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Abstract

We consider an uplink wireless collision channel, shared by multiple mobile users.

The medium access protocol incorporates channel reservation that relies on RTS

(request-to-send) and CTS (clear-to-send) control packets. Consequently, collisions

are reduced to the relatively short periods where mobiles request channel use. In

our model, users individually schedule their channel requests, and the objective of

each user is to minimize its own power investment subject to a minimum-throughput

demand. Our analysis reveals that for feasible throughput demands, there exist ex-

actly two Nash equilibrium points in stationary strategies, with one superior to the

other uniformly over all users. We then show how this better equilibrium point can

be obtained through distributed best-response mechanisms. Finally, we quantify and

discuss the effect of the relative length of data and control periods on capacity, power

and delay.
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1 Introduction

1.1 Background and Motivation

Current wireless networks consist of a relatively large number of users with heterogeneous

Quality of Service (QoS) requirements (such as bandwidth, delay, and power). To reduce

the management complexity, decentralized control of such networks is often to be preferred

to centralized one. This requirement leads to distributed (or at least partially distributed)

network domains, in which end-users take autonomous decisions regarding their network

usage, based on their individual preferences. This framework is naturally formulated as a

non-cooperative game, and has gained much interest in recent literature (e.g., see [8] for a

recent collection of papers on game theory in communication systems).

In the context of wireless networks, self-interested user behavior can be harmful, as

network resources (such as bandwidth) are often limited, and might be abused by a subset

of greedy users. Consequently, a central question that arises in the design and management

of networks is the following: What is the right degree of freedom that should be given

to end-users during network operation? This dilemma is incorporated in mechanism or

protocol design, as by restricting users to some protocol rules, an adequate performance

level can be preserved, despite user selfishness.

In this paper, we examine a distributed access control mechanism, in which a reservation

mechanism is applied to efficiently use the shared medium. Specifically, we adopt 802.11’s

virtual carrier sense mechanism (see [1] and [5] for a survey): A mobile station ready to

transmit, first sends a short control packet, called RTS (Request to Send), which includes

the source, destination and requested duration of the data transmission period. The base

station then responds to the RTS request by sending an CTS (Clear to Send) packet with

the same information as above.

As part of the reservation protocol, a mobile station that hears a CTS message addressed

to another station will not use the channel until the end of the current transaction. This

virtual carrier sense mechanism essentially reduces the probability of collision to the short

duration of the RTS transmission. We note that non-interference with on-going transmis-

sions may be seen to be in the self-interest of any legitimate user of the channel, and strictly

so when the protocol mandates priority to interrupted transmissions. We do not consider

here malicious users (jammers), whose sole interest is to interfere with the performance of

other users.
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Reservation-based mechanisms have been considered in recent wireless network litera-

ture, not only in the 802.11 context, but also in relation to mobile ad-hoc networks (see

[5], [14] and references therein). Several recent papers have analyzed non-cooperative user-

behavior in wireless systems, the bulk of which related to CDMA-based domains, which

allow for multi-packet reception (see [13] for a survey). Wireless collision channels with

self-interested users are studied as well, e.g., in [2, 3, 6]. These papers consider different

user-utilities than the one studied here, and usually assume symmetry among users, which

might not hold in practice. The basic framework of this paper is similar to our previous

work in [10, 12, 11], where the first two papers consider rate-based equilibria in collision

channels with fading, and the third considers the same model with power-level control. A

more general capture channel model has been considered in [9]. None of the above refer-

ences, however, has incorporated reservation mechanisms as part of the model, which is the

central feature of this contribution.

1.2 Contribution and Paper organization

In this paper we study medium access control to a wireless channel while focusing on the

effect of the RTS/CTS reservation mechanism, under the assumption that mobiles are free

to schedule their individual channel requests. Distinctive features of our model include the

following:

• The objective of each user is to minimize its average power investment subject to

satisfying a given throughput demand. As we shall see, this inherently leads to the

existence of multiple equilibrium points.

• We focus on the simplest scheduling strategy, in which each user sets a fixed (sta-

tionary) probability for issuing channel requests1.

The resulting interaction between users may be viewed as a noncooperative game [4], the

properties of which are the main focus of this work. We start by analyzing the equilibrium

points of this game, focusing on their number and efficiency properties. Our analysis

largely relies on the results of [12], after showing that the present model (with channel

reservations) may be reduced to that of [12] through a simple transformation. We show

1We note however that the resulting (stationary) equilibrium points remain so even when the restriction

to stationary strategies is removed. This follows since the best-response strategy for each user to a stationary

strategy profile of the others is stationary as well, as may be readily verified.
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that for (strictly) feasible throughput demands, there exists exactly two equilibrium points,

with one strictly better than the other for all users (in terms of transmission attempt rate,

hence average power). Based on our analysis, we focus on system design and control issues

in two significant directions:

• Distributed best-response like mechanisms and their convergence properties.

• The effect of the data transmission period (relative to the control period) on basic

performance characteristics, namely channel capacity, average power and transmission

delay.

For the standard best-response mechanism, we establish strong convergence results to the

better equilibrium point: Namely, the mechanism converges to the better equilibrium when-

ever started below the worse equilibrium. This significantly strengthes the analysis and

results reported in [12], where convergence was established only for initial conditions below

the better (i.e., lower) equilibrium. We also consider a simplified mechanism, the naive best

response (NBR), that may be more plausible for simple-minded users. While the theoretical

guarantees for this variant are weaker, in practice it achieves good performance.

The paper is organized as follows. The networking model, along with basic properties

thereof, is presented in Section 2. In Section 3 we analyze the basic equilibrium properties

of the underlying noncooperative game. Section 4 focuses on distributed mechanisms for

leading the network to an efficient equilibrium point. In Section 5 we address the effect of

the data transmission period. Conclusions and future research directions are outlined in

Section 6.

2 The Model

Our model consists of a finite set of mobile users I = {1, . . . , n} who connect to a common

base station over a shared wireless channel. We focus on the uplink direction, where users

transmit their data to the base station.

