
Adaptive-Resolution Reinforcement Learning with
Efficient Exploration in Deterministic Domains

Andrey Bernstein and Nahum Shimkin
Department of Electrical Engineering

Technion – Israel Institute of Technology

Haifa, Israel

andreyb@tx.technion.ac.il shimkin@ee.technion.ac.il

November 26, 2009

Abstract

We propose a model-based learning algorithm, the Adaptive-resolution Rein-
forcement Learning (ARL) algorithm, that aims to solve the online, continuous
state space reinforcement learning problem in a deterministic domain. Our goal is
to combine adaptive-resolution approximation schemes with efficient exploration
in order to obtain fast (polynomial) learning rates. The proposed algorithm uses
an adaptive approximation of the optimal value function using kernel-based av-
eraging, going from coarse to fine kernel-based representation of the state space,
which enables us to use finer resolution in the “important” areas of the state
space, and coarser resolution elsewhere. We consider an online learning approach,
in which we discover these important areas online, using an uncertainty intervals
exploration technique. In addition, we introduce an incremental variant of the
ARL (IARL), which is a more practical version of the original algorithm with
reduced computational complexity at each stage. Polynomial learning rates in
terms of mistake bound (in a PAC framework) are established for these algo-
rithms, under appropriate continuity assumptions.

1 Introduction

Markov Decision Processes (MDPs) provide a standard framework for handling se-
quential decision problems under uncertainty (Bertsekas, 2007; Puterman, 1994). Solid
theory and a variety of algorithms enable the efficient computation of the optimal value
function and optimal control policies in MDPs when the state and action spaces are
finite. However, an exact solution becomes intractable when the number of states is
large or infinite. In this case, some approximation schemes are required. See Boutilier
et al. (1999); Bertsekas (2007); Powell (2007), for a general discussion and overview.

A well-established approximation approach is that of value function approximation
using a finite set of basis functions, or kernels. A particular case is state aggregation,
in which the state space is represented by a finite (and relatively small) collection of

1

cells. Each cell is said to aggregate the states that fall in it. Once the aggregation is
performed, the new problem is a planning problem in a reduced state space, which can
be solved by regular techniques. The main question that arises here is how to perform
the aggregation, so that, on the one hand, we obtain a “good” approximation of an
optimal policy, and on the other hand reduce the problem complexity. This question
was addressed in many papers, such as Whitt (1978); Chow and Tsitsiklis (1991), which
provide formal answers under some continuity assumptions on the model parameters.

An extra difficulty is added when dealing with learning problems, namely situations
where the MDP model is initially unknown. Reinforcement Learning (RL) encompasses
a wide range of techniques for solving this problem by interacting with the environment.
An important part of an RL algorithm is the exploration scheme. The role of exploration
is to gain new information by appropriate action selection which directs the agent
towards unknown states of the MDP.

For finite state and action spaces, efficient learning algorithms were presented and
proved to learn nearly optimal behavior (with high probability) within a time or error
bound that is polynomial in the problem size. These include the E3 (Kearns and
Singh, 2002), R-MAX (Brafman and Tennenholtz, 2002), MBIE (Strehl and Littman,
2005), UCRL (Auer and Ortner, 2006), GCB (Chapman, 2007) and OLP (Tewari and
Bartlett, 2007) algorithms. These algorithms use efficient exploration techniques, which
are often based on the so–called “optimism in face of uncertainty” principle. However,
these algorithms are infeasible in cases where the state and/or action spaces are very
large or infinite, since their time and space complexity is typically polynomial in the
size of the space.

Several new contributions to the problem of RL in continuous state space which are
related to adaptive aggregation and kernel-based methods appeared in the literature.
The proposed algorithms can be roughly divided into two groups. The first group con-
tains algorithms that are heuristic in nature. Moore and Atkeson (1995) proposed a
learning algorithm for deterministic domains, which uses adaptive aggregation of the
state space. Munos and Moore (2002) discussed the use of adaptive aggregation for
the planning problem in deterministic domains, with particular focus on the introduc-
tion and evaluation of a wide variety of possible splitting criteria. Jong and Stone
(2006) combined an exploration technique with kernel-based function approximation.
Loth et al. (2006) use optimistic policy iteration with some kernelized gradient-type
algorithm. Bonarini et al. (2007) introduced a learning algorithm which builds a multi-
resolution state representation by using sophisticated splitting and merging rules, and
showed experimentally how this algorithm can scale to large stochastic domains. Re-
cently, a multi-resolution exploration algorithm was proposed by Nouri and Littman
(2008). The algorithm uses state aggregation and employs a splitting mechanism that
is based on the number of visits to a particular state-action cell and on its size. We
note that in these papers, no convergence and learning rate guarantees were provided.

The algorithms in the second group provide some convergence results without treat-
ing explicitly the exploration-exploitation problem. Ormoneit and Sen (2002) intro-
duced an approximate kernel-based Bellman operator and showed that theoretical guar-
antees can be obtained when a set of independent transition samples is used in order
to define this operator. Konda and Tsitsiklis (2003) proposed and analyzed a class
of actor-critic algorithms, using a parameterized set of randomized stationary policies.
In order to avoid the exploration-exploitation tradeoff, it is assumed that under every

2

policy there is a positive probability to choose any action at every state. Munos and
Szepesvári (2008) introduced a variant of the fitted value iteration method (using a
finitely parameterized class of bounded functions), which uses a generative model (or
simulator) of the environment in order to obtain samples. Antos et al. (2008) pro-
posed an instance of the fitted policy iteration method, which employs a modified form
of Bellman residual minimization procedure to approximate the action-value function.
The algorithm learns from a single trajectory of some given fixed policy. We note that
these algorithms are offline in the sense that they learn form a given trajectory, and
hence do not deal with the exploration-exploitation trade-off which is central in the
present paper.

An important class of control and learning problems deals with deterministic models
over a continuous (infinite) state space. The examples of such problems and applications
of RL algorithms to them are the “Car On Hill” problem (see for instance Sutton (1996);
Moore and Atkeson (1995)), the inverted pendulum and cart-pole problems (as in Doya
(2000); Sutton (1996)), and the “Acrobot” problem (Sutton, 1996). The applied RL
algorithms were heuristic extensions of the classical finite state space algorithms using
various kinds of approximation schemes.

In this paper we consider the online reinforcement learning problem in MDPs with
large or infinite state space, finite action space, discounted return criterion, and with
deterministic dynamics and rewards. Our goal is to combine adaptive-resolution ap-
proximation schemes with efficient exploration in order to obtain fast (polynomial)
learning rates. For concreteness we will focus on the continuous state case; however our
schemes and results also apply to the discrete case, where the number of states is very
large or countably infinite. The proposed algorithms use an adaptive approximation
of the optimal value function using kernel-based averaging, going from coarse to fine
kernel-based representation of the state space, which enables us to use finer resolution
in the “important” areas of the state space, and coarser resolution elsewhere. We con-
sider an online learning approach, in which we discover these important areas online,
using an uncertainty intervals exploration technique1. Certain continuity assumptions
on the basic model parameters will be imposed. Such assumptions are essential for
generalization in continuous state space. We note that we focused here on determin-
istic domains for simplicity, and in order to emphasize the aspects related to adaptive
resolution. However, we believe that the proposed approach and results can be ex-
tended to stochastic systems by employing stochastic confidence intervals in addition
to deterministic uncertainty intervals.

There is a wide use of the term “kernel” in the literature. Our usage of kernels
mostly resembles that of Ormoneit and Sen (2002) in the sense that the kernels are
used as local basis functions; however, for computational purposes, we focus on finite
support kernels rather than on Gaussian-type ones. From this perspective, our kernel-
based approach can be compared with spline-based approximations of signals, which
are recently widely used in signal and image processing field (Unser, 1999). We also
note that a similar use of kernel functions in the case of a finite state space was proposed
by Singh et al. (1995), in the context of soft state aggregation.

The principle that governs our scheme is simply to split frequently visited kernels.

1Our uncertainty intervals are the analogue of the confidence intervals used in the stochastic case
(Strehl and Littman, 2005). However, the origin of uncertainty in our model is the (deterministic)
aggregation error, rather than stochastic sampling error.

