, F1(t) + ε). To see this, consider any distribution function

H such that ‖F1 − H‖t ≤ ε. We can couple an arrival from H and F̃1 using the same

uniform random variable U distributed uniformly over [0, 1].
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Define for any distribution function R(·)

R−1(u) = inf{x : R(x) ≥ u}.

Then, since H(s) ≥ F̃1(s) for s < t, it follows that for U < H(t−), H−1(U) < t and

H−1(U) ≤ F̃−1
1 (U).

Furthermore, U ≤ H(t) is equivalent to H−1(U) ≤ t. It then follows that

U ≤ H(t) ≤ F1(t) + ε

so that then F̃−1
1 (U) ≤ t. Hence, U ≤ H(t) implies H−1(U) ≤ F̃−1

1 (U) ≤ t, so that

P{Q̃(t) > 0} ≥ P{QH(t) > 0},

where P{QH(t) > 0} corresponds to P{Q(t) > 0} with distribution F1 replaced by H.

Now it is easy to see that

P{Q̃(t) > 0} − P{Q(t) > 0} ≤ 2ε.

To see this, let U again denote uniform random variable as above. Let V = U − ε for U ≥ ε

and V = 1 − U for U < ε. It is easy to see that V is also uniformly distributed over [0, 1].

We develop a stochastic coupling where U is used to generate samples from F1 and V is used

to develop samples from F̃1. Samples from the remaining distributions (Fi : 2 ≤ i ≤ N)

are kept the same in the two systems.

Then note that F−1
1 (U) = F̃−1

1 (V ) except if U ≤ ε or U ≥ F1(t). For U > F1(t) + ε,

the arrivals occur after t under both the distributions. Hence, under the two systems, the

arrivals that occur before or at time t have different times with at most 2ε probability.

Now, (32) easily follows. ¤

B Proof of Proposition 1: Symmetry

The proof proceeds through several lemmas. The first establishes that if a certain user

assigns a positive probability of arrival to a single point in time, then other users will

choose not to arrive at or shortly after that time.

Lemma 12 Let F be an equilibrium profile. Suppose Fi has a point mass at t, namely,

Fi(t) > Fi(t−). Then
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(i) Fj(t + ε) − Fj(t−) = 0 for some ε > 0 and all j 6= i.

(ii) In particular, Fj does not have a point mass at t.

Proof: Claim (ii) clearly follows from (i). To establish (i), we show that if user j 6= i

arrives just before t, he will incur a cost that is smaller than if he arrives at t or shortly

thereafter. Therefore, arriving at t or shortly thereafter is not a valid choice at equilibrium.

The expected queue size faced by user j arriving at t is

Q̄−j(t) =
1

2
(Q−j(t−) + Q−j(t))

= Q−j(t−) +
1

2
(F−j(t) − F−j(t−))

≥ Q−j(t−) +
1

2
(Fi(t) − Fi(t−)) > Q−j(t−) .

Here the second equality follows by Lemma 2, the first inequality holds since F−j =
∑

k 6=j Fk

includes Fi as an additive term, and the last inequality holds since Fi does have a point

mass at t by assumption. Note that Q−j(t − ε) → Q−j(t−) as ε ↓ 0. Observing (7), it

follows that Cj(t − ε1,F−j) < Cj(t,F−j) for ε1 small enough.

Further, since the cost is right-continuous (Lemma 7), this inequality extends to s > t,

namely Cj(t− ε1,F−j) < Cj(s,F−j) for s ∈ [t, t + ε] with ε > 0 small enough. This means

that arriving at any point in [t, t+ ε1] is not an optimal choice for j, so that Fj must assign

zero probability to that interval. Hence Fj(t + ε) − Fj(t−) = 0, as claimed. ¤

Recall from Lemma 1 that Ci(t,F−i) = ci on a set of Fi-measure 1. We wish to establish

that this property holds pointwise on Ti. The next lemma establishes this claim, with the

possible exception of points to which other users assign point masses. Later we will show

that such point masses do not exist.

Lemma 13 Let F = {Fi} be an equilibrium profile. Then, for each i,

(i) The support Ti of Fi is bounded.

(ii) Ci(t,F−i) = ci if both t ∈ Ti and F−i has no point mass at t.

