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Abstract

We introduce the concert (or cafeteria) queueing problem: A finite but large
number of customers arrive into a queueing system that starts service at a specified
opening time. Each customer is free to choose her arrival time (before or after opening
time), and is interested in early service completion with minimal wait. These goals
are captured by a cost function which is additive and linear in the waiting time and
service completion time, with coefficients that may be class dependent. We consider a
fluid model of this system, which is motivated as the fluid-scale limit of the stochastic
system. In the fluid setting, we explicitly identify the unique Nash-equilibrium arrival
profile for each class of customers. Our structural results imply that, in equilibrium,
the arrival rate is increasing up until the closing time where all customers are served.
Furthermore, the waiting queue is maximal at the opening time, and monotonically
decreases thereafter. In the simple single class setting, we show that the price of
anarchy (PoA, the efficiency loss relative to the socially optimal solution) is exactly
two, while in the multi-class setting we develop tight upper and lower bounds on the
PoA. In addition, we consider several mechanisms that may be used to reduce the
PoA. The proposed model may explain queueing phenomena in diverse settings that
involve a pre-assigned opening time.
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1 Introduction

In this paper, we introduce the concert queueing game. This model is motivated by the

following scenario. Before going to, say, a popular rock concert with unassigned seats, one

faces the following dilemma: Should one go early to secure good seats, but wait a long time

in queue, or go late when queues are smaller but the better seats already taken? Similarly,

in a busy cafeteria that opens at noon for lunch, should one go early when the queues

are long, or perhaps go hungry a bit longer and avoid the long queues? Similar trade-offs

govern customer decisions in many queueing situations such as visiting a retail store on

the day of a huge sale, queueing in front of the book store before the release of a very

popular book, visit to the DMV office, to a movie theater, and so on. Similar, although not

identical, tradeoffs may be found in diverse areas that involve periodic congestion, from

choosing the best time for commuting to work, to choice of the start time for downloading

a large file over the Internet.

The proposed model is meant to study the emerging system behavior when users are faced

with such service delay vs. queueing delay trade-offs, and choose their arrival times strategi-

cally. We assume that there is a large but finite number of customers that need to be served

in a first-come first-served manner. The server at the queue becomes active at a particular

time. Customers can choose to arrive and queue up both before and after that time. The

cost structure of each customer is additive and linear in the waiting time and in the service

completing time. Alternatively, a customer may be interested in the number of users served

before her rather than the service completion time (see Remark 4 below). Multiple classes

of customers are allowed that differ in their cost coefficients. We primarily focus on a finite

number of classes, but also address briefly the same model with a continuum of classes.

The analysis in this paper is carried out within a fluid model, which is motivated as the

fluid-scale limit of the stochastic queueing system with prescribed arrival timing. This fluid

model offers a great deal of analytical simplification. The game of arrivals defined over this

model belongs in the class of non-atomic games [16], where each customer is infinitesimal

and therefore his effect on the others is negligible. We show that this game has a unique

Nash equilibrium point (in terms of the aggregate arrival profile), and explicitly identify

this point.

An important property of any equilibrium solution is the social efficiency loss it entails,

when compared to the social optimum. A popular measure of this loss is the price of

anarchy (PoA), which equals the maximum of the ratio of the social cost of the equilibrium
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solution to that of the socially optimal one among all equilibria. In our model, we show that

the PoA in the single class setting is exactly 2 for all parameter values. In the multi-class

setting, we develop tight upper bounds and corresponding lower bounds on the PoA that

depend only on the range of the cost parameters across customer classes. Furthermore, we

consider several mechanisms that can be used to reduce the PoA; the analysis is carried

out within the single-class setting for simplicity. These mechanisms include service time

restrictions, assigning priorities to certain segments of the populations, or charging tariffs

that depend on the time of service. Equilibrium profiles associated with these mechanisms

are easily derived. These are discussed in Section 6; a key observation here is that by

suitably dividing the population into n segments, along any of these three ways, the PoA

can be optimized to equal 1 + 1/n, so that it converges to 1 as n→∞.

Strategic queueing problems that involve self-optimizing customers have been extensively

studied for over four decades, spanning problems of admission control, routing, reneg-

ing, choice of priorities, pricing, and related issues. A sizable part of this literature is

summarized in the monograph [4]. A central issue in this context is the comparison of the

individual equilibrium and the socially optimal solution. This may be traced back to Naor’s

seminal paper [12], which considers these two solutions in the context of admission control

to a single-server queue, and suggests pricing as a means to induce the social optimum.

Recently, [6] provided bounds on the PoA for the problem of routing into n parallel servers,

and [2] studied the PoA in Naor’s model. In [7], an interesting perspective is taken wherein

time of arrival of customers is determined through a first-price auction.

Equilibrium arrival patterns to queues with a finite service period were apparently first con-

sidered in [3], where a Poisson-distributed number of homogeneous customers may choose

their arrival times with the goal of minimizing their waiting time. In this model, service

ends at a specified time and customers are indifferent to the time-of-day when their service

is completed. Several extensions and variations of this model have been considered, e.g., in

[14, 8, 5], and are further described in [4] (Chapter 6) and [5]. The model of [19] incorpo-

rates preferences for early service within a multiple shift scheme, where the service period

is divided into evenly-spaced shifts, and the waiting time in each shift is determined by the

number of customers who choose this shift.

A related body of research exists in the transportation literature, where equilibrium trip-

timing patterns were extensively studied in the context of the so-called bottleneck or morn-

ing commute problem. [18] introduced a fluid flow model, where homogeneous commuters

choose their departure time for travel through a single bottleneck of fixed flow capacity.
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The cost function for each commuter includes a penalty for arriving early or late to the

destination (relative to the desired arrival time), in addition to the cost of delay in the

bottleneck. Pointers to the extensive ensuing literature regarding this model and its gener-

alizations may be found in [11]. In particular, [13] introduced commuter heterogeneity in

terms of their (linear) cost coefficients, in addition to the required arrival time. [11] pro-

vides existence and uniqueness results for the multiclass model with nonlinear costs, under

fairly general conditions. We note that our fluid model can be considered a special case

of these models with the desired arrival times all set to zero though the bottleneck model

does not have a predetermined opening time. However, the explicit expressions presented

here for the equilibrium as well as the analysis of the PoA and the ways to reduce it are

new.

The organization of this paper is as follows: In Section 2 we describe our model. We

start with a brief description of the stochastic queueing system and its fluid scale analysis,

followed by a description of the arrival game for the fluid model. In Section 3 we focus on the

single-class case, for which the results are particularly simple, and show that unique Nash

equilibrium corresponds to a uniform arrival profile over a finite interval. We generalize the

results to the multi-class settings in Section 4 where we consider finite number of classes.

In both Sections 3 and 4, we also compute and bound the price of anarchy for the derived

equilibrium. We briefly discuss the generalization to a continuum of classes in Section 5.

In Section 6 we discuss some ways to reduce the price of anarchy. In Section 7, we present

numerical results for a simple experiment that suggest that the equilibrium arrival profile

that is valid in the fluid regime may be close to equilibrium in the finite-N queue, for N

reasonably large. Finally, we end with a brief conclusion in Section 8.

2 Model Description

This section introduced the fluid model that we analyze in this paper. We start with a

brief description of the underlying stochastic queueing system, discuss the fluid limit of this

model (with fixed arrival patterns), and then describe the game model that we consider in

the rest of the paper.
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2.1 The Stochastic Queueing System

Consider a queueing system that caters to a finite number N of customers, which are

served on a first-come first-served basis. N may be random, with a finite mean E(N).

The required service times of these customers form an i.i.d. sequence (Vj : 1 ≤ j ≤ N)

that may have a general marginal distribution with rate µ = 1/E(Vj). Each customer j

independently picks his arrival time, as a sample from a probability distribution with CDF1

Fj(·). Service starts at time t = 0, and continues until all customers are served. Customers

may arrive and queue up both before and after t = 0. For simplicity, assume at the outset

that each Fi is supported on a finite time interval.

Suppose that customers wish to be served as early as possible, while minimizing their

waiting time. We capture these (possibly conflicting) goals through a linear cost function.

Let

cj(wj, τj) = αjwj + βjτj

denote j’s cost function, where wj is his waiting time in the queue, τj his service completion

time, and αj > 0, βj > 0 are the respective cost sensitivities. The cost parameters (αj, βj) of

each customer shall define his type (or class). The type of each arriving customer is assumed

to be randomly selected according to a known and common probability distribution over a

given set of types. The customer’s type is considered private information, namely is known

to the customer himself but not to the others.

Given the collection F = {Fj} of arrival time distributions for all customers, both wj

and τj become well-defined random variables, and we may consider the expected cost

Cj
F = EF(αjwj + βjτj), where EF is the expectation induced by F. As usual, we say that

the collection F = {Fj} of arrival time distributions is a Nash equilibrium point (NEP)

for this problem if no user j can reduce his expected cost CF
j by unilaterally modifying

his arrival time distribution Fj. Our goal is to characterize these NEPs and study their

properties. This will be done within an approximate fluid model, which greatly facilitates

the analysis and leads to explicit solutions. We thus turn to consider the fluid approximation

of this system.

1Throughout the paper, we describe probability measures (and, more generally, positive measures) on
the real line by their cumulative distribution function (CDF). Thus, F (t) corresponds to the measure mF

with mF {(−∞, t]} = F (t). We shall use the term F -measure (of a given set) to refer to the mF -measure
of that set.
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2.2 The Fluid Limit

This section motivates the fluid model that is the main subject of this paper, by considering

the fluid-scale limit of the above-described queueing system as the number of arrivals be-

comes large. Our discussion here is limited to the case where the arrival time distributions

of all customers are pre-specified and not a result of equilibrium considerations. For such

a system we identify the fluid limit. Our equilibrium analysis then focuses on the resultant

fluid model. In this paper we do not consider the equilibrium arrival distribution in the

finite customer setting or its convergence to the equilibrium fluid model arrival profile as

the number of arrivals increases to infinity. This is an interesting research direction that is

deferred to future work.