2.1 The Network Model

Medium Access Protocol. Time is slotted, and the access to the channel is obtained

as follows. A mobile wishing to send data asks for transmission permission from the base
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Figure 1: Illustration of the reservation-based medium access control. Each user

requests the channel with some probability. In case of a single request, the channel

is granted to the requesting user for a period of T2 slots.

station by sending a short RTS packet. The base station in turn sends a CTS acknowledge-

ment packet granting use of the channel to one station at most. The total duration of this

RTS-CTS phase is a constant of T1 slots duration (whether the base station sends a CTS

or not). In case that the channel has not been assigned to any of the stations, the above

step is repeated for the same duration of T1 slots. Otherwise, the user that obtained the

CTS occupies the channel for a fixed number of T2 slots, in which its data is transmitted

without interruption. See Figure 1 for a graphic illustration. Although the 802.11 stan-

dard allows for reserving the channel for a variable duration, we assume that all mobiles

use a fixed-length data transmission interval. This assumption is commensurate with the

worst-case scenario where all users always have packets to send, and therefore reserve that

channel for the largest allowed duration at each transmission.

Reception Model. We assume the following.

• Simultaneous RTS transmissions of two or more users result in a collision. That is,

in case of multiple requests, the base station is unable to recognize which of the users

have requested the channel.

• During the data transmission period, the effective data rate of user i is a constant,

say Di, determined by the station characteristics (transmission power, distance from

the base station, channel gain, etc.).
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2.2 User Model

We associate with each user i a fixed throughput requirement ρi, which stands for the

(minimal) data rate that this user wishes to maintain2. To simplify notations, we normalize

the throughput requirement of each user by its effective data rate Di, so that 0 < ρi ≤ 1.

Further denote ρ = (ρ1, . . . , ρn) and ρ =
∑

i ρi. Note that the aggregate throughput ρ

is actually upper bounded by T2/(T1 + T2), since each data transmission period must be

preceded by a channel request phase.

We assume that a user always has packets to send, yet it may postpone its transmission

requests in order to accommodate its required rate ρi (as we formally define below). Hence,

each user i chooses a request probability pi, which is the probability for sending an RTS

frame in the designated time-period. We further assume that users transmit at a fixed

power level (regardless of whether the transmission is an RTS packet or a data packet).

Consequently, the strategy profile p = (p1, . . . , pn) determines the average power investment

of each user. To simplify notations, we shall normalize the per-slot power investment of

each user’s transmission to 1.

The underlying assumption of our model is that users are selfish and do not cooperate

or coordinate in any manner in order to satisfy their throughput demands. Obviously, the

transmission schedule of each user affects the throughput of all others. This state of affairs

gives rise to a conflict situation, which we formalize as a non-cooperative game between the

users. We are interested in the Nash equilibrium point of that game. To define the Nash

equilibrium, we require some basic quantities, which are derived in the next subsection.

2.3 Basic Performance Measures

In this subsection we obtain explicit expressions for the throughput and power-investment

averages, as a function of the stationary strategy profile p = (p1, . . . pn).

Define

qi ≡ qi(p)
△
= pi

∏

j 6=i

(1 − pj) , (1)

which is probability that user i alone transmits at a given RTS slot, and hence granted CTS

2We view here the throughput requirement as a lower bound mandated by the user application. Al-

ternatively, this rate may be assigned (and policed) as an upper bound by the system as a control and

management tool, leading to a similar model. In either case, the rate assignment procedure is exogenous

to our model.
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permission for the subsequent T2 interval. Let ri(p) be user i’s throughput (normalized by

Di) as determined by the request probabilities of all other users.

Proposition 1 The long-term average throughput of user i is given by

ri(p) =
qiT2

T1 +
∑

j qjT2
. (2)

Proof: Let Xk, k = 1, 2, . . . be the renewal process whose renewal points are the starting

times of the user channel requests (i.e., transmission of an RTS packet by any user). Then

E(Xk) = T1 +
∑

j qjT2. The expected throughput of user i over the k-th renewal interval

may be regarded as a reward Rk earned at the k-th renewal, so that (Xk, Rk) is a reward-

renewal process [15]. The expected reward is given by E(Rk) = qiT2. Then, by Proposition

7.3 in [15],

ri(p) = lim
k→∞

∑k

m=1 R(m)

k
=

E(Rk)

E(Xk)
=

qiT2

T1 +
∑

j qjT2
. (3)

�

Denote by Si(p) the (long-term) average transmission power investment of user i. For

convenience, we normalize the average power and express it as a fraction of the instanta-

neous power of user i during transmission. Thus, Si is identical to the fraction of time in

which user i is transmitting (either data of control packets). Proceeding as in Proposition

1, we obtain the following expression.

Proposition 2 The average power investment of user i is given by

Si(p) =
piT̄1 + qiT2

T1 +
∑

j qjT2
, (4)

where T̄1 < T1 is the duration of actual transmission of the RTS packet.

2.4 Game Formulation

A Nash equilibrium point (NEP) for our model is a vector of request probabilities p =

(p1, . . . , pn), which is self-sustaining in the sense that all throughput constraints are met,

and neither user can lower its average energy investment by unilaterally modifying its

transmission request probability. Formally,
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Definition 2.1 (Equilibrium points) A stationary strategy profile p
△
= (p1, . . . , pn) is a

Nash equilibrium point if

pi ∈ argmin
0≤p̃i≤1

{Si(p̃i,p−i) : ri(p̃i,p−i) ≥ ρi} (5)

for each i ∈ I, where Si and ri are defined in (4) and (2), respectively, and p−i stands for

the vector p excluding its i-th element pi.

Noting that both functions Si and ri are strictly increasing in pi, it follows that the above

minimization over p̃i is equivalent to satisfying the second inequality with equality, namely

ri(p) = ρi. We thus obtain the following equivalent characterization of a Nash equilibrium

point p in our model:

ri(p) ≡
qi(p)T2

T1 +
∑

j qj(p)T2

= ρi (6)

for every user i. We shall refer to (6) as the equilibrium equations.

3 Equilibrium Analysis

We start our analysis by reformulating the equilibrium equations in an equivalent form that

is more convenient for our purpose. To that end, recall that

ρ =
∑

i∈I

ρi

(the aggregate throughput demand of all users), and let α = ρ

1−ρ
.