(iii) Ci(t−,F−i) = ci for all t ∈ Ti.

Proof: (i) Follows since the cost Ci(s,F−i) tends to infinity at |s| → ∞.
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(ii) t ∈ Ti implies that (t − ε, t + ε) has positive Fi measure for any ε > 0. It follows from

Lemma 1(ii) that Ci(s,F−i) = ci for some point s ∈ (t− ε, t + ε). But F−i does not have a

point mass at t by assumption, so that by Lemma 7, t is a continuity point of Ci(·,F−i).

It follows that Ci(t,F−i) = ci at t as well.

(iii) Consider again t ∈ Ti. If F−i has no point mass at t, then t is a continuity point of

Ci(t,F−i) by Lemma 7, and the conclusion follows from (ii). Suppose F−i does contain a

point mass at t. Lemma 12 then implies that Fi assigns zero probability to [t, t + ε) for

some ε > 0. But, as argued in (ii), (t − ε, t + ε) has positive Fi measure for any ε > 0. It

follows that (t − ε, t) has positive Fi measure for all ε > 0. It now follows by Lemma 1(ii)

that Ci(s,F−i) = ci for some point s ∈ (t − ε, t), for all ε > 0. But since the left limit

Ci(t−,F−i) exists by Lemma 7, the claim follows. ¤

We next show that the equilibrium costs are the same for all users. From this, we will

subsequently infer that their arrival distribution must be identical as well.

Lemma 14 In any equilibrium profile F , the equilibrium costs ci of the users are all the

same.

Proof: It suffices to show that cj ≤ ci for all j 6= i. Fix i and j. Let ti be the smallest

point in the support Ti of Fi (ti exists since the support is bounded by Lemma 13, and

closed by definition). In the next paragraph we will show that Cj(ti−,F−j) ≤ ci ; that is,

an arrival of j just before ti will incur a cost not exceeding ci. (Note that this also applies

to an arrival at t = ti itself, unless Fj has a point mass there.) This inequality clearly

implies that cj ≤ ci, since cj minimizes Cj(t,F−j).

By definition of ti we have that Fi(t) = 0 for t < ti, hence F−j(t) ≤ F−i(t) there. Invoking

the monotonicity property in Lemma 3(i), it follows that Q−j(ti−) ≤ Q−i(ti−). Observing

(7), this implies that Cj(ti−,F−j) ≤ Ci(ti−,F−i). But the latter cost equals ci by Lemma

13(iii). Therefore Cj(ti−,F−j) ≤ ci, and the lemma is established. ¤

Lemma 15 Any equilibrium profile F is symmetric, in the sense that Fi does not depend

on i.

Proof: Suppose, in contradiction, Fi 6= Fj for some i and j. Let t0 = max{t : Fi(s) =

Fj(s) , s < t} be the maximal time up to which these distributions are identical. Note

that t0 > −∞ since the supports of Fi and Fj are bounded, and it may then be easily seen

from the definition that the maximum is indeed attained at a finite point. We consider

separately the following two cases:
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(i) Either (t0, t0 + ε) 6⊂ Ti for all ε > 0, or (t0, t0 + ε) 6⊂ Tj for all ε > 0. That is, the support

of Fi, or that of Fj, does not extend continuously beyond t0.

(ii) (t0, t0 + ε) ⊂ Ti ∩ Tj for some ε > 0. That is, both supports extend to some interval

beyond t0.

Case (i): Suppose the stated condition holds for i (or otherwise swap indices). Observing

Assumption 1, there must exist a whole interval (t0, t0 + ε) which is outside of Ti. Let

t1 > t0 be the first point in Ti beyond t0 (such a point must exist since Fi(t0) = Fj(t0) < 1

since Fi 6= Fj and by definition of t0). Then Fi(t1−) − Fi(t0) = 0. But this implies that

Fj(t1−) − Fj(t0) > 0, by definition of t0. It therefore follows that Fj strictly dominates

Fi on (−∞, t1) in the sense of Lemma 2, namely Fj(t) − Fj(s) ≥ Fi(t) − Fj(s) for all

s < t < t1, with strict inequality holding for some s < t < t1. Applying Lemma 2(ii) with

F = F−i and F̃ = F−j, we obtain that Q−i(t1−) > Q−j(t1−). We next show that this

implies ci > cj, contradicting Lemma 14. Indeed, since t1 ∈ Ti, Lemma 13(iii) implies that

Ci(t1−,F−i) = ci, while the definition of the equilibrium costs (see Lemma 1) implies that

cj ≤ Cj(t1−,F−j). We therefore obtain that ci > cj, in contradiction to Lemma 14.