Consider a sequence of queueing systems indexed by n ≥ 1, defined on a common proba-

bility space, and let Nn be the population size (number of customers) in the nth system.

Assume that limn→∞
Nn

n
= Λ > 0 (with probability 1). Let F n

i (·) denote the arrival time

distribution for customer i in the nth system. The service parameters are as described

above. In particular, the service time distribution does not dependent on n, and has rate

µ.

Let F n(t) =
∑Nn

i=1 F
n
i (t) denote the aggregate arrival profile in the nth system. Suppose

that the collection {F n
i } is given so that

1

n
F n(nt)→ F (t) (1)

as n → ∞, uniformly on compact sets (u.o.c.), where F (·) is the fluid arrival profile. It

follows that F (·) is the CDF of a positive measure on the real line with total mass Λ. More

specifically, F is non-decreasing, right-continuous, with F (−∞) = 0 and F (∞) = Λ.

Note that the time axis is scaled by a factor of n in (1). This accounts for the increase in the

overall service time requirement of all Nn customers in the nth system. Importantly, under

this time scaling the service time of a single customer diminishes to zero as n increases.

We further observe that the same fluid arrival profile F can arise from different choices of

individual arrival distributions, ranging from i.i.d. arrival times to deterministic ones. The

following simple example illustrates this point.

Example 1 Suppose F is a uniform distribution on [−T, T ] with mass Λ, namely F (t) =

Λ t+T
2T

on that interval. Then, F can arise out of each of the following possibilities.

a. IID arrivals: Each F n
i corresponds to a uniform distribution on [−nT, nT ] for some
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T > 0, namely F n
i (t) = t+nT

2nT
on [−nT, nT ]. Then, 1

n
F n(nt) = Nn

n

(
t+T
2T

)
and this

converges to F (t), almost surely, u.o.c. as n→∞.

b. Deterministic arrivals: F n
i corresponds to the deterministic arrival time ti = (2i−n)T .

Equivalently, F n
i (t) = 1{t ≥ (2i− n)T}, where 1{·} denotes an indicator function.

We next consider the queue-length process and its fluid limit. Let Qn(t) denote the queue

length at time t (including the customer in service), namely, Qn(t) is the cumulative number

of arrivals minus service completions up to and including time t, and let

Q̄n(t) =
Qn(nt)

n

denote its scaled version. To specify the fluid limit of Qn, let S(t) = µt1{t ≥ 0} denote

the fluid-scale potential service process (recall that service starts at t = 0). Also define

X(t) = F (t)− S(t), and

Q(t) = X(t) + sup
0≤s≤t

[−X(s)]+ . (2)

Then, by standard results (see, for example, [1], Theorem 6.5 and its proof) it follows that

as n→∞, the following process-level convergence of the scaled queueing process:

Q̄n(·)→ Q(·)

holds, almost-surely, u.o.c. This process-level convergence result evidently relies on the

functional strong law of large numbers.

The limit queue process Q(t) corresponds to a fluid system with deterministic input and

output streams of fluid. The cumulative arrival process is given by F (t), and the service

rate is µ(t) = µ1{t ≥ 0}. This fluid model will be the subject of our subsequent analysis.

2.3 The Multiclass Fluid Model

We proceed to describe the concert arrival game for the fluid model with a finite number of

customer classes. The customer population is represented by the set [0,Λ], where Λ stands

for the total workload, and each customer corresponds to a single point in this interval.

These infinitesimal customers arrive at a service facility with potential service rate µ (in

terms of fluid units per unit time), that activates at time t = 0. Thus, all customers may be

served within Tf = Λ/µ time units. All customers join a single queue, and are served in the

order of their arrival. If a non-zero mass of customers arrives simultaneously (represented
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by a jump in F (t)), then their queueing order is determined randomly and with symmetric

probabilities.

Customers may belong to different classes, which differ in terms of their cost parameters.

Let I = {1, 2, . . . , I} denote the set of customer classes. For each class i ∈ I, let Λi

denote the total workload carried by its members. Thus
∑

i Λi = Λ, and serving all class i

customers requires Λi/µ time units. The cost function for a class i customer is given by

Ci(w, τ) = αiw + βiτ

where w is this customer’s waiting time in the queue, τ ≥ 0 his service completion time,

and αi > 0, βi > 0 are the respective cost sensitivities to the waiting time and service

completion time that specify his class or type.

Consider a customer who arrives at time t and is placed at the end of a queue of size q. His

waiting time will be w = q/µ+ max{0,−t} so that he completes his service and leaves the

system at τ = t+w = q/µ+max{0, t}. (Note that the service time of individual customers

is null since customers are infinitesimal.)

Let Fi denote the class-i arrival profile. It is the CDF of a positive measure on the real

line with total mass Λi. Thus, Fi(−∞) = 0, Fi(∞) = Λi and Fi(t) is right-continuous

and non-decreasing in t. An arrival profile is the collection {Fi} of arrival profiles, one for

each classes. The sum F (t) =
∑

i Fi(t) denotes the aggregate arrival profile. As discussed

in Section 2.2, an arrival profile Fi should be interpreted as a deterministic summary of

the arrival decisions of the individual customers, which may themselves be deterministic or

stochastic. The following restriction applies to each Fi.

Remark 1 To avoid lingering over some mathematical subtleties, we shall assume at the

outset that the measure represented by Fi has no singular continuous component, and is

therefore the sum of an absolutely continuous component and a discrete component (see

[15], Pg. 108-113, for instance).

Given the aggregate arrival profile F =
∑

i Fi, the queue-size process Q(t) is uniquely

defined by equation (2). Therefore, the expected waiting time W (t) of a potential arrival

at time t is well defined as well. Specifically, if Q(t) is continuous at t, then the waiting

time is deterministic and given by W (t) = Q(t)/µ + max{0,−t}. If Q(t) has a jump at t

(due to an upward jump in the arrival profile F ), then the position of an arriving customer

would be uniformly distributed in [Q(t−), Q(t+)] with average Q̄(t) = 1
2
(Q(t−), Q(t+)),

so that the expected waiting time is W (t) = Q̄(t)/µ + max{0,−t}. Let WF (t) denote the
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expected waiting time that corresponds to a given arrival profile F .

The expected cost of a class i customer that arrives at t is now given by

Ci
F (t) = αiWF (t) + βi(t+WF (t)) . (3)

More generally, the expected cost incurred by a class i customer who selects his arrival by

sampling from probability distribution G is

CiF (G) =

∫ ∞
−∞

(αiWF (t) + βi(t+WF (t))) dG(t) .

We proceed to define the Nash equilibrium for the induced game. A multi-strategy for this

game is a collection {Gs(·), s ∈ [0,Λ]} of probability distributions on the real line, one for

each customer s, represented by their CDFs.

Definition 1 A multi-strategy {Gs(·), s ∈ [0,Λ]} is a Nash equilibrium point if

(i) F (t) =
∫ Λ

0
Gs(t)ds is well defined for each t, and

(ii) For any customer s ∈ [0,Λ] of class i,

CiF (Gs) ≤ CiF (G̃), for every CDF G̃.

That is, no customer s can improve his cost by modifying his own arrival time distribution.

Note that this definition makes use of the fact that the action of a single (infinitesimal)

customer does not affect the arrival profile F (t). This property is shared by the class of

non atomic anonymous games (cf. [16]), to which the present model belongs.

The specific consideration of each customer in the last definition is too detailed for our

purpose. A more useful definition may be given in terms of the class arrival profiles.

Definition 2 An arrival profile {Fi, i ∈ I} is an equilibrium profile if, for each class

i, there exists a set Ti of Fi-measure Λi on which Ci
F (t) is minimal, namely,

Ci
F (τ) ≤ Ci

F (t) for all τ ∈ Ti and −∞ < t <∞ .

Essentially, this definition requires the cost Ci
F (t) to be minimal on the support of Fi.

The two definitions may be seen to be compatible in the following sense:

(i) First, given an equilibrium profile {Fi, i ∈ I}, a compatible equilibrium multi-strategy
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{Gs(·), s ∈ [0,Λ]} may be obtained (for example) by letting Gs = Fi/Λi for each customer

s of class i. Thus, all customers of a given class i are assigned identical arrival distributions,

which adds up to the given arrival profile Fi for that class. This immediately implies that

F (t)
4
=
∫ Λ

0
Gs(t)ds =

∑
i Fi(t), and property (ii) of Definition 1 now follows since, for

Gs = Fi/Λi, we get by Definition 2 that CiF (Gs) = mintC
i
F (t), while the latter is clearly

not larger than CiF (G̃) for any CDF G̃.

(ii) Conversely, an equilibrium multi-strategy {Gs(·), s ∈ [0,Λ]} induces a unique arrival

profile for each class, given by Fi(t) =
∫ Λ

0
Gs(t)1{s ∈ Si}ds, where Si is the set of class

i customers. Now, {Fi} is an equilibrium profile. Indeed, by Definition 1(ii) it follows

that, for each s ∈ Si, CiF (Gs) = mintC
i
F (t), hence there must exist a set of times Ts of

Gs-measure 1 on which Ci
F (t) attains that minimal value. Therefore Ci

F (t) is minimal also

on the union Ti =
⋃
s∈Si Ts, while the Fi-measure of Ti is Λi, since the Gs measure of Ti is

1 for each s ∈ Si (as 1 ≥ Gs(Ti) ≥ Gs(Ts) = 1). Thus, the requirements of Definition 2 are

satisfied.