Proposition 3 The equilibrium equations (6) are equivalent to the following set of equa-

tions:

qi(p) = ρ̃i , i ∈ I (7)

where

ρ̃i =
ρi(1 + α)T1

T2
=

ρiT1

(1 − ρ)T2
. (8)

Proof: Summing the equilibrium equations (6) over all users i, we obtain

∑

i qiT2

T1 +
∑

j qjT2
= ρ. (9)
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Solving for
∑

i qi gives
∑

i

qi =
αT1

T2

. (10)

Substituting (10) into (6) leads to (7). �

The significance of the last proposition is that our equilibrium equations reduce to

(a special case of) the model without reservations studied in [12], with the throughput

requirements of the users set to the modified rates ρ̃i. Consequently, the following results

from [12] carry over to the current model. Let the feasible throughput region designate

the set of throughput requirement vectors (ρ1, . . . , ρn) for which there exists at least one

equilibrium point.

Theorem 4 ([12]) (i) The feasible throughput region is a non-empty and closed set.

(ii) In every interior point of the feasible region, there exist exactly two Nash equilibria,

denoted pa and pb, and one of those (say pa) is uniformly better than the other (pb),

in the sense that pa
i < pb

i for every user i.

(iii) For the better equilibrium point pa, it holds that

∑

i

pa
i < 1 . (11)

We note that any feasible throughput vector in the modified model must satisfy
∑

i ρ̃i ≤ 1

(fully-utilized channel), which is equivalent here to ρ =
∑

i ρi ≤
T2

T1+T2

. Clearly, except for

the case of a single user, the total throughput ρ will be smaller due to possible collisions.

In fact, it was shown in [12] that for many small users, the maximal channel throughput

approaches e−1, which translates to ρ ≈ T2

eT1+T2

in the present model. Further properties of

the throughput region will be discussed in Section 5.1.

Remark 1 Let us briefly comment on the computation of the equilibria. As shown in [12],

the two solutions of (7) can be computed by finding the zeros of a certain scalar and unimodal

function. Therefore, computation of the Nash equilibria can be efficiently accomplished by

standard scalar search techniques. In addition, the better-equilibrium point can be computed

through simulating best-response dynamics, as established in Section 4.

We next provide a simple expression for the average power in equilibrium.
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Proposition 5 The average power investment of user i in an equilibrium point p is given

by

Si(p) = ρi +
T̄1

T1
(1 − ρ)pi (12)

(with T̄1 as defined in Proposition 4).

Proof: Observe that the shared channel is either in reservation mode (where users send

channel requests) or in data mode (where users send data packets). In every equilibrium

point p, each users consumes a fraction of ρi in data mode, which is the first summand in

(12). Overall, ρ is the fraction of time in which the channel is in data mode, while a fraction

of 1 − ρ is used for reservations. Since user i’s request probability is pi, its corresponding

power investment in that mode is given by (1 − ρ)pi, multiplied by the fraction T̄1

T1

of time

in which it actually transmits during the RTS period. �

Note that the expression (12) does not include the parameter T2. However, the power

investment is a function of pi, which depends on this parameter through the equilibrium

equations (7). Observe further that the power investment in equilibrium is linear in pi. The

immediate conclusions from both Theorem 4 and Proposition 5 are summarized below.

Corollary 6 Let pa and pb be the two equilibrium points, such that pa
i < pb

i for every user

i. Then,

(i) The power investment at pa is strictly lower for each user, namely Si(p
a) < Si(p

b)

holds for every i.

(ii)
∑

i Si(p
a) ≤ 1: the total power investment at the better equilibrium pa is bounded by

1.

Proof: (i) is immediate from (12) and Theorem 4(ii). Part (ii) follows by summing (12)

over all users, using (11), and noting that T̄1 < T1. �

It is interesting to note that by property (ii) the total (normalized) power at the better

equilibrium is never higher than for the single-user, fully utilized channel case. This bound

does not hold for the other equilibrium point.

The above results clearly motivate the study and design of distributed algorithms that

converge to the better equilibrium pa. This is the subject of the next section.
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4 Convergence to the Better Equilibrium

A Nash equilibrium point represents a strategically stable operating point, from which no

user has incentive to deviate unilaterally. Still, the question of how the system arrives at

an equilibrium needs to be addressed, especially when the users operate in a distributed

environment with no cooperation or coordination by a central authority. Furthermore,

observing that our system has two Nash equilibria with one strictly better than the other,

it is important (from the system viewpoint, as well as for each individual user) to verify

that the system converges to the better equilibrium rather than to the worse one.

We start by considering the natural best-response dynamics, where each user reacts

to the observed system conditions by adjusting its strategy (i.e., the value of its request

probability) to achieve its required throughput. We analyze the convergence of this scheme,

and discuss the feasibility of its distributed implementation. We then consider a somewhat

simplified scheme, the naive best response, which may seem more natural to the less so-

phisticated user. We conclude this section with simulation experiments that demonstrate

the actual convergence properties of the two schemes.

4.1 Best Response Dynamics

A best-response strategy for a given user is generally its optimal response to a given set of

strategies for all other users [4]. In our model, the best response for user i is the transmission

request probability that equalizes the user’s throughput with its throughput demand ρi.

Observing (6), the best response p̃i of user i to a strategy profile p = (p1, . . . , pn) is the

probability p̃i that solves

ri(p̃i,p−i) = ρi (13)

with ri(p) given by (2). An explicit expression for p̃i is given below in equation (15). If no

solution exists (i.e., the user cannot satisfy its throughput requirement), we set p̃i = 1.

The best-response (BR) dynamics we consider can now be described as follows: Each

user updates its transmission probability from time to time through its best response map,

so as to satisfy (13). The update times of each user need not be coordinated with other

users. Furthermore, several users can modify their probabilities simultaneously.

This mechanism reflects what myopic, self-interested user would reasonably do: repeat-

edly observe the current network conditions and react to bring its own throughput to the

required level.
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The analysis of the best-response mechanism will be carried out under the following

assumptions, that apply throughout this section.