Case (ii): Here we shall argue that Fi(t) = Fj(t) for t ∈ (t0, t0 + ε). As this stands at odds

with the definition of t0, the required contradiction will be established.6

Let k stand for i or j. Since (t0, t0 + ε) ⊂ Tk, it follows by Lemma 12(ii) that F−k(t)

has no point masses for t ∈ (t0, t0 + ε). Therefore, by Lemma 13(ii), Ck(t,F−k) = ck on

that interval. But ci = cj = c0 by Lemma 14, so that Ci(t,F−i) = Cj(t,F−j) ≡ c0 for

t ∈ (t0, t0 + ε). We proceed to show that this implies Fi(t) = Fj(t) for t ∈ (t0, t0 + ε).

Consider henceforth k ∈ {i, j} and t ∈ (t0, t0 + ε). As F−k has no point masses there we

have by Lemma 2 that Q−k(t) is continuous, so that the equality in (6) is in effect. Using

the relations in (4) and (3), we obtain

Ck(t,F−k) = (α + β)[µ−1F−k(t) + E(I−k(t))] − αt

= (α + β)[µ−1F−k(t) + 1{t≥0}

∫ t

0

P{Q−k(s) = 0}ds] − αt

≡ c0 . (33)

6It is relatively easy to rule out the case where Fi strongly dominates Fj (or vice versa) over (t0, t0 + ε),
proceeding similarly to case (i). However, such dominance is not entailed in general from Fi 6= Fj . For

example, suppose Fi(t) − Fj(t) = t3 sin(1/t) for t > 0
4
= t1. This is a continuous function that has an

infinite number of sign changes near 0, hence neither Fi or Fj dominates the other. We therefore resort to
a more elaborate argument involving uniqueness of solutions to a certain differential equation.
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Suppose first that t0 < 0. We directly obtain from the last equality that

F−k(t) =
µ

α + β
(αt + c0) , t0 < t < min{0, t0 + ε} . (34)

Observe that F−i = F0 + Fj and F−j = F0 + Fi, where F0
4
=

∑
m6=i,j Fm is common to

both. It therefore follows from (34) that Fj(t) = Fk(t) on that interval, which contradicts

the definition of t0.

We may therefore restrict attention to t0 ≥ 0. Taking the derivative in (33) and rearranging,

we obtain
d

dt
F−k(t) = µ

α

α + β
− µP{Q−k(t) = 0} , k = i, j (35)

wherever the derivative exists. But since F−k has no point masses in [t0, t0 + ε) (as already

observed), the right-hand side may be seen to be continuous in t, so that the derivative

exists for all t > 0 in that range. A possible exception is for t0 = 0 (due to the removal of

the indicator), where we simply consider the right derivative.

We next interpret (35) as a coupled pair of functional differential equations for F−i and

F−j over t ≥ t0. Let us start with the initial conditions F−k(t0). As we deal with a specific

equilibrium profile F , we consider {Fm, m 6= i, j} as given and fixed. We further consider

Fi and Fj as given up to t < t0 (with Fi = Fj there). Since there is no point mass at

t0, then by continuity Fi(t0) = Fj(t0) are given as well. Hence F−i(t0) = F−j(t0) are also

given and serve as initial conditions for (35).

Observe next that P{Q−i(t) = 0} generally depends on F−i = {Fm , m 6= i}. Since we

consider {Fm, m 6= i, j} as given, then P{Q−i(t) = 0} is effectively a function of Fj only,

hence of F−i = F0 +Fj. Furthermore, we claim that P{Q−i(t) = 0} is Lipschitz continuous

in Fj, in the the sense that

|P{Q−i(t) = 0} − P{Q̃−i(t) = 0}| ≤ K sup
s∈[t0,t]

|Fj(s) − F̃j(s)| ,

for some constant K > 0 and all t ≥ t0, where Q−i and Q̃−i correspond to Fi and F̃j,

respectively, and Fj(s) = F̃j(s) for s < t0. The proof of this inequality essentially follows

from Lemma 4. Evidently, the same continuity property holds when Fj is replaced by

F−i = F0 + Fj. Similar observations clearly hold with i and j interchanged.