3 Analysis of the Single-Class Model

To bring out salient features of the analysis, we first consider the single-class case. Here

all customers share the same cost parameters, and we may drop the class index i from the

notation. The results in this case are particularly simple: The equilibrium arrival profile

turns out to be a uniform distribution, and the price of anarchy exactly equals 2.

The following lemma will be useful in simplifying the expression for the cost function under

equilibrium conditions. Some notation is introduced first. Recall that Tf = Λ/µ, and let

t∗ = inf{t ≥ 0 : F (t) < µt}.

This is the first time beyond 0 at which the server becomes starved.

Lemma 1 For any equilibrium arrival profile F ,

(i) t∗ = Tf (i.e., the server works at full rate till the last customer is served).

(ii) There are no point masses in F , so that F (t) is absolutely continuous in t.

(iii) For t ≤ Tf ,

WF (t) = F (t)/µ− t. (4)
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As is apparent from the proof below, Condition (ii) in Lemma 1 is applicable even to the

finite n queueing system (not just its fluid limit).

Proof of Lemma 1: (i) Clearly, t∗ ≤ Tf , since all customers are served by Tf at full

service rate. Suppose that t∗ < Tf . Then F cannot be an equilibrium arrival profile. To

see this, note that Q(t∗) = 0 by definition of t∗, so that W (t∗) = 0. Furthermore, since

t∗ < Tf , a positive mass of customers have not been served yet, and since Q(t∗) = 0 these

customers have not arrived by t∗, so that F (t∗) < Λ. Thus, those customers that arrive

after t∗ can improve their cost by arriving at t∗ instead and getting served immediately.

This implies that F cannot be an equilibrium profile.

(ii) Suppose that F has a point mass of size λ > 0 at some t = t1. Then, a customer

that arrives at t1 sees, on average, half (λ/2) of the customers that arrive at t1 before her.

However, by arriving at t1−ε with ε > 0, such a customer would arrive ahead of this bunch,

thereby reducing its waiting time by λ/2µ − ε at least, and leaving earlier. Clearly, for ε

small enough this means that arriving at t1 is not optimal for such a customer. It follows

that F has no point masses, namely no discrete component. Since F has no continuous

singular component by assumption, it follows that F is absolutely continuous.

(iii) We have just established that F has no point masses. This implies that an arrival at

t will see the entire queue Q(t) before him. For t < 0, Q(t) = F (t), and the equality in (4)

follows since −t is the customer wait before the server becomes active, and F (t)/µ is the

remaining queueing delay once the server becomes active. For 0 ≤ t ≤ Tf , (4) follows from

part (i) of this Lemma as service proceeds at full rate in the interval [0, Tf ], which implies

that Q(t) = F (t)− µt, while W (t) = Q(t)/µ. �

It follows from Lemma 1 that under the equilibrium arrival profile F , the cost CF (t) at any

time t ≤ Tf equals

CF (t) = (α + β)F (t)/µ− αt. (5)

Let T0 = −Λ
µ
β
α

. The cost in (5) becomes independent of t for t ∈ [T0, Tf ] if we select F = F ∗

where F ∗(t) = 0 for t ≤ T0, F ∗(t) = Λ for t ≥ Tf , and

F ∗(t) = Λ
t− T0

Tf − T0

, t ∈ [T0, Tf ] .

In that case, (5) gives CF (t) = βΛ/µ = βTf for t ∈ [T0, Tf ].

Theorem 1 F ∗ is the unique equilibrium arrival profile with T0 = −Λ
µ
β
α

and Tf = Λ
µ

.

Proof: We first verify that F ∗ is an equilibrium profile. First, as noted above, CF ∗(t) =

βΛ/µ
4
= c0 for t ∈ [T0, Tf ]. For t > Tf we have W (t) = 0, hence CF (t) = βt > βTf = c0.
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For t < T0, an arrival at t is first in queue and gets served at 0, hence CF ∗(t) = α(−t) >
−αT0 = c0. Thus, CF ∗(t) is minimal on the interval [T0, Tf ], which has F ∗-measure Λ.

Thus, F ∗ is an equilibrium arrival profile by Definition 2.

We next show that F ∗ is the unique equilibrium. Let F be any equilibrium arrival profile.

By Definition 2, there exists a set T of F -measure Λ on which CF (t) equals some constant

c1, while CF (t) ≥ c1 elsewhere. From Lemma 1, we know that all customers are served by

Tf so that F (Tf ) = Λ. Therefore, we can restrict the set T to (−∞, Tf ]. Moreover, as

CF (t) is continuous by Lemma 1, we can replace T with its closure without changing the

above properties. To summarize, T can be taken to be a closed set which is bounded above

by Tf .

Let t1 be the maximal point in T . As just noted, t1 ≤ Tf . We claim that t1 = Tf . Indeed,

if t1 < Tf , then an arrival at time t1 is the last to arrive and thus gets served last at Tf ,

so that CF (t1) > βTf = Cf (Tf ), which is a contradiction to t1 ∈ T . Therefore t1 = Tf ,

implying that Tf ∈ T .

Now, by definition of T , Tf ∈ T implies that CF (t) = CF (Tf ) = βTf for every t ∈ T . Note

that this cost is identical to the cost computed for F ∗ on [T0, Tf ]. But since (5) holds at

any equilibrium, it follows that F (t) = F ∗(t) for t ∈ T ∩ [T0, Tf ]. But this implies that

F (t) = F ∗(t) for t ∈ [T0, Tf ], since F ∗ is strictly increasing on that interval while F (t) is

continuous and cannot increase outside the set T (as T has F -measure Λ). Finally, noting

that F ∗(T0) = 0 and F ∗(Tf ) = Λ, F is completely defined and equals F ∗. �

Remark 2 Observe that the equilibrium cost CF (t) = βTf = βΛ/µ is independent of α.

To understand that, note that for the last arriving customer at t = Tf , the waiting time

is zero and total cost is just the lateness cost βTf , which also has to be the cost at other

time instants t ∈ [T0, Tf ] at equilibrium.

Remark 3 The equilibrium queue size increases linearly for t ≤ 0 according to Q(t) =

F ∗(t) = µα
α+β

(t − T0), and decreases linearly for t ≥ 0 according to Q(t) = F ∗(t) − µt =
Λβ
α+β

(T1 − t). The maximal queue size is obtained at time zero and equals Q(0) = Λ β
α+β

.

Interestingly, the latter is independent of the service rate µ.

We next evaluate the price of anarchy (PoA) for the single class model. Recall that the

social cost Jsoc is the sum of costs over all customers. For a given arrival profile F , we

obtain by (3) (with the class index dropped),

Jsoc(F ) =

∫
CF (t)dF (t) =

∫
(αWF (t) + β(t+WF (t))dF (t) . (6)
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The PoA quantifies the efficiency loss due to selfish decision making by individuals, as the

maximum ratio of the social cost at any equilibrium (Jeq) to the optimal social cost (Jopt).

The PoA is then an upper bound on the above ratio for any equilibrium, and equal to this

ratio when the equilibrium is unique. Since, by Theorem 1, the equilibrium arrival profile

is unique, we simply define PoA as

PoA =
Jeq

Jopt

.

Proposition 1 (PoA for the single-class model) Recall that Tf = Λ/µ. Then

(i) Jopt = 1
2
βΛTf .

(ii) Jeq = βΛTf .

(iii) Consequently, PoA = 2.

Proof: (i) At the socially optimal solution, the arrival instants of all customers are to be

selected to minimize the social cost. Since the fluid model is deterministic, the arrival time

of every customer can be set to the instant his service is due to start, which eliminates all

queueing delay and is therefore optimal. Thus, W (t) ≡ 0. It is also evident that starving

the server before all work is done cannot be optimal, so that the server must work at full

rate µ from t = 0 to Tf = Λ/µ. Putting these two observations together implies that the

uniform arrival profile F (t) = Λt/Tf for 0 ≤ t ≤ Tf is optimal. Therefore, by (6),

Jopt =

∫
βtdF (t) =

1

2
βΛTf .

(This expression becomes obvious once we observe that the mean arrival time is Tf/2.)

(ii) Recall that the cost for each customer at the unique equilibrium profile F ∗ is constant

and equal to βTf . Therefore, the social cost is ΛβTf . �

Thus, for the single class model, the social cost at equilibrium is always one half the optimal

cost, for any choice of cost parameters and service rate.

We close this section by pointing out an important extension to the basic cost model.

Remark 4 (When order of service matters.) The cost function considered so far in-

cludes two components: the delayed service cost and the waiting cost in the queue. In many

settings of interest, such as queueing for a better seat, it is not the time at which service is

obtained that is important, but rather the number of customers that obtain service before

13



us. Fortunately, this leads to only minor changes in our fluid model. To see this, note that

this change corresponds to replacing the cost function C(t) = αW (t) + β(t + W (t)) from

(3) with

Ĉ(t) = αW (t) + βF (t) . (7)

For this new cost, we can repeat the argument in Lemma 1 to deduce that t∗ = Tf in

equilibrium, and therefore W (t) = F (t)/µ− t. Thus, the cost (7) equals

Ĉ(t) =
F (t)

µ
(α + β̂)− αt,

where β̂ = βµ. Comparing with (5), it is evident that the two cost functions coincide once

β is replaced by β̂. Thus, our previous results hold for the modified cost function as well

after making this substitution. In particular, the PoA remains 2.

4 The Multiclass Problem

We now turn to the multiclass fluid model, where customers can be heterogeneous in terms

of their cost parameters. As described in Section 2.3, we divide the customer population

into a finite number of classes, each characterized by distinct parameters. In the next

section we briefly consider the multiclass model with a continuum of classes.