3

The idea behind this principle is as follows. As time progresses, we will visit states in
the support of kernels that are “close” to the optimal trajectory; and on the optimal
trajectory, we need high resolution.

Our focus in this paper is on the combination of the adaptive resolution scheme
with efficient exploration that leads to fast (polynomial) learning rates. As a metric for
the learning rates in our algorithms we will use the total mistake count. This metric
counts the total number of time-steps in which the algorithm’s computed policy is
strictly suboptimal for the current state. This metric has been used in a number of
recent works on online learning in discounted MDP problems2 (Kakade, 2003; Strehl
and Littman, 2005; Strehl et al., 2006b). In our case we will establish two types of
mistake bounds, which we call the prior bound and the posterior bound. The first type
ensures that our algorithm is not worse than a non–adaptive algorithm, which uses a
single set of uniformly dense kernels. In this case, our mistake bound is polynomial
in the number of kernels in the latter set. The second type ensures that the total
mistake count is polynomial in the number of actually used kernels (throughout the
algorithm operation). We note that, to our best knowledge, these are the first online
performance bound results for kernel-based RL algorithms in continuous state spaces,
for both non-adaptive and adaptive case.

The algorithm proposed in this paper is related to the Adaptive Aggregation Algo-
rithm (AAA) introduced in Bernstein and Shimkin (2008) (see also Bernstein (2007)).
In the AAA, constant kernels are used, leading to adaptive state aggregation. There-
fore, the value function approximation scheme proposed in this paper is a generalization
of that of the AAA. However, the proposed algorithm itself is different since we have
eliminated the need of the so-called “virtually visited cells” by using an improved dy-
namic programming operator. Hence, the obtained algorithm is simpler than AAA
(both conceptually and computationally).

The paper is structured as follows. In Section 2 we present the model and notation.
In Section 3 we introduce some further definitions and assumptions. In Section 4 we
propose our general algorithm, while Section 5 discusses some computational aspects of
the proposed algorithm. In Section 6 polynomial bounds on the total mistake count of
the algorithm are presented, while Section 7 proves these bounds. Section 8 introduces
an incremental variant of our algorithm, which performs only few back-ups of Value
Iteration each time-step, instead of exact calculation. Its analysis is presented in Section
9. Section 10 discusses the applicability of the algorithm and its assumptions to a
typical deterministic control problem, namely to the problem of inverted pendulum, and
proposes some improvements and extensions that can increase the practical efficiency
of the algorithm. Finally, conclusions and future work are presented in Section 11.

2 Model and Performance Metric

We denote a deterministic MDP by the 4-tuple M = (X,A, f, r), where X is a state
space, A is an action space, f (x, a) is the transition function which specifies the next
state x′ ∈ X given the previous state x ∈ X and action a ∈ A, and r(x, a) is the
immediate reward function which specifies the reward of performing action a ∈ A in
state x ∈ X. We assume that r(x, a) ∈ [rmin, rmax], a finite and known interval.

2These works refer to this metric as the sample complexity of exploration.

4

Let d : X× X→ R be a fixed metric on X. We assume the following regarding the
state and action spaces.

Assumption 1.

1. The action space A is a finite set.

2. The state space X is a bounded subset of Rn. Thus, there exists a constant
∆max < ∞ such that for all x, x′ ∈ X, d (x, x′) ≤ ∆max.

The MDP M is used to model a dynamic environment, or a dynamic system, with
which a learning agent interacts. The interaction proceeds as follows: At time t the
agent observes the state xt ∈ X, chooses an action at ∈ A, receives a reward rt =
r(xt, at), and the process moves to state xt+1 = f(xt, at).

Let ht , {x0, a0, x1, a1, ..., xt−1, at−1, xt} denote the history of observed states and
actions, that is available to the agent at time t to make its choice of at. Also, let
Ht , (X× A)t × X denote the space of all possible histories up to time t. Then, at
each time t, the agent makes its decision according to some decision rule πt : Ht → A,
so that at = πt(ht), t ≥ 0. The collection π = {πt}∞t=0 is the control policy. A policy
is stationary if the decision rule does not change over time, and depends only on the
last state observed. We shall slightly abuse notation and identify the stationary policy
π with the map π : X→ A, so that at each time t, at = π(xt).

In this paper we focus on the discounted return criterion. For a given initial state
x0 = x, we denote the infinite horizon discounted return of state x, for a given policy
π, in MDP M , by

Jπ
M(x) ,

∞∑

t=0

γtr (xt, πt(ht)) ,

where 0 < γ < 1 is the discount factor. The optimal return is denoted by VM(x) ,
supπ Jπ

M(x), which is also called the optimal value function. We often drop M from the
notation above if it does not cause confusion. A policy π is optimal if Jπ(x) = V (x)
holds for all x ∈ X. For any ε > 0, a policy π is ε-optimal if Jπ(x) ≥ V (x)− ε holds for
all x ∈ X.

In what follows, we let Vmax , rmax

1−γ
. Note that Vmax is the maximal possible

discounted return of any policy. Also, let

Vb , 1

1− γ
(rmax − rmin) (1)

denote the maximal difference between the returns of any two policies.
It is well known (Puterman, 1994) that the optimal value function satisfies Bellman’s

equation
V (x) = max

a∈A
{r(x, a) + γV (f(x, a))} , x ∈ X, (2)

and that any stationary deterministic policy π∗ which satisfies

π∗(x) ∈ argmax
a∈A

{r(x, a) + γV (f(x, a))} , x ∈ X,

is an optimal policy. Let Q(x, a) , r(x, a) + γV (f(x, a)) denote the action–value
function, or Q-function, which provides the return of choosing an action a in state x,
and then following an optimal policy.

5

To assess the learning rate of our algorithms, two performance metrics will be con-
sidered. The first and simpler one is the total (action) mistake count, which is given
by

AMC(ε) ,
∞∑

t=0

I {Q(xt, at) < V (xt)− ε)} , ε ≥ 0. (3)

This metric counts the number of sub-optimal actions, that is, the number of times that
an algorithm executed an action whose action-value is ε-inferior to the optimal value.
Observe that for ε = 0, AMC(0) is simply the total number of non-optimal actions
taken in the course of learning. For deterministic domains with finite state-space, we
then have the following near-optimality criterion.

Definition 1 (Action Mistake Bound). Assume that |X| is finite. A learning algorithm
is PAC (Probably Approximately Correct)3 if there exists a polynomial

B = B

(
|X| , |A| , 1

1− γ
,
1

ε

)

such that for all ε > 0, AMC(ε) < B.

In the above definition, the bound B depends on the number of states |X|. In case
|X| is infinite, some other measures of X must be considered. As already mentioned,
in our case we will replace |X| by the cardinality of the set of sufficiently dense kernels
over the state space.

A second metric of interest is the policy-mistake count, which counts the number
of time steps t in which the algorithm executes a non ε-optimal policy. Specifically,
let πt : Ht → A be the decision rule that the algorithm uses at time t to choose its
action. Then, given ht, At = {πk}∞k=t is a (non-stationary) policy that the algorithm

implements at time t, and
∑∞

k=t γ
k−trk , JAt(xt) can be interpreted as the return of

this policy from time t onward, where rk = r(xk, πk(xk)) and xk+1 = f(xk, πk(xk)).
Now, the policy-mistake count is defined as

PMC(ε) ,
∞∑

t=0

I
{
JAt(xt) < V (xt)− ε

}
. (4)

It is easily verified (see Corollary 1 in Bernstein (2007)) that policy-mistake count
is a stronger criterion than action-mistake count, in the sense that AMC(ε) ≤ PMC(ε).
Hence we will state all bounds below in terms of the PMC, with the understanding that
they apply to the AMC as well.

3 Preliminaries

3.1 Kernel Functions

Our algorithm uses an approximation of the optimal value function V (x) using kernel-
based averaging. As was already mentioned, we use the term “kernel” to denote any local

3Note, that while the “probably” aspect is absent in our deterministic case, we will find it convenient
to keep the PAC terminology.