Assumption 1

(i) Fixed Demands: The user population and the users’ throughput requirements ρ1, . . . , ρn

are fixed. Furthermore, ρ1, . . . , ρn are within the feasible throughput region.

(ii) Persistent Updates: Each user updates its transmission probabilities using Eq. (13)

at arbitrarily chosen time instants, and the number of updates is unbounded.

Furthermore, in order to guarantee convergence to the better equilibrium point pa, we must

impose restrictions on the initial strategy profile of the users, denoted p0. Such restrictions

are clearly essential due to the inherent non-uniqueness of the equilibrium in our model:

indeed, if we start at the worse equilibrium point pb, we will stay there indefinitely under

BR. Even more seriously, for initial conditions above pb we might observe throughput

collapse, as some users increase their transmission probabilities to their maximal values of

1 (see the simulation section).

To specify the required condition, let us define the following sets of strategy profiles:

Π1 = {p ∈ [0, 1]n : ri(p) ≥ ρi for every i, and pj < pb
j for some j}

Π0 = {p ∈ [0, 1]n : p ≤ p̄ for some p̄ ∈ Π1}.

Our main convergence result is summarized below.

Theorem 7 (BR Convergence) Let the initial request probabilities p0 = (p0
1 . . . , p0

n) sat-

isfy p0 ∈ Π0. Then the best response dynamics asymptotically converges to the better

equilibrium point pa.

The proof proceeds by applying a “sandwich” argument. We first show that BR converges

monotonously (from below) to pa when started at p0 = 0. We then show that it converges

monotonously (from above) to pa when started with p0 in Π1. Finally we conclude by

monotonicity of the BR that convergence must occur all for initial conditions between 0

and Π1, namely for all p0 ∈ Π0. The details are provided in the appendix.

The requirement that p0 ∈ Π0 may be interpreted as a “slow start” requirement: the

initial probabilities need to be set low enough to ensure the required convergence. This
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requirement may be satisfied by each user individually simply by selecting p0
i ≤ ρi. However,

as shown next, it applies much more broadly, to any strategy profile that is below the worse

equilibrium point.

Corollary 8 (Convergence Region) Let the initial strategy profile p0 be component-

wise dominated by pb, namely p0
i < pb

i for al i. Then p0 ∈ Π0, and consequently BR

converges to pa when started from such p0.

The proof can be found in the appendix.

As mentioned, a slow-start requirement is essential to guarantee convergence to the

better equilibrium. This requirement is quite mild here, since users are only required to

start below their worse equilibrium probability. Still, an important question is whether the

users would obey this requirement. The incentive to do so is the possibility that the system

may be led to the worse equilibrium otherwise, or even worse to throughput collapse. As

these possibilities are uniformly worse for all users, it is in the interest of each user to

cooperate in a protocol that leads to the better operating point.

We next consider some practical implementation considerations of the BR mechanism

in a distributed environment, where users are generally unaware of the detailed decisions

and strategies of the others. Note that ri can be written as

ri(p) =
pifi(p−i)

T1/T2 + pifi(p−i) + (1 − pi)gi(p−i)
(14)

where

fi(p−i) =
∏

j 6=i

(1 − pj) , gi(p−i) =
∑

j 6=i

pj

∏

k 6=i,j

(1 − pk) .

Both fi and gi now have a clear meaning and can be estimated by the user without detailed

information on other users. Indeed, fi is the fraction of times where user i’s transmission

is successful, and gi the fraction of successful transmissions over the channel when user

i does not transmit. The latter can be counted by listening to the number of CTS’s (or

alternatively inferred from centralized channel utilization information provided by the base

station). So, if fi and gi are known (for the current channel conditions), the best-response

as defined in (13) is easily computed as

p̃i =
T1/T2 + gi

fi(1 − ρi)/ρi + gi

. (15)

We note that this aspect of estimating a global (rather than private) quantity, namely gi,

does not appear in the basic model without reservations; see [12].
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It is evident that in any practical implementation of this (or similar) scheme the required

estimates would be inaccurate and noisy. This, as well as other deviations from our idealized

model, were not addressed in our analysis and would require separate treatment. However,

the large convergence region obtained here indicates to the robustness of the BR mechanism

to such deviations.

4.2 Naive Best-Response

As discussed above, computing the best response of each user requires dedicated sensing of

the shared medium, as well the use of equation (14). In some cases, the users may be limited

in their sensing abilities, or alternatively may be more simple-minded in their computational

approach. We next provide an alternative and easier to implement mechanism, which still

converges to the better equilibrium under plausible conditions.

The update rule we consider here is simple: Update the transmission request probability

in proportion to the required increase (or decrease) in throughput. In more detail, let pi

denote the current request probability for user i, and ri(p) its current throughput. The

new request probability is set to

p̃i =
ρi

ri(p)
pi . (16)

Again, if no solution exists (i.e., the right hand side in (16) exceeds 1), the user sets p̃i = 1.

While simple to implement, we emphasize that this update rule does not lead to the required

rate ρi in a single step (as does the best-response update), even if the other users freeze

their strategies. The reason is that it does not take into account the effect of pi on the

denominator of (14). This state of affairs, where users neglect their own effect on some

system parameters, may be associated with the economic concept of price-taking users, as

opposed to price-anticipating ones (see, e.g., [7] and references therein).

A slightly different form of the update rule in (16) will be useful. From equations (1)

and (2), the rate of each user for given p can be written as

ri(p) = piRi(p) , (17)

where

Ri(p) =
T2

∏

j 6=i(1 − pj)

T1 + T2

∑

j qj

. (18)

Ri can be interpreted as the average rate obtained per channel request of user i (successful or

not). Clearly, this quantity can be locally monitored by the user. The modified transmission
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request probability may now be computed as

p̃i =
ρi

Ri(p)
. (19)

This rule reflects the (false) assumption that Ri(p) is not affected by pi. It is easily seen

to be equivalent to (16).

We shall refer to the asynchronous scheme defined by the update rule (16) or (19) as

Naive Best-Response (NBR) mechanism. Its convergence will be established under more

strict assumptions than before.