4.1 The Equilibrium Profile

We proceed to identify explicitly the equilibrium arrival profile. To that end, define the

cost ratio parameters

mi =
αi

αi + βi
, i = 1, . . . , I .

Let us re-order the class indices in increasing order of mi, so that mi ≤ mi+1. We will

assume for simplicity that all the cost ratio parameters mi are distinct. When this is not

the case, one can simply unify customer classes that have identical mi’s, and all the results

of this section essentially hold.

Theorem 2 Suppose m1 < m2 < · · · < mI . Then, the equilibrium profile {Fi} exists, is

unique, and specified as follows: Let T0 < T1 < · · · < TI be an increasing sequence of time

instants defined by

TI = Λ/µ, Ti−1 = Ti −
Λi

µmi

, i = 0, 1, . . . , I . (8)
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Then, Fi corresponds to a uniform distribution on [Ti−1, Ti] with density µmi, namely

F ′i (t) = µmi1{Ti−1 ≤ t < Ti} . (9)

We proceed to prove this result. To begin with, observe that Lemma 1 and its proof

remain unchanged in the multiclass case. Thus, under any equilibrium profile {Fi}, the

server operates at its full rate µ from time 0 till the last customer is served. Hence all

customers are served by time Tf = Λ/µ. Furthermore, a customer that joins the queue at

time t will leave it at time τ = F (t)/µ. Therefore, the cost function for a class i arrival at

t is given by

Ci(t) = αi(τ − t) + βiτ = (αi + βi)τ − αit

= (αi + βi)
F (t)

µ
− αit . (10)

The next Lemma establishes the relationship between the arrival times of the different

classes at equilibrium.

Lemma 2 Let {Fi} be an equilibrium profile.

(i) If an interval (t1, t2) belongs to the support of Fi(t), then

F ′i (t) = µmi for t ∈ (t1, t2) .

(ii) Let i and j be two class indices so that mi < mj. Then all arrivals of class i occur

before those of class j.

The following lemma is useful for proving Lemma 2.

Lemma 3 Let {Fi} be an equilibrium profile, and denote F =
∑

i Fi. Then, there are

no gaps in the aggregate arrival profile, i.e., F (t2) − F (t1) > 0 for all t2 > t1 such that

0 < F (t1) < Λ.

Proof: Suppose, to the contrary, that there are no arrivals on (t1, t2). By our assumptions

on t1 there are some arrivals both before and after this interval. Since the server operates at

full rate over (t1, t2), it follows that the last customer to enter before t1 will not get served

before t2. Therefore, by arriving just before t2, this customer will reduce her waiting time

while leaving at the same time as before, thereby improving her cost. Thus, this arrival

profile cannot be an equilibrium profile. �
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Proof of Lemma 2: (i) By the equilibrium definition, it follows that Ci(t) is constant on

(t1, t2). From Lemma 1 it easily follows that each Fi is absolutely continuous so it admits

a density that we denote by F ′i (t).

Noting (10), it follows by differentiation that on that interval,

F ′i (t) = µ
αi

αi + βi
= µmi .

(ii) Suppose there are classes i and j with mi < mj such that some class j arrivals arrive

in some interval (t1, t2) just before class i arrivals in some interval (t2, t3) with t1 < t2 < t3.

That there will be non-zero arrivals in each of these two intervals is given by Lemma 3.

Let us compare the cost incurred by a class j arrival on these two intervals. For t ∈ (t1, t2),

Cj(t) is constant (by definition of the equilibrium) and equals Cj(t2) (by continuity). Now,

from item (i) we know that F ′(t) = µmi on (t2, t3), hence on that interval,

C ′j(t) =
d

dt

(
(αj + βj)

F (t)

µ
− αjt

)
= (αj + βj)

F ′(t)

µ
− αj = (αj + βj)mi − αj

= (αj + βj)(mi −mj) < 0 .

This implies that the cost Cj(t) is strictly smaller on (t2, t3) than on (t1, t2), which shows

that the latter interval cannot be in the support of Fj at equilibrium, contrary to our

assumption. �

Proof of Theorem 2: To establish Theorem 2, we first show that an equilibrium profile

must have the indicated form. From Lemma 2(ii) it follows that the arrivals of the different

classes are ordered in increasing order of their mi parameters. Now, from Lemma 3 it

follows that the arrivals of each class i are supported on a single interval [τi, Ti], and that

these intervals are contiguous so that τi = Ti−1. From Lemma 2(i) we see that the arrival

profile of each class i on its interval [Ti−1, Ti] is uniform with rate µmi. Computing the

overall arrival volume on that interval gives µmi(Ti−Ti−1) = Λi, which implies the recursive

relation in (8). Finally, TI = Λ/µ follows from Lemma 3, as already indicated.

It is now a simple matter to verify that the indicated arrival profile is indeed an equilibrium

profile. Clearly, the cost Ci(t) is constant on [Ti−1, Ti] by construction. Moreover, arguing

as in the proof of Lemma 2, it is readily verified that C ′i(t) > 0 for t > Ti and C ′i(t) < 0

for t < Ti−1, thereby establishing that the cost Ci(t) is indeed minimized on the support

[Ti−1, Ti] of Fi. �
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We end this subsection with a few observations regarding the equilibrium profile. The

aggregate arrival profile F (t) =
∑

i Fi(t) can be expressed more explicitly as follows. F (t)

is piecewise linear, with slope µmi on [Ti−1, Ti]. The times Ti are given by

Ti = Λ/µ−
I∑

j=i+1

Λj

µmj

. (11)

At these times,

F (Ti) = Λ−
I∑

j=i+1

Λj =
i∑

j=1

Λj (12)

with linear interpolation on [Ti−1, Ti] at slope µmi (see Figure 1). Note that T0 < 0 (since

mi < 1), so that arrivals start before t = 0 as in the single class case. Further, the

aggregate arrival profile is convex for t ≤ TI , meaning that the arrival rate is increasing

in time, reaching its peak towards the end of the service period. Still, the queue length is

strictly decreasing beyond t = 0 (which again follows since mi < 1.) Finally, arrivals are

ordered in increasing order of mi = αi
αi+βi

, or equivalently in increasing order of αi
βi

which

indicates the relative cost they attribute to waiting over being late.

4.2 Price of Anarchy

We proceed to compute and bound the Price of Anarchy (PoA) for the multiclass model.

To enhance readability, all derivations of the results of this subsection are presented in the

Appendix.

We first compute the social cost at equilibrium, Jeq, and the optimal social cost Jopt.

Proposition 2 In the multiclass model,

Jeq =
1

µ

I∑
i,j=1

ΛiΛjαi min{βi
αi
,
βj
αj
} . (13)

and

Jopt =
1

2µ

I∑
i,j=1

ΛiΛj min{βi, βj} . (14)
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Figure 1: The cumulative distribution of the aggregate arrival profile in equilibrium
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The following simple bounds on Jeq and Jopt readily follow from (13) and (14):

Jeq ≤
1

µ

I∑
i,j=1

ΛiΛjβi ≤
1

µ
βmaxΛ2 (15)

Jopt ≥
1

2µ
βmin

I∑
i,j=1

ΛiΛj =
1

2µ
βminΛ2 (16)

where Λ =
∑I

i=1 Λi, βmin = mini(βi), and βmax = maxi(βi). We proceed to derive additional

bounds on the ratio of Jeq and Jopt.

From equations (13)-(14), we obtain the following explicit expression for the PoA:

PoA
4
=

Jeq

Jopt

= 2

∑I
i,j=1 ΛiΛjαi min{ βi

αi
,
βj
αj
}∑I

i,j=1 ΛiΛj min{βi, βj}
. (17)

As we will see below, the PoA ranges around the single-class value of 2. We proceed to

present some bounds on its value. Essentially, we will be interested in bounds that depend

only on the ranges of the cost parameters (αi and βi) but not on the relative size (Λi) of

the customer classes. We start with some special cases, where only one parameter varies

across classes.

Proposition 3

(i) Identical wait sensitivities. Suppose αi ≡ α0: the wait sensitivities are identical for

all customer classes. Then

PoA = 2.

(ii) Identical lateness sensitivities. Suppose βi ≡ β0: the lateness sensitivities are identical

for all classes. Then

PoA ≤ 2, (18)

and

PoA ≥ 2− (1− I−1)

(
1− αmin

αmax

)
≥ 1 +

αmin

αmax

, (19)

where αmax = maxi αi, αmin = mini αi, and I is the number of classes.

Item (i) of the last proposition is evidently an exact extension of the PoA result for the

single-class case, giving the same value of 2. Regarding (ii), we first note the upper bound

of 2 is strict unless all the αi’s are equal as well. Thus, in this case, diversity in the waiting
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sensitivities of the customers actually improves the PoA compared to the single class case.

As for the lower bound, for two user classes (I = 2) with α1 < α2 it reads

PoA ≥ 1.5 + 0.5
α1

α2

.

We observe that this bound is tight, and is achieved when Λ1 = Λ2.

We now turn to consider the general case, when both sets of cost parameters may vary across

customer classes. The following set of bounds is obtained simply by bounding separately

the ratios of each pair of corresponding terms in the numerator and denominator of (17).

Proposition 4 Let Hmax = maxi,j H(i, j) and Hmin = mini,j H(i, j), where

H(i, j) =
(αi + αj) min{ βi

αi
,
βj
αj
}

2 min{βi, βj}
.

Then

2Hmin ≤ PoA ≤ 2Hmax. (20)

Consequently,

PoA ≤ 1 +
αmax

αmin

, (21)

PoA ≤ 1 +
βmax

βmin

, (22)

PoA ≥ (1 +
αmin

αmax

)
βmin

βmax

. (23)

Equation (22) provides an upper bound on the PoA in terms of the β parameters only.