6

basis function φ : X→ R+. We shall focus in this work on finite support kernels. Recall
that the support of a function φ : X→ R+ is defined as supp(φ) , {x ∈ X : φ(x) 6= 0}.
Let

∆(φ) , sup
x,x′∈supp(φ)

d (x, x′) (5)

denote the diameter of the support of φ under metric d.
Now, our basic definition is the following.

Definition 2 (Feasible Kernel Set). A set Φ = {φi}m
i=1 of functions φi : X → R+ is

called a feasible kernel set for X if the following holds:

1. Finite support: ∆(φi) < ∞ for all i = 1, ..., m, and

2. Uniform coverage:
∑m

i=1 φi(x) = 1, for all x ∈ X,

This definition encompasses several standard types of kernels, such as strict state
aggregation, soft state aggregation, splines, etc. We will discuss this in more detail
below.

3.2 Splitting Schemes

As we are interested in adaptive kernel-based approximation of the optimal value func-
tion, we specify the way we perform refinement of a given kernel.

Definition 3 (Uniform Splitting Scheme). A splitting (or refinement) scheme tells us
how to split any given kernel function φ into K ≥ 2 new kernel functions φ1, ..., φK.
We say that the splitting scheme is uniform if there exists 0 < λ < 1 such that for any
given kernel function φ it holds that

∆(φj) ≤ λ∆(φ), j = 1, ..., K,

and
K∑

j=1

φj(x) = φ(x).

Now, given a fixed uniform splitting scheme and an initial kernel set Φ0 for X, we
define the achievable class of kernel sets as the set of all kernel sets that can be obtained
by repeatedly using the given splitting scheme starting from Φ0. Observe that all such
kernel sets are feasible by the virtue of Definition 3. We note that both the initial kernel
set Φ0 and the splitting scheme will be fixed in the course of the algorithm.

Several standard types of kernels fit the above definitions. We list below two of such
types.

Splines. In spline-based approximations of signals, a one-dimensional kernel (or spline)
is a scaling and a dilation of some basic finite support function ϕ(k) : R+ → R+, that is

φ(x) = Aϕ(k)
(

x

b

)
for some b > 0 and A > 0.

Here, ϕ(k) is called a basic spline (or, B-spline) of degree k and is formed by the (k+1)-
fold convolution of a rectangular pulse ϕ(0)(x) , I {|x| ≤ 0.5}. In particular, ϕ(0) leads

7

∆

∆

(a) (b)

Figure 1: Triangular kernels. (a) Original kernel of support ∆. (b) Resulting kernels
after the split.

to a piecewise-constant approximation (i.e. aggregation), ϕ(1) – to a piecewise-linear
approximation, and so on.

One of the advantages of splines is that there exist computationally efficient splitting
schemes for them, which fit Definition 3. For example, consider the B-spline of degree
1 shown in Figure 1 (a). A standard B-spline “pyramid” (in the terminology of Unser
(1999)) is shown in 1 (b). As it can be observed, the original spline of support ∆ was
split to three splines of support ∆/2, in order to satisfy the condition that the sum of
the new splines equals to the original one. See Unser (1999) for further details.

Normalized Kernel Functions. A different approach is to use (a-priori) normalized
kernel functions, as for example in Ormoneit and Sen (2002). That is,

φi(x) =
ϕi(d(x, xi))∑m

j=1 ϕj(d(x, xj))
, i = 1, ..., m,

where ϕi : R+ → R+ are some basic function with finite support, and {xi}m
i=1 are

the points at which the kernels are centered (or, “placed”). We note that the well-
known Cerebellar Model Articulation Controller (CMAC) (Albus, 1975) fits into above
framework. The advantage of these kernel functions is in their inherent normalization
property. However, the splitting schemes for such kernels are not trivial in general, and
will not be discussed here.

To summarize, any kernels that satisfy Definitions 2 and 3 can be used. However, in
what follows, we will mostly focus on the spline-type kernels due to the well-established
splitting schemes associated with them.

3.3 Continuity Assumption

The following continuity property will be assumed to hold for the basic model param-
eters.

Assumption 2. There exist constants α > 0 and β > 0 such that, for all x1, x2 ∈ X
and a ∈ A,

|r(x1, a)− r(x2, a)| ≤ α · d(x1, x2), (6a)

d (f (x1, a)− f (x2, a)) ≤ β · d(x1, x2). (6b)

8

A continuity assumption of some kind is obviously essential for generalization in
continuous state spaces. Assumptions of similar nature to the one above were used in
various works on state aggregation, such as Whitt (1978); Chow and Tsitsiklis (1991).
However, we note that the specific assumptions used in these papers refer to conti-
nuity of probability densities. Consequently they are too strong for the continuous
deterministic case as they imply that all states are mapped to the same target state.

We assume that both α and β are known and given to the learning algorithm.
Continuity of the basic model parameters implies continuity of the optimal value

function. Specifically, we define the modulus of continuity of the optimal value function,
and a modulus of continuity bound as follows.

Definition 4. The modulus of continuity of the optimal value function V is defined as

ω(z) , sup
x1,x2:d(x1,x2)≤z

|V (x1)− V (x2)| , z > 0.

Definition 5. Modulus of continuity bound (MCB) is a function ω̄(z) which satisfies:

1. ω(z) ≤ ω̄(z), ∀z > 0,

2. ω̄(z) → 0, as z → 0.

In particular, the following lemma specifies an MCB in case γβ 6= 1. Its proof is
presented in Section 7.1.

Lemma 1. For any given x1, x2 ∈ X, we have that

|V (x1)− V (x2)| ≤ ω̄(d(x1, x2)),

where ω̄ is defined as follows:

1. If γβ < 1 (non-expansive case),

ω̄(z) =
α

1− γβ
z. (7)

2. If γβ > 1 (expansive case),

ω̄(z) = czlogβ(1/γ), (8)

where

c , 2β

(
α

γβ − 1

)logβ(1/γ)

V
logβ(γβ)

b (9)

Here α, β are taken from Assumption 2, γ is the discount factor, and Vb is defined in
(1).

Remark. Note that that there is a substantial difference in the nature of bounds
(7) and (8). This difference can be understood by observing the bound on the distance
between optimal values of two states (see the proof of Lemma 1 in Section 7 for details):

|V (x1)− V (x2)| ≤ αd(x1, x2)
H−1∑

k=0

(γβ)k + γHVb, H > 0. (10)

9

If γβ > 1, instead of bounding the infinite sum of distances between future rewards,
we have to employ a “cut-off tactics”. Specifically, we have to make a balance between
the first term in (10), which grows exponentially in H, and the second term, which
decays exponentially in H. This results in a more complex bound ω̄(z), with a worse
dependence on z.

We assume that a fixed bound ω̄ that satisfies Definition 5 is used throughout.

4 The ARL Algorithm

In this section we present the Adaptive-resolution Reinforcement Learning (ARL) algo-
rithm, which is directly based on the principle of refinement of frequently visited areas
of the state-space. In the following subsections we present the different components of
this algorithm in detail. An outline of the complete algorithm is presented as Algorithm
1.

Algorithm 1 ARL Algorithm (outline)

Input parameters:

Maximal reward rmax,
Lipschitz continuity parameters α and β,
Count threshold N ,
Size threshold ∆ε.

Initialization:

1. Initialize the kernel set to some feasible kernel set Φ0(a) = Φ0 for all a ∈ A, and
the cell count N(φ) = 0, for all φ ∈ Φ0(a);

2. For all a ∈ A and φ ∈ Φ0(a), initialize the reward upper uncertainty bound and
the transition uncertainty set:

r̃(φ) = rmax, UIf (φ) = X.

For times t = 0, 1, 2, ... do:

1. Policy Computation: Algorithm 2

2. Policy Execution: Algorithm 3

3. Kernel Splitting: Algorithm 4

4.1 Action Kernel Sets

Our algorithm will employ a separate kernel set for every action. This will allow the
use of different resolutions for the different actions. We denote by

Φt(a) , {φa
i (x)}ma

i=1

10

the kernel set that is used by the algorithm at time t for action a, with ma , |Φt(a)|.
Also, for each a ∈ A and φ ∈ Φt(a), we let

Nt(φ) ,
t−1∑

τ=0

I {(xτ , aτ) = (x, a) : x ∈ supp(φ)}

denote the number of times (up to time t) the process visited a state in the support of
φ and the action a was taken. In our presentation we will frequently refer to this latter
event using the terminology “a kernel φ ∈ Φt(a) is visited” or “a kernel φ ∈ Φt(a) was
encountered”.