Theorem 9 (NBR Convergence) Suppose the following conditions hold:

(i) (Balanced Load): The better equilibrium point p = pa satisfies

∑

j 6=i

pj

1 − pj

< 1 for every i ∈ I . (20)

(ii) (Slow Start): The initial request probabilities p0 are set low enough so that for each

user i we have (a) p0
i ≤ pa

i , and (b) ri(p
0) ≤ ρi.

Then NBR converges to better equilibrium point pa.

Proof: See the appendix.

This NBR convergence result depends on two conditions. These are merely sufficient

conditions, and convergence may in fact hold more broadly (as illustrated in the experiments

section). The ‘slow start’ requirement in (ii) is evidently stronger than in the BR case.

However, it can still be satisfied by each user individually by setting p0
i to ρi. The other

requirement imposed in (20) may in general be interpreted as a ‘light traffic’ condition, as

discussed below. Interestingly, in the symmetric-user case this condition is automatically

satisfied, which implies the following convergence result.

Corollary 10 (Symmetric Users) Assume that all user demands are identical: ρi = ρ1

for all i. Then the better equilibrium point pa satisfies condition (20). Consequently, NBR

converges pa subject only to the slow start condition (ii).

Proof: It may be readily verified that symmetric users imply symmetric strategies, namely

pi = p at equilibrium. Therefore, condition (20) becomes (n−1)p
1−p

< 1 or p < 1
n
. But since

∑

pi < 1 at the better equilibrium (by Theorem 4(iii)), then p < 1
n

as required. �
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For the asymmetric case, we note that condition (20) on pa is implied by the simpler

requirement
∑

j∈I

pa
j

1 − pa
j

< 1. (21)

This may indeed be interpreted as a light-traffic condition. Moreover, we may expect this

condition to hold when the system supports many small users, so that the request prob-

ability pi of each is small. Indeed, recall from Theorem 4(iii) that the better-equilibrium

probabilities must satisfy
∑

i p
a
i < 1. When each pa

i is small, the latter sum closely approx-

imates the sum in (21). This is commensurate with the observation that the price-taking

approach, which is behind the NBR scheme, is natural when the effect of each user on the

system is small.

4.3 Experiments

To conclude this section, we briefly examine by simulation the convergence properties of

the BR and NBR mechanisms proposed above.

In our first set of experiments we illustrate the temporal evolution of the BR and

NBR mechanism for a particular 3-user system with T2/T1 = 6 and throughput demand

vector ρ = (0.6, 0.1, 0.05). The equilibrium probabilities for this system turn out to be

pa = (0.51, 0.147, 0.0797) and pb = (0.75, 0.333, 0.2). The subset of users who update their

request probabilities is chosen at random in every time-slot. Example runs for different

values of the initial conditions vector p0 are shown in Figures 2 and 3, in which the evolution

of p3 is depicted. Figure 2 shows monotone convergence of the request probabilities in

both algorithms: increasing for small p0 (left), and decreasing when p0 is chosen so that

ri(p
0) ≥ ρi for every i (right). We observe that BR is slightly faster to converge than NBR,

but the differences are mild. Further note that the (sufficient) convergence condition (20)

for NBR is not satisfied here, since
pa
1

1−pa
1

= 0.51
0.49

> 1. However, NBR still converges for a

wide set of initial conditions. Figure 3 provides an example for non-monotone convergence

(left), and an example where the BR mechanism converges to the better equilibrium, while

the NBR mechanism diverges (i.e., all probabilities are set to one, since the demands ρi

cannot be satisfied at some point).

The second set of experiments examines in more detail the set of initial conditions for

which convergence (to the better equilibrium) is obtained. The results are shown for a two-

user system, with T2/T1 = 7, and ρ = (0.5, 0.25). The two equilibria are pa = (0.37, 0.23)
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Figure 2: Experiment set 1. Convergence of p3 under BR and NBR for different

initial conditions, for a three-user system with ρ = (0.6, 0.1, 0.05). Monotone in-

creasing convergence is obtained for p0 = (0.02, 0.02, 0.02) (left) and decreasing for

(0.6, 0.2, 0.1) (right) in both dynamic schemes.

and pb = (0.77, 0.63). Both mechanisms were run with initial conditions p0 that vary over

a dense grid in the square [0, 1]2. Figure 4 depicts the results. It may be seen that BR

(left panel) converges for all initial conditions with p0 < pb, in accordance with Corollary

8. Outside this area, divergence occurs whenever p0 > pb, while in the remaining two

regions convergence essentially depends on the order of user updates (recall that these are

selected at random at each stage). Convergence to the worse equilibrium point has not

been detected for any initial conditions (apart from p0 = pb). As for NBR, it may be

viewed that convergence is not assured for all p0 < pb. However, the convergence region

is still considerably larger than the theoretical guarantees in Theorem 9, and includes a

wide margin beyond the better equilibrium point. Interestingly, NBR converges for some

initial point in the region p0 > pb, while BR always diverges there. We observed a similar

behavior for other network configurations that were tested.

Based on our experiments, we may conclude the following: The BR mechanism out-

performs the NBR mechanism in terms of both speed and robustness (i.e., resilience to

initial conditions). However, the observed differences were not severe. While we have only
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Figure 3: Experiment set 1. Left: Non-monotone convergence of p3 for p0 =

(0.23, 0.2, 0.088). Right: BR converges while NBR diverges for p0 = (0.745, 0.1, 0.05).

examined here systems with two and three users, we expect that in the may-user case the

differences between the two schemes will only become smaller, provided that the relative

size of an individual user decreases and hence its effect on the overall system diminish as

well.

5 Effect of the Data Transmission Period

In this section we address the effect of the data transmission period T2 on system per-

formance. The relevant performance measures that we consider are capacity, power, and

inter-packet delay. We note that the actual parameter that affects performance is the ratio

T2/T1. However, we assume throughout that T1 is fixed, as it is determined by the timing

requirement of the RTS/CTS control sequence.

5.1 Capacity

Denote by ρ = (ρ1, . . . , ρn) the vector of throughput demands, and let Ω be the set of

feasible throughput vectors ρ for which there exists at least one equilibrium point. Clearly
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Figure 4: Convergence for different initial conditions for BR (left) and NBR (right).