In fact, a tighter bound of this form may be derived through somewhat refined analysis.

This bound also points to the “worst case” conditions in terms of the PoA when the (βi)

parameters are given.

Proposition 5 PoA ≤ 1 +
√

βmax

βmin
.

We note that the bound of the last proposition is tight, in the sense that for any set of βi’s,

the bound is satisfied with equality for some (αi,Λi) parameters. Indeed, as implied by the

proof, setting the βi’s in increasing order, equality is obtained for Λ2 = · · · = ΛI−1 = 0,

Λ1/ΛI =
√
βI/β1, and αI/α1 = βI/β1 (cf. (17)).
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5 The Continuous Parameter Model

We next consider our model with a continuous set of customer classes, rather than discrete.

It may be argued that this model is more realistic, which comes at the expense of larger

computational (and possibly technical) difficulty. Our treatment here will be brief and

informal, and we will essentially rely on the discrete-parameter results to infer the form of

the equilibrium arrival profile in the present case.

Let q ∈ I denote here the continuous class parameter. We can identify q with the two

cost parameters (αq, βq) ∈ <2
+. Let g1(q) ≥ be a density function on I, with total mass∫

g1(q)dq = Λ. Thus, g1(q) denotes the density of arrivals of class q. We assume that there

are no point masses in the cost parameter distribution, so that g1 is finite.

Let mq = αq/(αq + βq) ∈ [0, 1] denote the cost ratio parameter for class q customers.

Since the equilibrium arrival profile is completely characterized by this parameter, it will

be useful to define its density. Thus, let g(m) ≥ 0 denote a density function on [0, 1], which

is obtained from g1 as

g(m) =

∫
1{mq = m}g1(q)dq .

We assume that g(m) is finite as well. Obviously,
∫
g(m)dm = Λ. Further, let

G(m) =

∫ m

0

g(η)dη

denote the (absolutely continuous) cumulative distribution function of g. For simplicity,

we will assume that g has finite support (i.e., m is bounded).

As in the discrete parameter case, let F (t) describe the aggregate arrival profile of the

customer population. The equilibrium arrival profile is defined as before. Looking at the

continuous model as the limit of the discrete one, with the number of classes going to

infinity, we may infer the following analogous properties of the equilibrium arrival profile

(see Lemmas 2 and 3, Theorem 2 and Figure 1).

1. The server operates at full rate µ till the last customer is served. Thus, the last

customer is served at Tf = Λ/µ.

2. Arrivals occur in increasing order of m. That is, customers of class q1 arrive before

those of class q2 if mq1 < mq2 .

3. If arrivals at time t have cost ratio parameter m(t), then

F ′(t) = µm(t). (24)

21



It follows that all customers with m ≤ m(t) arrive up to time t, hence

F (t) = G(m(t)).

We proceed to derive differential equations for m(t) and F (t). Differentiating the last

equation gives

F ′(t) = g(m(t))m′(t)

and together with (24) we get

m′(t) = µ
m(t)

g(m(t))
, t ≤ Tf . (25)

The boundary condition for this equation is obtained by noting that the last arrivals occur

at Tf = Λ/µ and have maximal m. Thus, letting mmax denote the maximal point in the

support of g(m),

m(Tf ) = mmax.

m(t) may now be computed from the differential equation with a boundary condition. The

equilibrium arrival profile F (t) may then be computed using F (t) = G(m(t)).

We note that a direct equation for F (t) follows by combining (24) with (25), yielding

F ′′(t) =
µF ′(t)

g(µ−1F ′(t))

with terminal conditions F ′(Tf ) = µmmax and F (Tf ) = Λ. It is clearly seen that F ′′(t) ≥ 0

over t ≤ Tf , hence F (t) is convex there.

It is easy to verify that the arrival profile thus defined is indeed an equilibrium profile.

Recall that the cost function for a class q arrival is given by (see equation (10)):

Cq(t) = (αq + βq)
F (t)

µ
− αqt = (αq + βq)(

F (t)

µ
−mqt).

It further follows by construction and (24) that customers with parameter mq arrive at

time tq defined by F ′(tq) = µmq. We will show that tq minimized Cq. Differentiating, we

get

C ′q(t) = (αq + βq)(
F ′(t)

µ
−mq).

Therefore, C ′q(t) = 0 at t = tq. Furthermore,

C ′′q (t) = (αq + βq)
F ′′(t)

µ
.
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But as observed above F (t) is convex on t ≤ Tf and hence so is Ci. Thus, tq is a minimizer

there. It is also clear that the cost Cq is increasing for t beyond Tf , hence tq is a global

minimizer of Ci.

We turn to an example that illustrates the required computations in the simple case of

uniformly distributed cost parameters.

Example 2 Let the cost ratio parameter m of the customer population be uniformly dis-

tributed on some interval [m0,m1], namely

g(m) = g01{m0 ≤ m ≤ m1} , g0 =
Λ

m1 −m0

.

Then, by (25),

m′(t) =
µ

g0

m(t) , t ≤ Tf ; m(Tf ) = m1,

with the solution

m(t) = m1e
µ
g0

(t−Tf )
, T0 ≤ t ≤ Tf .

Here T0 must satisfy m(T0) = m0, so that T0 = Tf − g0
µ

log(m1

m0
). The equilibrium arrival

density F ′ is given by

F ′(t) = g(m(t))m′(t) = g0m
′(t) = µm1e

µ
g0

(t−Tf )
, T0 ≤ t ≤ Tf .

Evidently, the arrival distribution at equilibrium turns out to be an exponentially increasing

function. Finally, the cumulative arrival distribution F (t) may be obtained by integrating

F ′ and using F (Tf ) = Λ, yielding

F (t) = g0m1(e
µ
g0

(t−Tf ) − 1) + Λ , T0 ≤ t ≤ Tf .

To close this section, we observe that the PoA bounds from Section 4.2, which depend

only on the range of the cost parameters α and β, should hold without modification in the

present continuous-parameter model as well.

6 Reducing the Price of Anarchy

We next discuss some ways in which the social inefficiency of the equilibrium solution,

hence the price of anarchy, may be reduced. For simplicity, we consider the setting of a

single customer class. The generalization to multi-class is conceptually straightforward, but
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requires more elaborate calculations. A key message of this section is that the fluid model

is sufficiently tractable to provide elegant and intuitive answers to many natural methods

for reducing the PoA.

We consider three methods in this context:

• Temporal segmentation, where certain parts of the population can be served only after

specified time thresholds.

• Priority assignment, where certain parts of the populations are given absolute service

priority over others.

• Time-dependent tariffs, where customers who are served earlier are charged more.

In these cases we show that by appropriately segmenting the population into n parts, the

PoA can be reduced from 2 to 1 + 1
n
.

Both temporal segmentation and priority assignment can be viewed as partial forms of

customer scheduling through appointment setting, and may be applicable whenever the

latter is relevant. A familiar application which is handled along similar lines is airplane

boarding, where economy passengers are assigned different priority based on their seat

location. Price differentiation and segmentation are of course important topics in operations

research and economics, and our treatment here barely scratches the surface.

We start the discussion by considering in some detail temporal segmentation with two

groups. Here we will compute explicitly the equilibrium for the different choices of the

temporal delay threshold and population shares, and establish the optimal choices that

lead to the minimal PoA of 3
2
. This derivation is also of independent interest, as it brings

out some interesting structural properties of the equilibrium at different levels of separation

between the two populations. We then proceed to consider (albeit in lesser detail) the n-

level schemes for temporal and priority segmentation, and conclude with a brief discussion

on the use of differential tariffs. Later, in the appendix, we also point out the performance

degradation that may occur with suboptimal pricing. Without loss of generality, we take

Λ = 1 in this section.

6.1 Temporal Segmentation: Two Segments

Consider the case where the population is divided into two segments. Specifically, assume

that a proportion a ∈ (0, 1) of the population is allowed to be served at any time t ≥ 0,
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while a proportion (1 − a) is allowed to be served only after some time τ̂ > 0. Call these

the first population and second population, respectively. Note that the restriction is only

one-sided: no upper bounds are imposed on the service times of the first population. We

do allow the second population to queue up before time τ̂ , so that after time τ̂ they join the

end of the queue of population 1 customers at the service facility (if any) and are served

after them. Within the same population, service is always in the order of customer arrivals.

After time τ̂ , customers from either population join at the end of the main queue.2

We first note that the first population may be fully served by time a
µ
. Therefore, if we set

τ̂ > a
µ
, then the server would be idle in the interval [τ̂ , a

µ
], which is clearly inefficient. We

therefore restrict attention to the case where τ̂ ≤ a
µ
.

The following proposition summarizes our findings regarding the equilibrium arrival distri-

butions for different values of τ̂ ≤ a
µ
. Let m denote the ratio α

α+β
, and define

τ0 =
a

µ
− (1− a)

β

αµ
. (26)

Proposition 6

(i) For τ0 ≤ τ̂ ≤ a
µ

, the equilibrium arrival profile of each population is unique, with the

first population arriving uniformly over the interval [τ̂ − a
µm
, τ̂ ] at rate µm, and the

second population arrives uniformly over the interval [τ0,
1
µ
] at rate µm. The PoA

increases linearly from 2(a2 + 1− a) to 2 as τ̂ decreases from a
µ

to τ0.

(ii) For 0 ≤ τ̂ < τ0, in any equilibrium, the joint arrival profile of both populations is

uniform over the interval [− β
αµ
, 1
µ
], with rate µm. Population 1 alone arrives over

the interval [− β
αµ
, τ̂ ], and the remainder from both populations arrive in arbitrary

order over [τ̂ , 1
µ
]. Here, the PoA equals 2.