In what follows, we often drop the time index from our notation for ease of exposi-
tion.

4.2 Empirical Model

We use a single sample to estimate empirically the reward and transition at the support
of each kernel. Specifically, suppose that we choose action a in state x. We thus obtain
the sample (x, a, r = r(x, a), x′ = f(x, a)). Now, for each φ ∈ Φt(a) having x ∈ supp(φ),
we define the empirical model based on this single sample:

r̂(φ) = r, (11)

f̂(φ) = x′. (12)

There are several options how to maintain the model in the course of learning:

1. Once the sample for φ is obtained, the model remains unchanged for this kernel
(until the kernel is split).

2. A more effective strategy is to replace the model of a kernel φ using a better sample
(according to φ). For instance, if the current model is based on the sample

(x1, a, r1 = r(x1, a), x′1 = f(x1, a)),

and a new sample
(x2, a, r2 = r(x2, a), x′2 = f(x2, a))

arrives, we will update the model using the new sample if φ(x2) > φ(x1).

3. Moreover, we can save all the samples obtained for φ (even if we do not use them
for the model). When φ will be split, these samples should allow us to initialize
the model of the new kernels.

We note that the algorithm and its analysis remain unchanged, regardless of the choice
above. For ease of exposition, we assume throughout that the first option is used.

11

4.3 Confidence Intervals and Upper Value Function

In our algorithm we will use an uncertainty intervals exploration technique as it applies
to deterministic systems due to finite approximation.

Recall that ∆(φ) denotes the diameter of the support of a kernel function φ (equation
(5)). At any time t, and for every a ∈ A and φ ∈ Φt(a), we define the reward uncertainty
interval around the empirical reward (11) as:

UIr(φ) , [r̂(φ)− α∆(φ), r̂(φ) + α∆(φ)]

if the pair (φ, a) was sampled till time t; otherwise, the reward uncertainty interval for
this kernel is inherited from the parent kernel. By the continuity Assumption 2, this
uncertainty interval satisfies that r(x, a) ∈ UIr(φ) for all x ∈ supp(φ). In our algorithm
only the upper bound of UIr(φ) will be used, which we denote by

r̃(φ) , r̂(φ) + α∆(φ).

Next, the transition uncertainty set is defined as:

UIf (φ) ,
{
y ∈ X : d

(
y, f̂(φ)

)
≤ β∆(φ)

}
.

If the pair (φ, a) was not sampled till time t, the uncertainty set is inherited from
the parent kernel as in the reward case. Again, by the continuity assumption, this
uncertainty set satisfies: f(x, a) ∈ UIf (φ) for all x ∈ supp(φ). The concept of transition
uncertainty set is shown in Figure 2. Observe that for every y, y′ ∈ UIf (φ) we have that

d(y, y′) ≤ d
(
y, f̂(φ)

)
+ d

(
y′, f̂(φ)

)
≤ 2β∆(φ).

Using this notation, we define the following dynamic programming (DP) operator.

Definition 6. The upper DP operator at time t is defined for any given function
g : X→ R by

T g(x) = max
a∈A





∑

φ∈Φt(a)

φ(x)

(
r̃(φ) + γ

[
min

y∈UIf (φ)
g(y) + ω̄(2β∆(φ))

])

 ,

where ω̄ is an MCB (see Definition 5 and Lemma 1).

Now, using this operator, we define the upper value function (UVF) as the solution
of the following fixed point equation:

Ṽt(x) = T Ṽt(x), x ∈ X. (13)

We can show the following properties of equation (13) and its solution (see Section 7.2
for proofs).

Lemma 2. The operator T is a contraction mapping in the `∞ norm, with the con-
traction factor γ. Thus, there exists a unique solution to equation (13).

Lemma 3. The UVF Ṽt is indeed an upper bound on the optimal value function. That
is, at every time t, we have that

Ṽt(x) ≥ V (x), ∀x ∈ X.

12

supp(φ)

∆(φ)

x

f̂(φ)

β∆(φ)

Figure 2: An example of transition uncertainty set in a special case of kernels with
disjoint supports (that is, strict state aggregation). This set is constructed based on

the sample
(
x, x′ = f̂(φ)

)
with x ∈ supp(φ). The shaded area inside the circle is the

uncertainty set itself. The shown target cells are the kernels which have non-empty
intersection with the uncertainty set and are shown for illustration only.

We note that the unique solution of equation (13) is defined on an infinite state
space X, and its computation is not a trivial issue in general. We will discuss the com-
putational aspects in Section 5. Also, observe that the operator T can be interpreted
as an upper-bound approximation of the optimal Bellman’s operator (cf. equation (2))
using a basis of kernel functions. Indeed, for φ ∈ Φt(a), the term

Q̃t(φ) , r̃(φ) + γ

[
min

y∈UIf (φ)
Ṽt(y) + ω̄(2β∆(φ))

]
(14)

is an upper-bound approximation of the optimal Q-function Q(x, a) for all x in the
support of φ. To see this, first note that r̃(φ) is an upper bound on the immediate
reward that can be obtained for such x using a. For the second term, observe that for
every y, y′ ∈ UIf (φ) we have d(y, y′) ≤ 2β∆(φ), which implies by the continuity of the
optimal value function that

V (y′)− V (y) ≤ ω̄(2β∆(φ)).

Now, since for every x ∈ supp(φ), f(x, a) ∈ UIf (φ), we have for such x and all y ∈
UIf (φ) that

V (f(x, a)) ≤ V (y) + ω̄(2β∆(φ))

≤ Ṽt(y) + ω̄(2β∆(φ)),

where the last inequality holds by Lemma 3. Thus, miny∈UIf (φ) Ṽt(y) + ω̄(2β∆(φ)) is
the tightest possible upper bound on the next state value among those in the transition
uncertainty set of φ.

In addition to providing an upper bound for V , we will show that the UVF converges
to V as the kernel supports shrink (Lemma 6 in Section 7.3).

13

The policy that is used in the algorithm is now the optimal (or greedy) policy with
respect to Ṽt(x):

πt(x) = argmax
a∈A





∑

φ∈Φt(a)

φ(x)Q̃t(φ)



 , x ∈ X.

We summarize the UVF and policy computation algorithm in Algorithm 2, and the
policy execution process in Algorithm 3.

Algorithm 2 Policy Computation

If the model has changed (that is, some kernel has been visited for the first time,
or some kernel has been split):

1. Compute the upper value function (UVF) by solving

Ṽt(x) = T Ṽt(x), x ∈ X, (15)

where T is specified in Definition 6.

2. Compute the corresponding optimal policy

πt(x) = argmax
a∈A





∑

φ∈Φt(a)

φ(x)Q̃(φ)



 , x ∈ X, (16)

where Q̃ is defined in (14). If more than one action achieves the maximum, choose
the first one in lexicographic order.

Otherwise, use the previously computed value and policy: Ṽt = Ṽt−1 and πt = πt−1.

4.4 Splitting Method

Assume that a fixed uniform splitting scheme is used throughout (cf. Definition 3).
Define a count threshold N . We will split a kernel if the number of visits in its support
exceeds N . Now, let φ ∈ Φt(a) be a parent kernel which is split at time t into K new
kernels φ1, ..., φK ∈ Φt+1(a), and denote by (x, a, r̂(φ), f̂(φ)) the sample of the parent
kernel, with x ∈ supp(φ), r̂(φ) = r(x, a), f̂(φ) = f(x, a). We initialize the model of the
new kernels {φj} as follows:

1. If x ∈ supp(φj), let φj inherit the sample of the parent kernel. Namely, set

r̃(φj) = r̂(φ) + α∆(φj),

UIf (φj) =
{
y ∈ X : d

(
y, f̂(φ)

)
≤ β∆(φj)

}
.