It follows that (35) is a retarded functional differential equation (in the sense of [4]) in the

pair (F−i, F−j) over t ≥ t0, with initial conditions given at t0, and Lipschitz continuous

right hand side. Furthermore, (F−i, F−j) are continuous (given that they contain no point
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masses). It therefore follows by Theorem 2.2.3 in [4] that these equation has a unique

solution in [t0, t0 + ε). But this solution must be symmetric, namely F−i(t) = F−j(t), as

otherwise we can obtain a different solution by interchanging the two. We have thus shown

that Fi(t) = Fj(t) for t ∈ (t0, t0 + ε), and the proof of case (ii) by contradiction is complete.

¤

Proposition 1 now follows as a direct consequence of Lemmas 15 and 12. ¤

C Proofs for Subsection 4.3

Proof of Lemma 9: (i) The Lipschitz continuity of P0 in (14) clearly extends to the

right-hand side of equation (12). Claim (i) now follows by by standard results, for example

[4, Theorem 2.2.3].

(ii) Continuous dependence of G(·) on the initial conditions, uniformly in t, again follows

from (14) by standard results, see [4, Theorem 2.2.2]. This clearly extends to G′(t) by the

Lipschitz continuity noted in that Lemma.

(iii) Consider two solutions G and F with F (0) > G(0). Observe that P0(F0) = (1 −
F (0))M < (1 − G(0))M = P0(G0), so that F ′(0) > G′(0), and by continuity this extends

to t ∈ [0, ε] for some ε > 0. Suppose now, by contradiction, that F ′(t) ≤ G′(t) for some

t > ε, and let t0 be the first time for which equality holds (which exists by continuity). But

then F ′(t) > G′(t) for all t ∈ [0, t0), hence F (t) > G(t) there. By Lemma 3(iii), this entails

that P0(Ft0) < P0(Gt0), and the FDE implies that F ′(t0) > G′(t0), which contradicts the

definition of t0. ¤

The following notation will be used in the next proofs. Let

t0 = τ if G′(τ) = 0, and ∞ otherwise.

t1 = τ if G(τ) = 1, and ∞ otherwise.

(recall that τ is the first time at which either G(t) = 1 or G′(t) = 0.) Evidently, τ =

min{t0, t1}.

Proof of Proposition 4: The proof proceeds in several steps.

1. Bounded final time: We first observe that τ is finite, and in fact uniformly bounded as

a function of G(0) ∈ [γmin, 1]. Indeed, observe that the expected number of departures by
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time t is given by (cf. (4)):

E(D(t)) = µE(B(t)) = µ

∫ t

0

(1 − P0(Gt))dt .

But equation (12) implies that P0(Gt) < α
α+β

as long as G′(t) > 0, so that E(D(t)) ≥
µ β

α+β
t. But since D(t) cannot exceed M , the number of potential arrivals, it follows that

either G′(t) = 0 or G(t) = 1 must occur for some t ≤ M(α+β)
µβ

4
= Tmax. Therefore τ ≤ Tmax

for all G(0).

2. Monotonicity of t0: Suppose τ = t0 for some G(0) = γ, namely G′(τ) = 0 and G(τ) ≤ 1.

Observe that by Lemma 9(iii) both G(t) and G′(t) are strictly increasing in G(0) for any

fixed t. It follows directly that τ = t0 for all G(0) < γ, and further that t0 is strictly

increasing in G(0) there.

3. Monotonicity of t1: Suppose τ = t1 for some G(0) = γ, namely G′(τ) ≥ 0 and G(τ) = 1.

It similarly follows, by monotonicity of G(t) and G′(t) in G(0), that τ = t1 for all G(0) > γ,

and further that t1 is strictly decreasing in G(0) there.