The proof is presented in the appendix.

A central point to note is that population 2’s cost is not affected by this segmentation. The

only effect is the potential gain to population 1. (Of course, in the stochastic setting one

can expect some loss to population 2 due to the increase in queue size uncertainty as time

progresses. This is an interesting point for future study.)

2In another variation of this model, both populations can queue up together, but if a customer of
population 1 reaches his turn for service before time τ̂ , he will need to wait till that time and let population
1 customers pass him. The essential results are similar.
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Another interesting observation is the phase change that occurs at the critical value of

τ̂ = τ0. Above this value, population 1 obtains a concrete cost improvement over the

unsegmented case. Below this value, although population 2 does refrain from arriving

before τ̂ , there is no gain or loss for either population.

Returning to the issue of equilibrium efficiency, the important observation is that the PoA is

minimized by setting τ̂ to the extreme value of a
µ
. Here, the unique equilibrium corresponds

to both populations blissfully unaware of each other, as population 1 finishes its service

exactly at τ̂ . The first population arrives as if the second does not exist and the server

facility opens at time 0, the second population arrives as if the server facility opens at

time a/µ and queues up appropriately before time a/µ (see Figure 6.1 for an illustration).

Further observing that the minimum of 2(a2 + 1− a) is obtained for a = 0.5, we obtain the

main conclusion of this subsection

Corollary 1 The PoA for a two-group temporal segmentation is minimized by setting a =

0.5 and τ̂ = 0.5
µ

. The minimal value is 3
2
.

Thus, the optimum is attained by splitting the two populations equally, and minimizing

their interaction by allowing the second to be served only when the first has finished.

6.2 Temporal Segmentation: Multiple Segments

Suppose that we segment the population into n parts, with each allowed to be served only

after a certain time. We shall not go into a detailed analysis of this problem, but rather

use the insight from the two segment case, so that we divide the population into n equal

segments, of size 1
n

each, and eliminate their interaction by allowing the i-th segment to be

served only after the previous ones are expected to have finished, namely at time i−1
µ

for

i = 1, 2, . . . , n. Then the equilibrium cost for customers getting served in a slot ( i−1
nµ
, i
nµ

)

would equal iβ
nµ

. As this pertains to a 1/n proportion of the population, the total cost

equals
β

nµ
(
1

n
+

2

n
+ ...+ 1) =

β

2µ

n+ 1

n
.

Comparing with Proposition 1, it is immediately seen that the PoA equals n+1
n

, which

approaches the optimal value of 1 as n increases.
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Figure 2: Equilibrium queue length profile for the two populations. Population 1 comprises

a proportion and is served in the interval [0, a/µ]. Population 2 comprises (1−a) proportion

and is allowed service after time a/µ, although it starts queueing from time τ̂ ∗ onwards.

6.3 Priority Queueing

Another way to achieve PoA equal to n+1
n

is through dividing the population into n sep-

arate segments and assigning different priorities to them. Specifically, suppose that the

population is divided into n segments with (ai : i ≤ n) denoting the respective proportions

(the cost function is identical for each segment). The population segment with lower in-

dex is given priority over the segment with higher index. Then, in equilibrium customers

arrive in disjoint intervals, customers of segment 1 arrive first uniformly in the interval

[−βa1

αµ
, a1

µ
] and are served by the server in the interval [0, a1

µ
]. Similarly, customers of seg-

ment j ≥ 2 arrive uniformly in the interval [
∑j−1

i=1
aj
µ
− βai

αµ
,
∑j

i=1
ai
µ

] and are served in the

interval [
∑j−1

i=1
ai
µ
,
∑j

i=1
ai
µ

].

The cost incurred by segment i equals β
∑j

i=1
ai
µ

so that overall price of anarchy equals

2

[
n∑
j=1

aj(

j∑
i=1

ai)

]
.

Through simple optimization, it can be seen that this is minimized by setting aj = 1
n

for

each j so that the PoA equals n+1
n

as in Subsection 6.2.
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6.4 Charging Tariffs

Recall that in Section 6.1 in the two population setting, we obtained the best PoA when

we divided the populations in equal parts and allowed the second population to come

after time 1
2µ

. Then, the cost to each customer in the first population was 1
2µ

less than

that of customers in the second population. This suggests a procedure for implementing

discriminatory pricing.

For brevity, we restrict our discussion to the case where customers joining the service facility

queue by time 1
2µ

have to pay a constant tariff p while the customers joining the service

facility queue after this time pay no tariff. We refer to the former as population 1 and

latter as population 2. We assume here that demand of one unit is fixed and is unaffected

by the pricing strategy of the service provider. Again, we allow population 2 to queue

up before time 1
2µ

separately and join at the end of service facility queue at time 1
2µ

. In

this case, they are served after population 1 customers at the service facility queue at that

time, if any, and in their order of arrival amongst population 2. We further assume that

the tariff collected is returned to the society so this does not enter into the price of anarchy

calculations. We now discuss the scenario p = β
2µ

that corresponds to minimum PoA. For

brevity, the discussion of the remaining two cases p > β
2µ

and p < β
2µ

is kept brief and is

relegated to the appendix.

6.4.1 p = β
2µ

In this scenario, the first population arrives uniformly between [− β
2αµ

, 1
2µ

] at rate µm, and

the other between [ 1
2µ
− β

2αµ
, 1
µ
] at the same rate. The cost incurred by both the populations

is β
µ
: For the first population it is β

2µ
from waiting and time to service and another β

2µ
from

the tariff for coming early.

Thus, a customer is indifferent to coming as part of population 1 or 2. The revenue collected

by the service provider from tariffs equals β
4µ

. The PoA, as before, equals 3/2. See Figure

3 for an illustration of this scenario.

It is easily seen that by having n−1 separate tariffs so that customers served in the interval

( i
nµ
, i+1
nµ

) for (i = 0, 1, 2, . . . , n− 1) are charged amount β
µ
n−i−1
n

, we can achieve PoA equal

to n+1
n

.
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Figure 3: The dotted line denotes the queue profile before differential pricing. After differ-

ential pricing the darkened line denotes the queue profile of population 1 that pays β/(2µ)

more than population 2 whose queue profile is shown using the lighter line. The cost to

customer joining either of the two populations equals β/µ.
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7 Numerical Experiments

In our analysis in a single class customer setting, we derived the unique equilibrium arrival

profile for an asymptotically limiting fluid regime where the number of customers increased

to infinity. We refer to this as the asymptotic equilibrium arrival profile. When the number

of customers is finite, the associated equilibrium arrival profile may be more intricate and

determining it may be a subject for interesting future research. In this section we numeri-

cally test the efficacy of the asymptotic equilibrium profile in the fixed N customer setting

for a simple example to get a sense of its closeness to equilibrium in finite-N queue, as N

increases. We consider the case where there are N single class customers with linear costs

that follow two variants of the asymptotic equilibrium strategy: In Case I, the customers se-

lect their arrival times by sampling from a uniform distribution over their support. In Case

II, the customers arrive at deterministic evenly spaced intervals. As pointed out in Section

2, both cases represent a finite-sample approximation to the uniform fluid distribution. To

further contrast the two cases, we assume that customer service times are exponentially

distributed in Case I, while they are uniformly distributed with lower variance in Case II.

We then, in both the cases, plot the expected cost incurred by a tagged customer as a

function of her arrival time for increasing values of N . We observe that the resulting cost

(suitably normalized) converges to a constant as N increases. This convergence is faster in

Case II where the system is less noisy. This suggests that for reasonable values of N , the

asymptotic equilibrium arrival profile may be close to an actual equilibrium arrival profile,

although as mentioned earlier, further research is needed to establish this.

Case I: We set the linear cost coefficients α = 2 and β = 1. The customer service times are

exponentially distributed with rate µ = 1. Each arrival selects her arrival time as uniformly

distributed in the interval N × [− β
αµ
, 1
µ
]. Customers are served on a first come first serve

basis. We use simulation to estimate the expected waiting time and hence the expected

cost of the tagged customer that arrives at times N × [− β
αµ
, 0, 0.5

µ
, 0.8
µ
, 0.95

µ
, 1
µ
]. The cost of

the customer is normalized by dividing by N . Figure 4 shows the normalized expected cost

for the tagged customer as a function of her normalized arrival time (arrival time divided

by N) for N = 10, 50, 100, 500, 1000 and 10000. Ten thousand independent simulation

replications are conducted to estimate the expected waiting time in each configuration.

Typically, the 95% confidence width of the resulting estimator is within 0.5% of the value

of the estimator. When, N = 10, 000, and the customer arrives at times N × 0.95
µ

or at

N × 1
µ
, this ratio was below 3%, again for 10, 000 replications.

Note that the normalized expected cost of the tagged customer trivially equals 1 for her
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arrival time between N × [− β
αµ
, 0]. As the graph shows, this cost is higher than 1 and is

increasing as the arrival time increases to N
µ

. However, for largeN (for instance, N = 1, 000)

this cost more-or-less stabilizes to 1.

Intuitively, this can be understood by recalling the well known Lindley’s recursion

Wn+1 = max(Wn + Sn − In+1, 0), (27)

whereWn denotes the waiting time of customer n in a first come first serve queue, Sn denotes

this customer’s service time and In+1 denotes the inter-arrival time between customer n

and n+ 1. In our model all customers that arrive before time zero wait till time zero when

the system initiates service. Lindley’s recursion is then valid for all customers that arrive

after time zero.