2. Otherwise, initialize the uncertainty parameters to those of the parent kernel:

r̃(φj) = r̃(φ),

UIf (φj) = UIf (φ).

14

Algorithm 3 Policy Execution

Execute the action at = πt(xt), and observe rt = r(xt, at), xt+1 = f(xt, at). For every
φ ∈ Φt(at) such that xt ∈ supp(φ):

(i) Update the visits counter: N(φ) := N(φ) + 1.

(ii) If φ is visited for the first time, compute the model for this kernel. Namely,

(a) Compute the empirical reward and transition according to equations (11)
and (12).

(b) Compute the upper reward value

r̃(φ) := r̂(φ) + α∆(φ), (17)

(c) Compute the transition uncertainty set

UIf (φ) :=
{
y ∈ X : d

(
y, f̂(φ)

)
≤ β∆(φ)

}
. (18)

We note that this choice of the initialization leads to an improvement of the uncertainty
parameters of the new kernels which contain the sample of the parent kernel. Moreover,
if the whole history of samples is saved in the course of learning, we can further improve
step (2) above by using corresponding samples to initialize the model of the new kernels.

In addition to this splitting criterion, we also employ a “stop–splitting” rule, based
on the kernel support diameter. Let ∆ε be a (small) size threshold parameter. Then, if
a kernel φ satisfies ∆(φ) ≤ ∆ε, it will not be split anymore. Since the number of times
that the algorithm encounters a kernel with ∆(φ) > ∆ε can be bounded, it follows that
the number of different stationary policies that the algorithm computes and uses can
also be bounded. This will eventually enable us to prove a bound on the policy-mistake
count, in Section 7.

Now, under a fixed uniform splitting scheme (Definition 3), we denote by Φε the
coarsest achievable kernel set with ∆(φ) ≤ ∆ε for all φ ∈ Φε. We call this set ∆ε-
supported kernel set. The number of kernels in Φε can be bounded as follows (see
Section 7.4 for a proof).

Lemma 4. For a fixed uniform splitting scheme, with parameters K and λ, and a single
initial grid kernel set Φ0, we have that

Nε , |Φε| ≤ |Φ0|K
(

∆max

∆ε

)log1/λ(K)

,

where ∆max is the diameter of the state space (from Assumption 1).

We summarize the splitting process in Algorithm 4. This completes the description
of the ARL algorithm as outlined in Algorithm 1.

15

Algorithm 4 Splitting Algorithm

1. Initialize Φt+1(a) = Φt(a), for all a ∈ A.

2. For each a ∈ A and φ ∈ Φt(a) which satisfy N(φ) ≥ N and ∆(φ) > ∆ε, perform
the following:

(a) Split this kernel according to the given uniform splitting scheme. Let
φ1, ..., φK ∈ Φt+1(a) be the resulting sub-kernels after this split.

(b) Initialize the reward upper uncertainty bounds of the kernels:

r̃(φj) =





r̂(φ) + α∆(φj), if φj contains the sample of the parent kernel φ,

r̃(φ), otherwise.

(c) Initialize the transition uncertainty sets of the new kernels:

UIf (φj) =





{
y ∈ X : d

(
y, f̂(φ)

)
≤ β∆(φj)

}
,

if φj contains the sample of the parent kernel φ,

UIf (φ), otherwise.

(d) Update the counts of the new cells as follows:

N(φj) =





1, if φj contains the sample of the parent kernel φ,

0, otherwise.

5 UVF Computation Procedure

In this section we propose a general procedure for solving the fixed point equation (13).
Recall the definition of the upper value DP operator T (Definition 6). Lemma 2 shows
that this operator is a contraction mapping and, in principle, the solution Ṽt of the
fixed point equation (13) can be found using Value Iteration. Now, since this solution
is defined on the infinite state space X, a straightforward application of Value Iteration
is infeasible. However, a more careful examination of Definition 6 reveals that in fact
only the following finite set of target values is needed in order to compute the value Ṽt

and the policy πt at any x ∈ X:

T̃ (i, a) , min
y∈UIf (φa

i)
Ṽt(y), a ∈ A, φa

i ∈ Φt(a), i = 1, ..., |Φt(a)| . (19)

Indeed, we can rewrite equation (13) in terms of
{
T̃ (i, a)

}
as follows:

Ṽt(x) = max
a∈A




|Φt(a)|∑

i=1

φa
i (x)

(
r̃(φa

i) + γ
[
T̃ (i, a) + ω̄(i, a)

])


 ,

where
ω̄(i, a) , ω̄(2β∆(φa

i))

16

This implies that

T̃ (i, a) = min
x∈UIf (φa

i)
max
a′∈A




|Φt(a′)|∑

j=1

φa′
j (x)

(
r̃(φa′

j) + γ
[
T̃ (j, a′) + ω̄(j, a′)

])


 , (20)

for all a ∈ A, φa
i ∈ Φt(a), i = 1, ..., |Φt(a)|.

Finally, we can show (using the same arguments as in proof of Lemma 2) that
the operator associated with equation (20) is a contraction mapping (with contraction
factor γ), so that the target values (19) can be computed using the following Value
Iteration procedure:

1. Initialize T̃ (0)(i, a) ≡ Vmax.

2. At iteration k = 1, 2, ..., update:

T̃ (k)(i, a) = min
x∈UIf (φa

i)
max
a′∈A




|Φt(a′)|∑

j=1

φa′
j (x)

(
r̃(φa′

j) + γ
[
T̃ (k−1)(j, a′) + ω̄(j, a′)

])


 .

(21)

Unfortunately, in order to carry out the above procedure, one in principle must solve
an infinite number of minmax problems4 (21) of a not necessarily convex function. This
is of course infeasible in general. However, at least in the special cases of constant and
triangular kernels, this procedure can be practically implemented. See Appendix for
details.

6 Main Results

We next summarize the main results regarding our algorithm. Proofs are deferred to
the next section.

Recall the definition of the policy-mistake count (4) and the corresponding near-
optimality criterion. Also, recall that Φε is the coarsest achievable kernel set with
∆(φ) ≤ ∆ε, and satisfies Lemma 4. First we present the main theorem, which provides
a mistake bound of our scheme in terms of the number of kernels in Φε.

Theorem 1. Let ε > 0 be given and assume that the ARL algorithm’s input parameter
∆ε is chosen such that

2α∆ε + γω̄ (2β∆ε)

1− γ
≤ ε

2
. (22)

Then, the policy-mistake count of the algorithm is bounded by

PMC(ε) ≤ |Φε| |A| (N + 1)

1− γ
ln

2Vb

ε
.

Condition (22) does not provide an explicit condition on the algorithm’s input ∆ε.
However, such condition can be obtained, at least in case γβ 6= 1, using the particular
choice of MCB ω̄ presented in Lemma 1.

4In fact, in Section 8 we will present an incremental variant of our algorithm, in which only few
iterations are performed at each time step. This however still leaves us with the need of solving the
minmax problem above.

17

Lemma 5. Suppose that γβ 6= 1. Then, the precondition (22) of Theorem 1 is satisfied
under the following assumptions.

1. If γβ < 1, let

∆ε =
(1− γ)(1− γβ)

4α
ε. (23)

2. If γβ > 1, let

∆ε =


 (1− γ)ε

2
(
2α + γc (2β)logβ(1/γ)

)



log1/γ β

, (24)

where c is defined in (9).

Remark. Using Lemmas 4 and 5, one can obtain an explicit dependence of the mistake
bound on ε (and other parameters). See the “Discussion” subsection below for a further
elaboration on the nature of the bounds for γβ < 1 and γβ > 1.

As a corollary of Theorem 1, we obtain the following result which is of independent
interest.

Theorem 2. Consider the non-adaptive learning algorithm which uses the ∆ε-supported
kernel set Φt(a) = Φε for all t ≥ 0 and a ∈ A, with ∆ε satisfying (22). Then, the policy-
mistake count of the non-adaptive algorithm is bounded by

PMC(ε) ≤ |Φε| |A|
1− γ

ln
2Vb

ε
.