4. Crossing to infinite t0, t1: Let γ0 = sup{G(0) ∈ [γmin, 1] : t0 < ∞}, and γ1 = inf{G(0) ∈
[γmin, 1] : t1 < ∞}. Observe that both t0 and t1 are indeed finite for some G(0) in that

range. Indeed, t0 = 0 for G(0) = γmin (since then G′(0) = 0), and t1 = 0 for G(0) = 1.

5. γ0 = γ1: We can infer that γ0 = γ1 from the above-mentioned monotonicity properties

of t0 and t1. Indeed: t0 < ∞ for G(0) < γ0; t1 < ∞ for G(0) > γ0; t0 and t1 cannot both be

infinite for the same G(0) since τ is finite; and finally note that if t0 and t1 are both finite

then t0 = t1 by their definition, so that this can hold for a single value of G(0) at most,

due to the opposite monotonicity of t0 and t1 in G(0).

6. Properties (i) and (ii): Let γ∗ denote the common value of γ0 and γ1. Given the

definitions of the latter, we obtain the following:

– For G(0) < γ∗, t1 = ∞ and τ = t0 < ∞; that is, G′(τ) = 0 and G(τ) < 1.

– For G(0) > γ∗, t0 = ∞ and τ = t1 < ∞; that is, G′(τ) > 0 and G(τ) = 1.

In view of the monotonicity properties of t0 and t1, it follows that properties (i) and (ii) of

the Proposition are satisfied. ¤

Proof of Theorem 2: Consider γ∗ from Proposition 4. Clearly both terminal conditions

can hold together only for G(0) = γ∗. It remains to show that they indeed hold at γ∗.

Suppose G(0) = γ∗. Let t0 and t1 be defined as in the last proof. Recall that t0 and t1

cannot both be infinite (since τ is bounded), and t0 = t1 when both are finite. Therefore,
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there are three mutually-exclusive possibilities at γ∗:

– Option 1: t0 = ∞. That is, τ = t1 < ∞, G(τ) = 1, G′(τ) > 0.

– Option 2: t0 = t1 < ∞. That is, G(τ) = 1, G′(τ) = 0.

– Option 3: t1 = ∞. That is, τ = t0 < ∞, G(τ) < 1, G′(τ) = 0.

Option 2 is just the required property in the theorem statement. Hence, the proof will be

complete once we rule out Options 1 and 3.

In the following, we let G(t, γ) and τ(γ) denote the solution and final time that correspond

to G(0) = γ, and similarly for t0(γ), t1(γ). Also denote τ ∗ = τ(γ∗). Recall that G(t, γ) and

G′(t, γ) are continuous in t and γ (Lemma 9).

Suppose Option 1 holds at G(0) = γ∗. By Proposition 4(i), for G(0) = γ < γ∗ we

have G′(τ(γ), γ) = 0, G(τ(γ), γ) < 1, and τ(γ) = t0(γ) is increasing in γ there. Define

τ̂ = limγ↑γ∗ t0(γ). Consider two cases.

a. τ̂ ≤ τ ∗. By continuity of G′(t; γ) in γ and t, we obtain G′(τ̂ , γ∗) = limγ↑γ∗ G′(t0(γ), γ) =

0. But since τ̂ ≤ τ ∗ this means that t0(γ
∗) = τ̂ < ∞, contrary to Option 1.

b. τ̂ > τ ∗. This means, in particular, that τ(γ) = t0(γ) > τ̃ for some τ̃ > τ ∗ and all

γ < γ∗ close enough to γ∗. However, we will use G(τ ∗, γ∗) = 1 and G′(τ ∗, γ∗) > 0 to show

that G(τ ∗ + ε, γ) > 1 must hold for any ε > 0 and γ < γ∗ close enough to γ∗, in obvious

contradiction to τ(γ) > τ̃ . Indeed, by continuity in γ, limγ↑γ∗ G′(τ ∗, γ) = G′(τ ∗, γ∗)
4
= a0 >

0. Therefore, there exists γ1 < γ∗ so that G′(τ ∗, γ1) ≥ 1
2
a0. Further, by continuity in t,

there exists ε1 > 0 so that G′(t, γ1) ≥ 1
4
a0 for t ∈ [τ ∗, τ ∗ + ε1]. By monotonicity in γ, this

inequality extends to all γ ∈ [γ1, γ
∗). Therefore,

G(γ, τ ∗ + ε1) ≥ G(γ, τ ∗) +
1

4
a0ε1 γ ∈ [γ1, γ

∗) .