Note that, if in our simulations, we set

Wn+1 = Wn + Sn − In+1, (28)

for all arrivals after time zero, then it is easily seen that the resultant normalized expected

cost will be 1 for an arrival at any time during N × [0, 1
µ
]. However, the expected waiting

time increases (and hence the expected cost increases) due to the relation (27) assigning

higher value to a waiting time compared to (28) whenever an arrival finds an empty queue.

The difference between the two expected costs (one computing waiting time using Lindley’s

recursion, other using linear recursion) may be small when the probability of the queue

emptying between time zero and the time of tagged customer’s arrival is small. This

probability is obviously small for tagged customer’s arrival time close to zero (as there are

many customers waiting for service at time zero) and increases as this arrival time gets

closer to N/µ. It can easily be shown that for a given ε ∈ (0, 1), as N becomes large, the

probability of the queue becoming empty in the interval [0, N(1−ε)
µ

] goes to zero, and hence

the normalized cost stabilizes to 1 with increasing N monotonically.

Note that for finite N , under a symmetric equilibrium strategy, the tagged customer must

see constant cost at all times along the support of other customers arrival distribution.

Figure 4 suggests that to achieve this, customers must put relatively less weight towards

the end of their support compared to asymptotic equilibrium strategy.

Case II: Here, the customers arrive at deterministic equi-spaced time intervals - Customer

i for i = 1, 2, . . . , N arrives at(
−Nβ
αµ

+
1

2µ

(α + β)

α
+

(i− 1)

µ

(α + β)

α

)
.
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Figure 4: We consider N single class customers with α = 2, β = 1, service times expo-

nentially distributed with rate µ = 1. Customers arrival times are uniformly distributed

between N × [− β
αµ
, 1
µ
]. The graph shows the expected cost of a customer arriving to this

queue at different times. Cost and time are normalized by dividing by N .
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Figure 5: We consider N single class customers with α = 2, β = 1, service times are

uniformly distributed between [1/2, 3/2]. Customers arrive at deterministic equally spaced

intervals. The graph shows the expected cost of a customer arriving to this queue at

different times. Cost and time are normalized by dividing by N .
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All parameter values are as in Case I. The service times are assumed to be uniformly

distributed between [1/2, 3/2] ( so their variance equals 1/12 as compared to variance of 1

in Case I). This may be more realistic in many applications (such as concert or cafeteria

queues) where the service times show little variability. Figure 5 shows the normalized

expected cost for the tagged customer as a function of her normalized arrival time as in

Case I. As expected, the convergence to 1 is much faster in this case. Note that for small

values of N , the normalized cost may actually be less than 1 for tagged customers arrival

at times that are just before the next arrival in the deterministic arrival grid. Also, for the

case N = 10, to understand the decrease in the normalized cost experienced by the tagged

customer arriving at normalized time 0.95 as compared to normalized time 1, note that the

last arrival in the deterministic arrival grid occurs at normalized time 0.925. Proximity to

this arrival then leads to higher waiting and hence overall cost to the tagged customer at

normalized time 0.95 as compared to the tagged customer that arrives at normalized time

1.

8 Conclusion

In this paper we considered the queueing problem that may arise in settings such as concert

and movie theaters, cafeterias, DMV offices, Black Friday shopping queues, etc., where a

large number of customers may queue up before a facility that opens for service at a

particular time. The customers strategically select their arrival time distributions to trade-

off waiting time in queue with costs due to late arrival. We developed a queueing framework

for this problem for which we identified the fluid limit. We observed that the fluid limit

allows a great deal of tractability in analyzing the strategic arrival problem faced by each

customer. We identified the unique arrival profile for each customer class in equilibrium,

and showed that the price of anarchy equals 2 in the single-class model while it varies

around this value in the multiclass case. We further discussed structural changes in the

queueing discipline and simple pricing schemes that can be used to reduce the price of

anarchy. We also demonstrated through a simple numerical example that the proposed

asymptotic equilibrium arrival profiles may be may be close to equilibrium in the finite-N

queue, for N reasonably large.

As part of future work, we plan to study the equilibrium properties of the fluid model under

more general cost functions as well as study the model introduced here under the diffusion

limit. Extension to multi-server queueing networks would also be of interest in many
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applications particularly communication networks. We hope that this analysis motivates

further research in strategic analysis of queueing systems.
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A Appendix

Here we first present proofs for some propositions stated above, and then discuss some

supplementary results to Section 6.3 related to reduction in PoA through charging tariffs.

A.1 Proofs for Sections 4.2 and 6.1

Proof of Proposition 2: Recall that the social cost is defined as the sum of costs of

all customers, at a given arrival profile. Consider the equilibrium arrival profile that was

computed in Section 4.1. Since the equilibrium cost Ci(t) is the same for all members of

each class, say Ci, we obtain

Jeq =
∑
i

ΛiCi . (29)

The cost Ci may be computed in any point in [Ti−1, Ti]. Picking Ti, we get

Ci = Ci(Ti) = (αi + βi)
F (Ti)

µ
− αiTi .

It will be convenient to express this as

µCi = βiF (Ti) + αi(F (Ti)− µTi) .

Substituting Ti and F (Ti) from (11) and (12), we get

µCi = βi

i∑
j=1

Λj + αi(Λ−
n∑

j=i+1

Λj − Λ +
n∑

j=i+1

Λj
αj + βj
αj

) (30)

= βi

i∑
j=1

Λj + αi

n∑
j=i+1

Λj
βj
αj
. (31)
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Note that we can observe three distinct components in this expression. The right most sum

is the influence of later arrivals (customer classes with j > i) on class i. The influence of

customer classes that arrive earlier (j < i) is summarized by the preceding term, summed

up to i − 1. The remaining term βiΛi expresses the effect of competition within class i

customers.

Substituting the last expression in (29), we obtain

Jeq =
∑
i

ΛiCi =
∑
i

Λi

µ

(
βi

i∑
j=1

Λj + αi

n∑
j=i+1

Λj
βj
αj

)
. (32)

To obtain the required (more symmetric) form of Jeq, note that the ratio βi
αi

is decreasing

in i (since the opposite holds for mi by assumption). Therefore,

Jeq =
1

µ

I∑
i=1

ΛiΛjαi

(
i∑

j=1

βi
αi

+
I∑

j=i+1

βj
αj

)

=
1

µ

I∑
i,j=1

ΛiΛjαi min{βi
αi
,
βj
αj
} , (33)

as claimed. We observe that the latter expression is independent of ordering of the classes.

We next turn to the optimal social cost Jopt, which is obtained by optimizing the arrival

times and server allocation for all customers. Here there would be no queues, as each

customer can arrive exactly when her turn to be served arrives. It may then be seen through

a simple interchange argument that the optimal ordering of arrivals between classes is in

decreasing order of βi. Let σ(i) be an index permutation so that βσ(1) ≥ · · · ≥ βσ(n).

Then, class σ(i) customers arrive uniformly with rate µ between τi−1 and τi, where τi =

µ−1
∑i

j=1 Λσ(j). The overall cost for this class becomes

Ji = Λσ(i)βσ(i)
Ti−1 + Ti

2
=

Λσ(i)

µ
βσ(i)(

i−1∑
j=1

Λσ(j) +
1

2
Λσ(i))

so that

Jopt =
∑
i

Ji =
I∑
i=1

Λσ(i)

µ
βσ(i)(

i−1∑
j=1

Λσ(j) +
1

2
Λσ(i)). (34)
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Again, we can express Jopt in a more symmetric form. Indeed,

Jopt =
1

2µ

I∑
i=1

Λσ(i)

(
i−1∑
j=1

Λσ(j)βσ(i) + Λσ(i)βσ(i) +
I∑

j=i+1

Λσ(j)βσ(j)

)
(35)

=
1

2µ

I∑
i,j=1

Λσ(i)Λσ(j) min{βσ(i), βσ(j)} (36)

where the first equality follows by splitting the last sum in (34) into two equal terms and

changing order of summation in one of them, and the second equality follows since βσ(i)

is decreasing in i. Now, it may be seen that the last expression does not depend on the

permutation σ, hence we can remove the permutation and finally obtain (14). �

Proof of Proposition 3: Item (i) is immediate from (17). As for (ii), from the same

equation we obtain the upper bound

PoA = 2

∑I
i,j=1 ΛiΛj min{1, αi

αj
}∑I

i,j=1 ΛiΛj

≤ 2. (37)

On the other hand, proceeding from the last expression and recalling that αi ≤ αj for i < j,

PoA = 2−
2
∑I

i,j=1 ΛiΛj(1−min{1, αi
αj
})∑I

i,j=1 ΛiΛj

(38)

= 2−
2
∑

i<j ΛiΛj(1− αi
αj

)∑I
i,j=1 ΛiΛj

(39)

≥ 2−
maxi,j(1− αi

αj
) · 2

∑
i<j ΛiΛj∑I

i,j=1 ΛiΛj

(40)

= 2−
(

1− αmin

αmax

)∑
i 6=j ΛiΛj

(
∑I

i Λi)2
. (41)

It is easily verified that the last fraction is maximized when all the Λi’s are equal, and in

that case it equals (I − 1)/I. Hence follows the lower bound in (19). �

Proof of Proposition 4: The bounds in (20) follow immediately after noting that, by

collecting terms, (17) may be written as:

PoA = 2

∑
i βiΛ

2
i +

∑
i<j ΛiΛj(αi + αj) min{ βi

αi
,
βj
αj
}∑

i βiΛ
2
i +

∑
i<j ΛiΛj2 min{βi, βj}
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so that H(i, j) is the ratio of the coefficients of the i, j terms. The remaining bounds follow

by appropriately bounding H(i, j). As for (21), assuming that βi ≤ βj we get

2H(i, j) =
(αi + αj) min{ βi

αi
,
βj
αj
}

βi
≤

(αi + αj)
βi
αi

βi
= 1 +

αj
αj
≤ 1 +

αmax

αmin

(the case βi > βj is symmetric since H(i, j) = H(j, i)). As for (22), supposing that βi
αi
≤ βj

αj
,

we get

2H(i, j) =
αi

βi
αi

+ min{αjβi
αi
, βj}

min{βi, βj}
≤ βi + βj

min{βi, βj}
≤ 1 +

βmax

βmin

.