Proof. Follows immediately from Theorem 1, by considering the ARL algorithm (Al-
gorithm 1) initialized to Φ0(a) ≡ Φε and using N = 0.

In addition to Theorem 1, we can obtain a possibly tighter mistake bound in terms
of the posterior number of kernels actually used in the course of the algorithm. In
fact, the purpose of adaptive-resolution approximation is that as time progresses, the
algorithm will refine kernels only in the vicinity of the optimal trajectory. Therefore,
the actual number of kernels in the long term should be much less than |Φε| We make
this more formal below.

Definition 7. Let x0 be the initial state and let N∞(x0, a) be the number of cells in the
grid Φt(a) as t →∞, that is

N∞(x0, a) , lim
t→∞ |Φt(a)| . (25)

Also, let N∞(x0) , ∑
a∈AN∞(x0, a).

We note that the limit in (25) exists and is finite, since |Φt(a)| increases in t, while
|Φt(a)| ≤ |Φε| due to the enforced “stop-splitting” rule. For the same reason, we have
the trivial bound N∞(x0) ≤ |Φε| |A|.
Theorem 3. Let ε > 0 and assume that the ARL algorithm receives an input parameter
∆ε as in Theorem 1. Then, it holds that

PMC(ε) ≤ 2N∞(x0)N
1− γ

ln
2Vb

ε
.

Remark. The bound of Theorem 3 becomes better than that of Theorem 1 if N∞(x0) ≤
1
2
|Φε| |A|.

18

Discussion

First, consider the contractive case (γβ < 1). Theorem 1 implies that the mistake
bound is linear in |Φε|. Therefore, using Lemma 4 and (23), we obtain the following
explicit dependence on ε (ignoring the log factor):

PMC(ε) . C (1/ε)n |A| (N + 1) , (26)

where the constant C is polynomial in α, 1/(1 − γ) and in 1/(1 − γβ). Note that the
exponential dependence on the dimension n of the state-space is an obvious artifact
of the dense aggregation approach, since in most cases log1/λ (K), which appears in
Lemma 4, is of order of n.

In the expansive case (γβ > 1), the analysis becomes more involved. In particular,
it is shown in Section 7 that to obtain the mistake bounds of Theorems 1 and 3, the
size threshold should be taken as in equation (24). As a result, in the expansive case
we obtain a worse explicit dependence of the mistake bound on ε, as follows:

PMC(ε) . C ′ (1/ε)n log1/γ β |A| (N + 1) ,

where C ′ is polynomial in α, β, 1/(1 − γ), and exponential in log1/γ β. Note that in
this case log1/γ β > 1.

In the context of the posterior bound (Theorem 3), it should be noted that there is
a trade-off between the choice of the count threshold N and the number of kernels at
infinity N∞(x0). If we choose N too small, the algorithm will perform many splits, and
consequently N∞(x0) will be large. In this case it may happen that the algorithm will
produce redundant kernels, which are not actually needed for near-optimal performance.
On the other hand, if we choose large N , the algorithm will perform less splits, resulting
in a smaller N∞(x0). This however may lead to a slower convergence to the optimal
trajectory.

Two comparisons that may be of interest follow. First, consider a standard ex-
ploration algorithm (such as the R-MAX, E3, or MBIE algorithms mentioned above)
applied to a fixed-resolution model with a sufficiently fine kernel set Φε over the state
space, without using the uncertainty intervals employed in our algorithm. In partic-
ular, once the reward is obtained for a given aggregated state-action pair, this näive
algorithm would treat it as a correct reward, despite the fact that the actual reward
(at some true state that falls in the aggregated one) might be higher. As a result, the
computed value function might underestimate the optimal one, and consequently no
formal guarantees can be provided for such algorithm.

Moreover, consider our algorithm applied to a fixed-resolution model, where a suf-
ficiently fine kernel set Φε is used from the outset (that is, Φ0 = Φε). As Theorem 2
shows, the mistake bound in such case will be N +1 times better than that of Theorem
1. However, such an algorithm is not feasible if |Φε| is large.

7 Analysis of the ARL Algorithm

Below is the outline of the analysis. First we show that there exists an MCB (Definition
5), which will justify Definition 6. Then, we show that there exists a unique solution
to equation (13), and that this solution upper bounds the optimal value V . Finally, we

19

prove that under certain conditions on the kernel sets, the optimal policy with respect
to the UVF (equation (16)) is an ε-optimal policy, which will enable us to prove a
polynomial bound on the policy-mistake count of the algorithm.

To alleviate the notation, throughout the analysis we write UI for the transition
uncertainty set (instead of UIf).

7.1 Continuity of the Optimal Value Function

In this subsection we prove Lemma 1. In particular, we show that under continuity
Assumption 2, the optimal value function is also uniformly continuous. However, it will
be Lipschitz continuous, only when γβ < 1. Otherwise, a weaker sort of continuity,
namely Hölder continuity, holds.

Proof of Lemma 1. Fix x1, x2 ∈ X. From the optimality equation (2), we have that

|V (x1)− V (x2)| ≤ max
a
|r(x1, a)− r(x2, a)|+ γ max

a
|V (f(x1, a))− V (f(x2, a))|

≤ αd (x1, x2) + γ max
a
|V (f(x1, a))− V (f(x2, a))| ,

where the second inequality follows by Assumption 2. Also by this assumption, we have
that

d (f(x1, a), f(x2, a)) ≤ βd (x1, x2) ,

for any a. Applying the above inequalities iteratively, for any integer H > 0, we obtain
the following bound

|V (x1)− V (x2)| ≤ αd (x1, x2)
H−1∑

k=0

(γβ)k + γHVb.

First, consider the case of γβ < 1. Here we can take H = ∞ in the above bound,
and obtain the desired result. Next, if γβ > 1, we have that

|V (x1)− V (x2)| ≤ αd (x1, x2)
(γβ)H − 1

γβ − 1
+ γHVb

≤ αd (x1, x2)
(γβ)H

γβ − 1
+ γHVb.

Now, since γ < 1, there exist a minimal H = H0(x1, x2), such that

γH0Vb ≤ αd (x1, x2)
(γβ)H0

γβ − 1
, (27)

implying that

|V (x1)− V (x2)| ≤ 2αd (x1, x2)
(γβ)H0

γβ − 1
. (28)

Since H0 is the minimal H satisfying (27), it holds that

αd (x1, x2)
βH0−1

γβ − 1
< Vb ≤ αd (x1, x2)

βH0

γβ − 1
,

20

implying that βH0 < Vbβ(γβ−1)
αd(x1,x2)

, βH0 ≥ Vb(γβ−1)
αd(x1,x2)

, and consequently,

γH0 ≤
(

Vb (γβ − 1)

αd (x1, x2)

)logβ γ

.

Therefore, we have that

(γβ)H0 ≤ β

(
Vb (γβ − 1)

αd (x1, x2)

)logβ γβ

(29)

Substituting (29) in (28) yields the result.

7.2 The Upper Value Function

Below we prove Lemmas 2 and 3. That is, we show that the operator T (Definition
6) is a contraction operator, and that the solution of equation (13) is indeed an upper
bound on the optimal value function.

Proof of Lemma 2. Given two functions g1 and g2, we have the following sequence of
inequalities for any x ∈ X:

|(T g1)(x)− (T g2)(x)| ≤ γ max
a∈A

∣∣∣∣∣∣
∑

φ∈Φt(a)

φ(x)

(
min

y∈UI(φ)
g1(y)− min

y∈UI(φ)
g2(y)

)∣∣∣∣∣∣

≤ γ max
a∈A

∑

φ∈Φt(a)

φ(x) max
y∈UI(φ)

|g1(y)− g2(y)|

≤ γ max
y∈X

|g1(y)− g2(y)| ∑

φ∈Φt(a)

φ(x)

= γ max
y∈X

|g1(y)− g2(y)| , γ ‖g1 − g2‖∞ ,

where the first inequality follows by Definition 6 and the equality follows by the defini-
tion of kernel set (Definition 2). Hence, ‖T g1 − T g2‖∞ ≤ γ ‖g1 − g2‖∞ , which proves
the result.