A white square stands for convergence to an equilibrium, while a black square rep-

resents no convergence. Marked on right panel are the coordinates of the worse

equilibrium (solid line) and the better equilibrium (dotted line).

Ω depends on the data transmission period T2. Figure 5 illustrates the set of feasible

throughput demands for a simple two-user case. As mentioned before, Ω(T2) is a closed

and non-empty set.

We informally use the term “capacity” here in reference to the extent to which different

throughput vectors can be accommodated by the network. The next proposition shows

how the capacity of the channel increases in T2.

Proposition 11 Consider two data transmission periods T2 and T̃2, and let β = T̃2/T2

denote their ratio. Then the throughput vector ρ = (ρ1, . . . , ρn) is feasible in the T2-system

if and only if ρ̃ = γρ is feasible in the T̃2-system, where

γ =
β

1 + (β − 1)ρ
(22)

and ρ =
∑

i ρi.

Proof: Let p∗ denote an equilibrium strategy profile in the T2-system. Then p∗ satisfies the

modified equilibrium equations (7). Fixing p∗, it is easily verified that the same equation
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Figure 5: The set of feasible throughput demands for a two user network with two

different data transmission periods T̃2 > T2. The upper-boundary increases due to

the increase of the data transmission period.

is satisfied with T̃2 and ρ̃ = γρ on the right hand side, hence p∗ supports γρ in that case.

The opposite implication follows similarly. �

The factor γ in equation (22) quantifies the gain in capacity that is obtained by increas-

ing T2 by a factor of β. Evidently, γ is increasing in β, and γ > 1 when β > 1. The gain is

more significant at light loads (ρ << 1), and approaches its saturation value of 1/ρ when

β becomes large. see Figure 6 for an graphical illustration of this relation.

5.2 Power and Delay

We next consider two important measures of performance from the user point of view:

power and delay. We will provide some qualitative results for the former, and briefly

comment on the latter.

From equation (12) we know that the average power Si spent by a user increases linearly

with its request probability pi: this is just the overhead of RTS packages transmissions (and

20



0 5 10 15 20 25 30
1

1.5

2

2.5

3

3.5

4

4.5

beta

ga
m

m
a

 

 

rho=0.2
rho=0.4
rho=0.6
rho=0.8

Figure 6: The capacity gain (γ) obtained by increasing T2 by a factor of β. Graphs

of γ vs. β are plotted according to equation (22) for several network loads.

their collisions). To clarify the dependence Si on T2, we still need to find the dependence

of the equilibrium probabilities pi on T2. This forms the basis for the following qualitative

result.

Proposition 12 The average power investment of each user at the better equilibrium is

decreasing in T2.

Proof: See the appendix.

This result appears quite intuitive. We emphasize however two aspects: first, power

saving is common to all users; and second, this result depends on the system being in the

better equilibrium point, and need not hold at the other equilibrium.

In Figure 7 we show the effect of the T2 on the total power investment
∑

i Si(p
a) at

the better equilibrium pa. For simplicity, we focus on the symmetric user case, where

ρi = ρ

n
. We keep ρ fixed, and examine the performance for different number of users n. As

expected, for any given T2, the total power investment increases with n, as a large number

of users waste more power on collisions. However, the gap between the curves for different

n’s becomes smaller as T2 grows, since a large data transmission period diminishes the
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Figure 7: The overall power cost
∑

i Si(p
a) as a function of T2 for a fixed total

demand of ρ = 0.5. Users are symmetric, hence ρi = ρ

n
. We used T1 = 1, T̄1 = 0.5 for

this simulation.
.

Turning to consider a delay measure, we consider here the average time separation

between two consecutive data transmission periods (namely, successive T2 periods of the

given users), which we denote by Di. This delay may be especially relevant for real-

time traffic, such as voice and video streaming. We shall not consider here other delay

components, such as queueing delay, which requires a packet arrival process which is not

part of our model.

It is easily verified that the delay of each user is directly proportional to T2. More

precisely,

Proposition 13 The average delay Di in equilibrium is given by

Di(T2) = T2/ρi. (23)

Proof: Denote by fi the frequency of data transmission intervals for user i. Then fiT2 = ρi.

Noting that Di = 1/fi leads to the stated relation. �
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To summarize, we have seen that increasing T2 benefits the system capacity (i.e., sus-

tainable channel throughput), as well as the power investment of each user. As may be

expected, these benefits of increasing T2 become marginal when T2/T1 is large. On the

other hand, increasing T2 leads to a proportional increase in the inter-packet delay. We

shall not attempt here to quantify the tradeoff between these quantities, as T2 may be

limited by other considerations related to network management and control that fall out-

side our present framework. The results above provide however a basis for a more detailed

analysis of this tradeoff in a non-cooperative setting.

6 Conclusion

Reservation mechanisms in random access channels are meant to reduce the collision over-

head, and thus increase capacity and energy efficiency and reduce delay. However, it is

not clear a-priory whether self-interested users would exploit or misuse this additional fea-

ture. The results in this paper indicate that substantial benefits are indeed associated with

such mechanisms. However, care must be taken that the system remains in a favorable

equilibrium point, out of several that may exist.

Our results show that two-equilibrium property observed in [12] carries over to the

present model which incorporates a CTS/RTS-like reservation mechanism. We have further

established here strong convergence results for the Best Response dynamics, showing that

it converges to the better equilibrium whenever the initial users strategies are below the

worse equilibrium. Clearly, however, to avoid divergence (or throughput collapse) due to

stochastic effects one needs to supplement these simple schemes by collision avoidance and

resolution mechanisms, such as 802.11’s back-off mechanism [5]. The design and analysis

analysis of such mechanisms within a non-cooperative framework in general, and within

the framework of this paper in particular, poses a challenging and important direction for

future research.
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A Proofs

This section establishes the convergence results of Section 4, as well as Proposition 12. We

start with some lemmas that lead up to the proof of Theorem 7. We assume throughout

that the strategy profile p = (p1, . . . , pn) has all elements in [0, 1].

Lemma 14 The effective throughput ri(p) of user i is (i) strictly increasing in pi, and (ii)

strictly decreasing in pj for each j 6= i.