Finally, to establish (23), consider again that βi ≤ βj so that

2H(i, j) = (αi + αj) min{ 1

αi
,

1

αj

βj
βi
} = min{1 +

αj
αi
, (1 +

αi
αj

)
βj
βi
} ≥ (1 +

αmin

αmax

)
βmin

βmax

.

�

Proof of Proposition 5: From (14) and (15), we have

PoA ≤
2
∑I

i,j=1 ΛiΛjβi∑I
i,j=1 ΛiΛj min{βi, βj}

. (42)

We proceed to bound he last expression, by computing its maximum over Λ ≥ 0, where

Λ = (Λ1, . . . ,ΛI).

Let us reorder the class indices so that β1 < β2 < · · · < βI (in case there are equal

coefficients we can collapse them into a single class). Denote the right-hand side of (42) by

F (Λ), and let N(Λ) and D(Λ) denote the nominator and denominator of that expression.

We will show that the maximum of F is attained when Λ2 = · · · = ΛI−1 = 0 and Λ1/ΛI =
√
βI/
√
b1. The required bound is then the value of F at this point.

A maximizer Λ of F must satisfy

F ′k(Λ)
4
=
∂F (Λ)

∂λk
≤ 0, k = 1, . . . , I

with equality if Λk > 0. Since F = N/D, we get

N ′kD −D′kN
D2

≤ 0

or equivalently
N ′k
D′k
≤ N

D
(43)
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with equality if Λk > 0.

Consider three consecutive coordinates (Λk−1,Λk,Λk+1) of the maximizer Λ, with 2 ≤ k <

I − 1, and suppose that Λk > 0. We will show that this is impossible. Since the right hand

side of (43) is independent of k, we get at this point

N ′k−1

D′k−1

≤ N ′k
D′k
≥
N ′k+1

D′k+1

which implies that
N ′k −N ′k−1

D′k −D′k−1

≥
N ′k+1 −N ′k
D′k+1 −N ′k

. (44)

Now, direct computation of the relevant derivatives gives

N ′k
4
=
∂N(Λ)

∂Λk

=
∑
i

βiΛi + βk
∑
i

Λi

D′k
4
=
∂D(Λ)

∂Λk

= 2
∑
i

Λi min{βi, βk}

so that
N ′k −N ′k−1

D′k −D′k−1

=
(βk − βk−1)

∑
i Λi

2(βk − βk−1)
∑

i≥k Λi

=

∑
i Λi

2
∑

i≥k Λi

and similarly
N ′k+1 −N ′k
D′k+1 −D′k

=

∑
i Λi

2
∑

i≥k+1 Λi

.

Comparing the last two expressions, it is evident that (44) can hold only if Λk = 0.

It follows that any maximizer Λ of F must have Λ2 = . . .ΛI−1 = 0. To determine Λ1 and

ΛI , observe that F now reduces to

F (Λ) = 2
β1Λ2

1 + (β1 + β2)Λ1Λ2 + β2Λ2
2

β1Λ2
1 + 2β1Λ1Λ2 + β2Λ2

2

= 2 +
2(β2 − β1)Λ1Λ2

β1Λ2
1 + 2β1Λ1Λ2 + β2Λ2

2

= 2 +
2(β2 − β1)

β1λ+ 2β1 + β2/λ

where λ
4
= Λ1/Λ2. Minimizing the last denominator over λ (which is equivalent to maxi-

mizing F ) gives β1 − β2/λ
2 = 0, or λ =

√
β2/β1. Substituting this maximizing value back

in F gives the upper bound F (Λ) = 1 +
√
βI/β1. Recalling that the βi’s were arranged in

increasing order, this establishes the claimed upper bound. �

Proof of Proposition 6: First consider τ0 < τ̂ < a
µ
. As argued before, under any

equilibrium, the server will serve at a full rate till time 1/µ. Clearly, the last customer to
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be served in equilibrium will arrive at time 1/µ and incur the cost c2
4
= β/µ. Note also that

any customer from population 1 has the option of arriving at time τ̂ and be served by at

most time a/µ, resulting in an upper bound on her cost c1
4
= α( a

µ
− τ̂) +β a

µ
. Therefore, the

equilibrium cost for population 1 is upper bounded by c1. It is easy to verify that c1 < c2

(using τ0 < τ̂), which implies that population 1 customers will not be the last to arrive.

Hence, some member of population 2 is the last to arrive, and in equilibrium the cost

incurred by each customer of population 2 equals c2. Clearly, population 1 cannot arrive

after time τ̂ and incur cost less than c2, as then a customer from population 2 can replicate

this to lower her own cost. Hence, since all customers in population 1 have a constant cost,

this population arrives uniformly in an interval [τ − a
µm
, τ ] at rate µm for some τ ≤ τ̂ .

Again, if τ < τ̂ , the last customer of this population can improve her cost by arriving at

τ̂ , so τ = τ̂ . In particular, the cost incurred by population 1 customers equals c1, and they

are served uninterruptedly till time a/µ, which results in the stated arrival profile. From

population 2’s viewpoint, then, in equilibrium the service opens at time a/µ, and hence in

equilibrium it must follow the profile specified in the proposition.

It is straightforward to compute the PoA for the specified equilibrium, we omit the details.

Now consider the case τ̂ < τ0. Let c1 and c2 be defined as above, and note that now c1 > c2.

As before, we argue that no customer can have cost more than c2, while population 2’s cost

will equal c2. If all of population 1 arrives by time τ̂ , the cost incurred by its last customer

(who will be served at time a/µ and will need to wait at least a/µ − τ̂) is not less than

c1. Hence, this cannot hold in equilibrium and some customers from population 1 must

arrive after time τ̂ . But these must have the same cost c2 as population 2 customers in

equilibrium (as any arrival of population 2 at that time will incur the same cost). Thus,

equilibrium cost for each customer must equal c2, and the joint arrival profile must be as

stated. Finally, population 2 customers cannot come before τ̂ in equilibrium, since then

a customer from population 1 that arrives at τ̂ will have priority over them and thereby

achieve better cost than c2. However, beyond τ̂ arrivals from both populations have similar

status, so that any order of arrival that keeps the joint uniform distribution (hence cost

c2) would complete an equilibrium profile. The PoA clearly equals 2 since the joint arrival

distribution is the same as in the single-class case.

The case of τ̂ = τ0 is borderline between the above two and can be treated by either

argument, we omit further details. �
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A.2 Reducing the PoA through tariffs: Supplements

This discussion supplements Section 6.3. We state two propositions: Proposition 7 specifies

the equilibrium profile for p = (1 + c) β
2µ

, c > 0. Proposition 8 does this for p = (1− c) β
2µ

,

c > 0. The arrival profiles in the two cases are illustrated in Figure 4. The proofs of these

propositions are straightforward. They rely on the fact that the two populations: One

that pays an additional tariff p and the other that doesn’t each arrive over their respective

arrival intervals at a constant rate µm in such a way that the cost incurred by a customer

in either population is the same. For brevity we omit the proofs.

Proposition 7 For p = (1 + c) β
2µ

, c > 0:

1. In unique equilibrium, (1
2
− c

4
) proportion of customers arrive as population 1, for

c ≤ 2, at rate µm, uniformly over[
− β

αµ
(
1

2
− c

4
),

1

µ
(
1

2
− c

4
)

]
,

and (1
2

+ c
4
) proportion arrive as population 2 at rate µm uniformly over[

1

2µ
− β

2αµ
(1 +

c

2
),

1

µ
+

c

4µ

]
.

For c ≥ 2, all customers come as population 2 as for c = 2.

2. Furthermore, for c ≤ 2, the PoA equals

=
3

2
+
c(1 + c)

4
. (45)

For c > 2 it equals 3.

Proposition 8 For p = (1− c) β
2µ

, c ∈ (0, 1):

1. In unique equilibrium, proportion 1
2

+ βc
2(α+β)

of customers arrive as population 1 at

rate µm, uniformly over [
− β

2αµ
(1 + c),

1

2µ

]
.

In addition, proportion 1
2
− βc

2(α+β)
of customers arrive as population 2 at rate µm,

uniformly over [
1

2µ
− β

2αµ
(1− c), 1

µ

]
.
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Figure 6: The dotted line in both the figures denotes the queue profile before differential

pricing. The darkened line in the top figure denotes the queue profile of population 1 that

pays β(1 + c)/(2µ) more than population 2 whose queue profile is shown using the lighter

line. Here the population 1 is served till τ̃1 = 1
2µ
− c

4µ
and population 2 is served till

τ̃3 = 1
µ

+ c
4µ

. The cost to customer joining either of the two populations equals β
µ
(1 + c

4
).

In the bottom figure, the darkened line denotes the queue profile of population 1 that pays

β(1− c)/(2µ) more than population 2 whose queue profile is shown using the lighter line.

Here the population 1 is served till τ̆1 = 1
2µ

+ βc
2µ(α+β)

. The cost to customer joining either

of the two populations equals β
µ
.
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2. Furthermore,

PoA =
3

2
+
c(α + βc)

2(α + β)
. (46)

This equals 3/2 at c = 0 and 2 at c = 1.

Note that for tariff 0 ≤ p ≤ β
2µ

, the cost to each customer remains fixed at β
µ

while this had

increased for p > β
2µ

.
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