Proof of Lemma 3. Since, by Lemma 2, T is a contraction operator, we can prove the
claim by induction on the steps of value iteration. For the base case, let Ṽ 0(x) =
Vmax ≥ V (x),∀x ∈ X. Now assume that the claim holds for the n-th iteration. For the
n + 1-th iteration we have by the Lipschitz continuity of the reward (Assumption 2)
and by the definition of r̃(φ), that for all a ∈ A, φ ∈ Φ(a), and x ∈ supp(φ)

r̃(φ) = r(xs, a) + α∆(φ) ≥ r(x, a),

where xs is a sample point of φ. Therefore, by the fact that
∑

φ∈Φ(a) φ(x) = 1 for all x
(Definition 2), ∑

φ∈Φ(a)

φ(x)r̃(φ) ≥ r(x, a), ∀x ∈ X, a ∈ A. (30)

Now, set y∗ = miny∈UI(φ) Ṽ n(y). For any x ∈ supp(φ), by Assumption 2 and by the
definition of UI(φ), we have that f(x, a) ∈ UI(φ), implying that

d(y∗, f(x, a)) ≤ 2β∆(φ).

21

Therefore, by the definition of MCB (Definition 5), |V (y∗)− V (f(x, a))| ≤ ω̄(2β∆(φ)).
Consequently,

Ṽ n(y∗) + ω̄(2β∆(φ)) ≥ V (y∗) + ω̄(2β∆(φ)) ≥ V (f(x, a)),

where the first inequality follows by the induction assumption. We thus have shown
that

∑

φ∈Φ(a)

φ(x)

(
min

y∈UI(φ)
Ṽ n(y) + ω̄(2β∆(φ))

)
≥ V (f(x, a)), ∀x ∈ X, a ∈ A. (31)

Combining (30) and (31) we obtain that

Ṽ n+1(x) = max
a∈A





∑

φ∈Φ(a)

φ(x)r̃(φ) + γ
∑

φ∈Φ(a)

φ(x)

(
min

y∈UI(φ)
Ṽ n(y) + ω̄(2β∆(φ))

)



≥ max
a∈A

{r(x, a) + γV (f(x, a))}
= V (x),

which completes the induction proof. Since Ṽ n → Ṽ , the result follows.

7.3 Near-Optimality of the UVF Optimal Policy

In this section we provide a sufficient condition on the diameter of the support of kernels,
which ensures that the return obtained by the policy At = {πτ}∞τ=t which the algorithm

implements at time t, is ε-close to the UVF: Ṽt(x) − JAt
M (x) ≤ ε. This will imply that

V (x)− JAt
M (x) ≤ ε, since Ṽt is an upper bound on the optimal value; namely, this will

imply that At is an ε-optimal policy from x.
The following is a standard definition, which specifies a mixing time of any stationary

policy in discounted MDPs.

Definition 8 (ε/2-Horizon Time). In an MDP M , the ε/2-horizon time is given by

Tε/2 , log1/γ

2Vb

ε
.

To proceed, we introduce the definitions of known kernel–action pairs and the escape
event.

Definition 9 (Known Pairs). At any time t, define the set of known kernel-action
pairs:

Kt , {(φ, a) ∈ Φt(a)× A : ∆(φ) ≤ ∆ε, φ was previously sampled} .

Definition 10 (Escape Event). At any time t, define the escape event from a given
starting state x ∈ X:

Et(x) ,
{
In a trial generated by starting from state x and following At for Tε/2

steps in M, a pair (xt, at) is encountered, such that xt ∈ supp(φ), but (φ, at) /∈ Kt

}
.

22

Definition 11 (Episode). An episode is a maximal period of time [t0, t1], in which:

(i) All visited state-action pairs (xt, at) at times t = t0, ..., t1− 1 satisfy that for each
kernel φ ∈ Φt(at) with xt ∈ supp(φ), it holds that

(a) ∆(φ) ≤ ∆ε,

(b) φ was previously sampled (that is, was previously visited).

(ii) At time t = t1, the algorithm encounters a pair for which the condition in (i) is
not true.

Note that during each episode, a fixed stationary policy is used by the algorithm,
and the policy is (potentially) changed only at the beginning of each episode. Also,
observe that the above definitions depend on the size threshold parameter ∆ε. The
next lemma formulates the condition on ∆ε which will imply that the execution of the
algorithm’s implemented policy At from time t will obtain a return which is ε-close to
the UVF.

Lemma 6. Let ε > 0 be given and assume that ∆ε is chosen such that

1

1− γ

[
2α∆ε + γω̄

(
2β∆ε

)]
≤ ε

2
. (32)

Then,
Ṽt(x)− JAt

M (x) ≤ ε + I{Et(x)}Vb

holds for all t and x ∈ X.

Proof. At given time t0, we consider the execution of the (non-stationary) policy At0

for Tε/2 time steps in M . Now, we have two mutually exclusive cases:

(a) For every (xt, at) it holds that for each kernel φ ∈ Φt(at) with xt ∈ supp(φ),
∆(φ) ≤ ∆ε and φ was sampled.

(b) There exists at least one t ∈ [t0, t0 + Tε/2 − 1] such that the above condition does
not hold.

The case (b) above is easy – if it happens, we have that a pair (φ, a) not in Kt0 is
encountered. Thus, the escape event Et0(xt0) occurred during the execution of At0 for
Tε/2 time-steps, which is expressed by the I {Et0(xt0)}Vb term in the bound.

Now, if (a) is the case, during the execution of At0 for Tε/2 time steps we stay in the
same episode (Definition 11), and thus the algorithm’s policy remains unchanged and
it is the stationary policy πt0 . For simplicity, assume t0 = 0, write π for π0 and Ṽ for
Ṽ0, and recall that π is the greedy policy with respect to Ṽ (equation (16)). Thus,

Ṽ (x0) =
∑

φ∈Φ(a0)

φ(x0)r̃(φ) + γ
∑

φ∈Φ(a0)

φ(x0)

(
min

y∈UI(φ)
Ṽ (y) + ω̄(2β∆(φ))

)
.

Also, by Bellman’s equation,

Jπ
M(x0) = r (x0, a0) + γJπ

M(x1).

23

Now, we have that

Ṽ (x0)− Jπ
M(x0) ≤ 2α∆ε + γ


 ∑

φ∈Φ(a0)

φ(x0)

(
min

y∈UI(φ)
Ṽ (y) + ω̄(2β∆(φ))

)
− Jπ

M(x1)




(33)

≤ 2α∆ε + γ




(
Ṽ (x1) + ω̄(2β∆ε)

)

 ∑

φ∈Φ(a0)

φ(x0)


− Jπ

M(x1)


 (34)

= 2α∆ε + γω̄ (2β∆ε) + γ
(
Ṽ (x1)− Jπ

M(x1)
)
.

Here, inequality (33) follows by the continuity assumption on the reward, since for every
kernel φ ∈ Φ(a0) with x0 ∈ supp(φ) we have that

r̃(φ)− r (x0, a0) = r (x′, a0) + α∆(φ)− r (x0, a0)

≤ 2α∆(φ) ≤ 2α∆ε,

where x′ is the sample that was received for this kernel, and the last inequality is due to
the fact that we are within an episode. Inequality (34) holds since x1 ∈ UI(φ) for every
φ ∈ Φ(a0) with x0 ∈ supp(φ). Thus, proceeding iteratively, we obtain the following
bound:

Ṽ (x0)− Jπ
M(x0) ≤

Tε/2−1∑

t=0

γt
[
2α∆ε + γω̄

(
2β∆ε

)]
+ γTε/2Vb.

By the definition of Tε/2 (Definition 8), we have γTε/2Vb ≤ ε
2
.

Now, the first term above can be trivially bounded as follows:

Tε/2−1∑

t=0

γt
[
2α∆ε + γω̄

(
2β∆ε

)]
≤

∞∑

t=0

γt
[
2α∆ε + γω̄

(
2β∆ε

)]

=
1

1− γ

[
2α∆ε + γω̄

(
2β∆ε

)]

≤ ε

2
,

where the last inequality follows by the hypothesis (32) of the Lemma. This completes
the proof.