Proof: Recalling equations (1) and (2), it follows after some algebra that

ri(p) =

(

T1

qiT2

+
∑

j 6=i

h(pj)

h(pi)
+ 1

)−1

, (24)

where h(p) = p

1−p
. Since h(p) is strictly increasing in p, the second summand in (24)

obviously strictly decreases in pi and strictly increases in pj. Recalling again that qi =

pi

∏

j 6=i(1 − pj), the first summand in (24) has the same monotonicity properties. Taking

the inverse establishes the required properties. �

Let BRi(p) denote the best-response set of user i to a strategy profile p, that is, BRi(p)

is the set of probabilities p̄i ∈ [0, 1] that satisfy the throughput requirement (13) for that

user. When BRi(p) is a singleton we shall use the same notation to denote its value.

Lemma 15 For each user i,

(i) The best-response set BRi(p) is either a singleton or else empty.

(ii) The best-response map is monotone increasing in p. That is, if p1 ≤ p2 (component-

wise) and BRi(p
2) 6= ∅, then BRi(p

1) 6= ∅, and BRi(p
1) ≤ BRi(p

2).
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Proof: Both claims follow directly from the definition of the best-response and the mono-

tonicity properties of ri(p) that were established in Lemma 14. �

We henceforth consider the BR scheme under the assumptions of Theorem 7. The

following notation will be used. Starting with some initial strategy vector p0, let tk denote

the time of the k-th BR update, where at each update some subset of users simultaneously

modify their transmission probability according to the BR map. Thus, pk+1
i = BRi(p

k) if

user i updates at time tk, and pk+1
i = pk

i otherwise. In case BRi(p
k) is empty we set it to

1 (always attempt transmission), and the process effectively terminates.

Lemma 16 Assume that p0 = 0. Then the strategy profile sequence pk converges monotonously

to pa.

Proof: We first show by induction that pk ≤ pa and pk ≤ pk+1. Indeed, this trivially

holds for p0 = 0. Assume this holds true for some k ≥ 0. Note that BR(pa) = pa by

definition of the equilibrium. Hence, by monotonicity of the best response (Lemma 15), it

follows that pk+1 = BR(pk) ≤ BR(pa) = pa. Similarly, monotonicity of BR and pk ≤ pk+1

imply that pk+1 ≤ pk+2.

It follows that {pk} is a monotone increasing sequence, and bounded above by pa. Thus,

pk converges to a finite limit p∞ ≤ pa. Since Assumption 1(ii) (persistent updates) is in

effect, a standard continuity argument may be invoked to show that this limit is a fixed

point of the best response map, namely an equilibrium point. But since pa is the better

(i.e., smallest) equilibrium point, it follows that p∞ = pa. �

We note that the above lemma (and proof) applies to any initial profile such that

p0 ≤ pa and ri(p
0) ≤ ρi. However, this is not needed for the present argument.

Lemma 17 Assume that p0 ∈ Π1. Then the strategy profile sequence pk converges monotonously

(from above) to pa.

Proof: We will show by induction that ri(p
k) ≥ ρi and pk+1 ≤ pk hold for all i and k.

For k = 0, ri(p
0) ≥ ρi holds by definition of π1. To show that p1 ≤ p0, consider any user i

that updates its strategy at k = 0. As such a user reduces its throughput from ri(p
0) ≥ ρi

to ρi, it follows by Lemma 14(i) (monotonicity of ri(p) in pi) that p1
i ≤ p0

i for such a user.

Since the other users do not modify their strategies, we have p1 ≤ p0.

Assume next that the above holds for some k ≥ 0. Then pk+1 ≤ pk follows exactly

as argued for k = 0 above. It remains to show that ri(p
k+1) ≥ ρi for each i. Consider

26



a user i that did not modify its strategy as time k, namely pk+1
i = pk

i . Since ri(p
k) ≥ ρi

and pk+1 ≤ pk, it follows from Lemma 14(ii) (monotonicity of ri(p) in pj) that ri(p
k+1) ≥

ri(p
k) ≥ ρi. Consider next a user i that modified its strategy to pk+1 according to BR.

After that change, we have ri(p̃
k) = ρi where p̃k denotes pk with pk

i replaced by pk+1
i .

Next, allowing other users to modify their probabilities as well, we obtain as before that

ri(p
k+1) ≥ ri(p̃

k) = ρi. �

Proof of Theorem 7: Let p0 ∈ Π0. Then there exists p̂ ∈ Π1 so that p0 ≤ p̂. Let {pk}

be a BR sequence started from p0. We now consider two additional BR sequences, one

started at p̌0 = 0, and denoted {p̌k}, and the other started at p̂0 and denoted {p̂k}. We

further let the set of users who modify their strategy at each given step be the same in all

three sequences. Noting that p̌0 = 0 ≤ p0 ≤ p̂0, it follows by Lemma 15 (monotonicity of

the best response) that p̌k ≤ pk ≤ p̂k for all k. However, by Lemmas 16 and 17 the two

outer sequences converge to pa. Hence so does the middle sequence {pk}. �

Proof of Corollary 8: Let p0 be any strategy profile such that p0 < pb. We will show

that p0 ∈ Π0, namely that p0 ≤ p for some p ∈ Π1. To that end, it suffices to show that

there exist vectors p ∈ Π1 arbitrarily close to pb. In fact, we will show that there exists

p arbitrarily close to pb with p < pb and ri(p) > ρi for each i (which together imply that

p ∈ Π1 as required). For that purpose, we use a similar construction as the one used in

Theorem 3 of [12] to establish the two-equilibria property.

Recall that the two equilibria pa and pb are obtained as the solutions of the equilibrium

equations (6), or equivalently as solutions of the modified equilibrium equations (7), namely

qi(p) = ρ̃i for all i. Let us write these equations for the scaled throughput demands γρ̃i,

namely qi(p) = γρ̃i for all i, where γ > 0 is a scaling parameter. Now, for each p1 ∈ [0, 1),

these equations can be uniquely solved for (p2, . . . , pn) and γ, with pj , j ≥ 2 increasing in

p1. This becomes apparent after noting that division of the j-th equation by the first gives

ρ̃1
pj

1 − pj

= ρ̃j

p1

1 − p1
,

with x
1−x

a strictly increasing function of x in [0, 1). Furthermore, it has been shown in the

proof of Theorem 3 of [12] that γ is a continuous and strictly unimodular function of p1,

with γ = 1 obtained at the two equilibria values pa
1 < pb

2, while γ > 1 holds in between.