Now, since limγ↑γ∗ G(γ, τ ∗) = G(γ∗, τ ∗) = 1, it follows that G(γ, τ ∗ + ε1) > 1 for γ close

enough to γ∗. But this holds for ε1 arbitrarily small (and in particular for ε1 < τ̂), which

obtains the required contradiction. This completes the argument that Option 1 is not

possible.

Turning to Option 3, suppose that it holds as stated. That is G(τ ∗, γ∗) < 1, G′(τ ∗, γ∗) = 0.

We will show that this contrasts with property (ii) of γ∗ in Proposition 4, namely that

G(τ(γ), γ) = 1 and G′(τ(γ), γ) > 0 for G(0) = γ > γ∗. Define τ̂ = limγ↓γ∗ t1(γ). Consider

again two cases.

a. τ̂ ≤ τ ∗. Then G(τ ∗, γ∗) ≥ G(τ̂ , γ∗) = limγ↓γ∗ G(τ(γ), γ) = 1 , which contradicts

G(τ ∗, γ∗) < 1.
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b. τ̂ > τ ∗. Here, analogously to the argument in Option 1(b), we will show that G′(τ ∗ +

ε, γ) < 0 must hold for ε > 0 and γ > γ∗ close enough to γ∗, which contradicts τ̂ > τ ∗. For

that purpose we will require some properties of the second derivative G′′. The argument

proceeds through several claims.

(b1) For any γ, G(t) < 1 and G′(t) = 0 imply that G′′(t) < 0.

Indeed, by (12) G′′(t) = − µ
N−1

d
dt

P{Q−i(t) = 0}. But d
dt

P{Q−i = 0} > 0 follows similarly

to Lemma 6.

(b2) G′′(t, γ) is locally Lipschitz continuous in t and γ, and uniformly so while G(t, γ) ≤
1 − ε < 1.

To see this, consider the differential equation (8) jointly with the evolution equations for

the queue size probabilities pt(k,m) in (18). Note that P{Q−i(t) = 0} =
∑N−1

m=0 pt(0,m).

Together these equations can be considered as a set of ordinary differential equations, with

the right-hand size smooth and uniformly bounded as long as 1 − G(t) ≥ ε > 0. The

conclusion now follows by expressing G′′(t) in terms of these variables.

(b3) G′′(t, γ) is strictly negative in some neighborhood of (τ ∗, γ∗).

Indeed, recalling that G(τ ∗, γ∗) < 1 and G′(τ ∗, γ∗) = 0, we have by (b1) that G′′(τ ∗, γ∗)
4
=

−b0 < 0. Further, by the Lipschitz continuity of G there is an ε3 > 0 so that G(τ ∗, γ∗) <

1 − ε3 for all t ≤ τ ∗ + ε3 and γ ∈ [γ∗, γ∗ + ε3]. Now (b2) implies that G′′ is uniformly

Lipschitz in that region, so that G′′(t, γ) < −1
2
b0 for (t, γ) as above, possibly with smaller

ε3 > 0.

(b4) Estimating G′: A two-term Taylor expansion for G′(t) gives

G′(t, γ) = G′(τ ∗, γ) + G′′(ζ, γ)(t − τ ∗)

for some ζ = ζ(t, γ) ∈ [τ ∗, t]. Restricting to t ∈ (τ ∗, τ ∗ + ε3) and γ ∈ (γ∗, γ∗ + ε3) as in

(b3), we get

G′(t, γ) ≤ G′(τ ∗, γ) − 1
2
b0(t − τ ∗) .

Now, since limγ↓γ∗ G′(τ ∗, γ) = G′(τ ∗, γ∗) = 0, it follows that

lim
γ↓γ∗

G′(t, γ) < 0

for t ∈ (τ ∗, τ ∗ + ε3). This provides the required contradiction to τ̂ > τ ∗, so that Option 3

is ruled out.

We are therefore left with Option 2, which establishes the Theorem. ¤

41