Thus, as p1 approaches pb
1 from below, denoted p1 ր pb

1, we obtain that p ր pb, γ ց 1,

and qi(p) ց ρ̃i. Finally, substituting qi(p) = γρ̃i in (6) (2) we obtain that

ri(p) =
γρ̃iT2

T1 + γρ̃T2
=

γρi

(1 − ρ) + γρ
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(cf. (8) for the last equality), so that as γ ց 1 we have ri(p) ց ρi. To summarize, for p1

approaching pb
1 from below we obtain a strategy profile p converging to pb with ri(p) > ρi

for each i, as desired. �

We turn next to the proof of Theorem 9. Recall the definition of the naive best-response

in equation (17), namely p̄i = ρi/Ri(p). The following properties of Ri will be instrumental

in our proof.

Lemma 18 The function Ri(p) is:

(i) Strictly decreasing in pj for each j 6= i.

(ii) Decreasing in pi if (and only if)
∑

j 6=i

pj

1−pj
≤ 1.

Proof: Part (i) follows immediately from Lemma 14, after observing that Ri(p) = ri(p)/pi

(Eq. 17). As for part (ii), using (17) and (1) we can write Ri(p) as

Ri(p)−1 =
T1

T2

∏

j 6=i(1 − pj)
+ pi + (1 − pi)

∑

j 6=i

pj

1 − pj

.

The derivative in pi obviously equals 1−
∑

j 6=i

pj

1−pj
, which implies the required monotonicity.

�

We note that condition (20) is equivalent to the required inequality in Lemma 18(ii).

The next lemma establishes the key properties of the naive best response updates.

Lemma 19 Suppose pa satisfies the condition (20). Let p be a strategy profile that satisfies

the slow-start requirements for NBR, namely: (a) p ≤ pa, (b) ri(p) ≤ ρi for each i.

Let p̄ be obtained from p by letting some user i employ a naive best-response, namely

p̄i = ρi/Ri(p), and p̄j = pj for j 6= i. Then p̄i ≥ pi, and p̄ satisfies requirements (a) and

(b) above.

Proof: Note first that p ≤ pa implies that p satisfies (20) as well, since the function x
1−x

is strictly increasing in x ∈ [0, 1]. Recall that ri(p) = piRi(p). Since ri(p) ≤ ρi, it follows

that p̄i = ρi/Ri(p) ≥ pi. Next, to establish property (a), we need to show that p̄i ≤ pa
i .

This is done by comparing p̄i with the (exact) best response p̃i = BRi(p) of user i to the

strategy profile p. Recall that p̃i satisfies (13), namely ri(p̃i,p−i) = ρi, or equivalently

p̃iRi(p̃i,p−i) = ρi. Now, it was argued in the proof of Theorem 7 that pi ≤ p̃i ≤ pa
i .

Therefore, by Lemma 18(ii), it follows that Ri(p̃i,p−i) ≤ Ri(pi,p−i) ≡ Ri(p). This, in

turn, implies that

p̄i =
ρi

Ri(p)
≤

ρi

Ri(p̃i,p−i)
= p̃i ≤ pa

i .
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We finally need to establish property (b). Noting that p̄i ≥ pi (as shown above), it follows

by Lemma 14(ii) and our choice of p that rj(p̄) ≤ rj(p) ≤ ρj for each j 6= i. Hence, it

remains only to show that ri(p̄) ≤ ρi. But this readily follows from p̄i ≤ p̃i, which implies

that ri(p̄) ≡ ri(p̄i,p−i) ≤ ri(p̃i,p−i) = ρi. �

Proof of Theorem 9: Let {pk} be the sequence of strategy profiles obtained by the naive

best-response scheme. By our assumptions p0 satisfied the requirements of Lemma 19. It

may be seen that the conclusions of this lemma hold true even if several users update their

strategy simultaneously. Therefore p1 ≥ p0, and p1 satisfies the requirements of Lemma

19 as well. Proceeding by induction, and arguing as in the proof of Lemma 16, we may

now establish that pk converges to pa, as claimed. �

Proof of Proposition 12: Fix ρ = (ρ1, . . . ρn) and consider two different data transmission

periods T̂2 and T̄2 such that T̂2 > T̄2. Then the equilibrium equations (7) for T̂2 and T̄2

are qi = ρ̂i and qi = ρ̄i, where ρ̂i < ρ̄i for every user i. We shall refer to the vectors

ρ̂ = (ρ̂1, . . . , ρ̂n) and ρ̄ = (ρ̄1, . . . , ρ̄n) as modified demands (to distinguish these quantities

from the actual demands ρ). Proposition 12 now follows immediately from the next lemma

by noting (12).

Lemma 20 Let ρ̂ and ρ̄ be two modified demand vectors such that ρ̂ < ρ̄ (component-

wise), and let p̂ and p̄ denote the request probabilities at the respective better equilibria.

Then p̂ < p̄.

Proof: For the proof, we track the best response dynamics with p0 = 0 and parallel updates

(where all users update their probabilities at every k), which are guaranteed to converge

to an equilibrium point by Theorem 7. We next show that p̄k ≥ p̂k for every k, thus also

at the limit. Note that since ri(p̄
1
i , 0) = ρ̄i ≥ ri(p̂

1
i , 0) = ρ̂i, then by the monotonicity of

ri, p̃1
i ≥ p1

i for every i. At the next iteration, ri(p̄
2
i , p̄

1
−i) = ρ̄i ≥ ri(p̂

1
i , p̂

1
−i) = ρ̂i. Since

p̄1
−i ≥ p̂1

−i, it follows that p̄2
i ≥ p̂2

i for every i. The same argument carries over to subsequent

iteration, thus it is valid also at the limit. �
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