To conclude this subsection, we prove Lemma 5, which provides an explicit condition
on the algorithm’s input ∆ε.

Proof of Lemma 5. If γβ < 1, by the explicit expression of ω̄ (see Lemma 1), we have
to check that if ∆ε satisfies (23), then

1

1− γ

[
2α∆ε + γ

α

1− γβ
2β∆ε

]
≤ ε

2

holds. This is indeed true, which can be easily verified by substitution.
Now, for γβ > 1, by the explicit expression of ω̄ (Lemma 1), we have to check that

2α∆ε + γc (∆ε2β)logβ(1/γ) ≤ ε(1− γ)

2
,

24

holds, if ∆ε satisfies (24). Since logβ(1/γ) < 1 in this case, the sufficient condition is5

(∆ε)
logβ(1/γ)

(
2α + γc (2β)logβ(1/γ)

)
≤ ε(1− γ)

2
.

This last inequality is satisfied with equality, by substituting (24), and that completes
the proof of the lemma.

7.4 The Cardinality of ∆ε-Supported Kernel Sets

Before proving the mistake bounds, we prove Lemma 4. Namely, we provide an upper
bound on the number of kernels Nε = |Φε|.
Proof of Lemma 4. For every φ ∈ Φ0, consider performing k(φ) splits iteratively, such
that at each iteration we obtain new K kernels instead of the original one. It follows
that after k(φ) such splits, the size of a split kernel φ′ satisfies ∆(φ′) ≤ λk(φ)∆(φ). In
addition, the size of the kernel set that contains all such kernels φ′ is

N =
∑

φ∈Φ0

Kk(φ). (35)

Thus, for each φ ∈ Φ0, we need to find the minimal k(φ), such that

λk(φ)∆(φ) ≤ ∆ε. (36)

From (36), it follows that this minimal k(φ) = k∗(φ) satisfies

log1/λ

(
∆(φ)

∆ε

)
≤ k∗(φ) < log1/λ

(
∆(φ)

∆ε

)
+ 1.

Substituting the last inequality in (35) yields

Nε =
∑

φ∈Φ0

Kk∗(s) ≤ K
∑

φ∈Φ0

(K)log1/λ(
∆(φ)
∆ε

)

= K
∑

φ∈Φ0

(
∆(φ)

∆ε

)log1/λ(K)

≤ |Φ0|K
(

∆max

∆ε

)log1/λ(K)

,

which completes the proof.

Remark. We note that Lemma 4 shows an exponential dependence of Nε on the state
space dimension n since in most cases log1/λ (K) is of order of n.

7.5 Proof of Theorem 1

First, we note that the escape event Et(x) (Definition 10) can be viewed as an ex-
ploration event. If it occurs at some time t ≥ 0, the algorithm will encounter (in an
execution of length Tε/2) a kernel φ which is not sampled and/or is not in Φε (that is,
∆(φ) > ∆ε). This fact can be interpreted as a “discovery” of new information, since
every such occurrence of an “unknown” kernel will lead to an increase of the count of
the kernel, and, eventually, to the split of the kernel.

The next lemma shows that the number of times that the escape event can occur is
bounded.

5This is true, of course, for sufficiently small ε.

25

Lemma 7. The number of times that Et(x) can occur is bounded by Nε |A| (N + 1) Tε/2.

Proof. Note that any kernel φ ∈ Φt(a) for any a and t, can be visited no more then
N times – after this number of times, the kernel is split. Now think of the kernel-
based representation of the state space as a tree, with kernels as leaves. The internal
nodes in such tree represent larger kernels, that were used in previous episodes. Now,
the number of such internal nodes is less than or equal to the number of leaves, since
the splitting coefficient is greater than or equal to 2. Using this tree representation,
the visit to the “unknown” kernel can be interpreted as a visit to an internal node of
Φε. Since the counter of this kernel is incremented in this visit, by a simple counting
argument (a.k.a. the Pigeonhole Principle), the number of times that the algorithm
can encounter an internal node of Φε is bounded by

(number of internal nodes of Φε) · N · |A| ≤ NεN |A| .

Finally, when the algorithm encounters a leaf of Φε, then only one such occurrence
is sufficient in order to the kernel to become sampled. Again, by a simple counting
argument, the number of times this can occur is bounded by

(number of leaves of Φε) · |A| = Nε |A| .

To conclude, the number of times that an “unknown” kernel can be encountered is
bounded by NεN |A|+ Nε |A| = Nε (N + 1) |A| .

At each time t, consider the execution of a (non-stationary) policy At for Tε/2 time
steps in M . We have two mutually exclusive cases:

(a) If starting at time t, we execute the policy At for Tε/2 time steps, without en-
countering an “unknown” kernel (that is, a pair (φ, a) not in Kt), there is no
occurrence of the escape event Et(x).

(b) If starting at time t, we execute the policy At for Tε/2 time steps, and encounter
at least one unknown kernel at time t ≤ t′ ≤ t + Tε/2, the escape event Et(x)
occurs.

We then wish to bound the number of time steps that (b) is the case. In the worst
case we will encounter an unknown kernel at the end of the execution episode of length
Tε/2. In this case, we have that all the succeeding executions for t < t′ ≤ t + Tε/2

will also encounter this unknown kernel. That is, if Et(xt) occurs at some time t, also
Et′(xt′) for t < t′ ≤ t + Tε/2 will occur, in the worst case. Since after Nε (N + 1) |A|
visits to unknown kernels, all the kernels will become known, Et(x) can occur at most
Nε (N + 1) |A|Tε/2 times.

Finally, we prove the main theorem regarding the mistake bound of the ARL algo-
rithm.

Proof of Theorem 1. For each time t, we consider the execution of policy At for Tε/2

time-steps in M , with the initial state in each such execution xt. We then have that

JAt
M (xt) ≥ Ṽt(xt)− ε− I {Et(xt)}Vb

≥ V (xt)− ε− I {Et(st)}Vb,

26

where the first inequality holds by Lemma 6, and the second inequality holds by Lemma
3. However, by Lemma 7, the number of times the event Et(xt) can occur is bounded
by Nε (N + 1) |A|Tε/2, implying that

∞∑

t=0

I
{
JAt

M (xt) < V (xt)− ε
}
≤ Nε |A| (N + 1) Tε/2,

which completes the proof of the theorem, using the definition of the ε/2-horizon time,
and the fact that log1/γ C ≤ 1

1−γ
ln C, for any C.

7.6 Proof of Theorem 3

Recall the definition of the posterior number N∞(x0) of actually used kernels in the
course of the algorithm (Definition 7). We only need to prove the analogue of Lemma
7 in this case. The rest of the proof is exactly the same as that of Theorem 1.

Thus, we need to bound the number of times that an escape event occurs. Here
we consider the trees that represent the kernel sets “at infinity”, namely Φ∞(a) =
limt→∞ Φt(a), a ∈ A, instead of the ∆ε-supported kernel set Φε. As previously, the
escape event can occur on internal nodes of Φ∞(a) no more than

(number of internal nodes of Φ∞(a)) · N ≤ N∞(x0, a)N

times. The leaves of the tree (which are the kernels of Φ∞(a)) can be classified into
two groups: (a) “Small” leaves, with ∆(φ) ≤ ∆ε; and (b) “Large” leaves, with ∆(φ) >
∆ε. On “small” leaves, only one occurrence of the escape event is possible, since the
corresponding kernel becomes known (Definition 9) after one sample. On “large” leaves,
there can not be more than N occurrences of the escape event – otherwise these kernels
would have been split. Thus, the number of times the escape event can occur on leaves
is bounded by

(number of leaves of Φ∞(a))N = N∞(x0, a)N .

To summarize, the number of times that the escape event can occur on all nodes, for
all actions a ∈ A, is bounded by

∑
a∈A 2N∞(x0, a)N .

By the same arguments as in proof of Theorem 1, the above bound times the ε/2-
horizon time Tε/2 is the mistake bound of the algorithm.

8 Incremental Variant of the Algorithm

The ARL algorithm introduced in Section 4 (Algorithm 1) requires very large compu-
tational resources, as the upper value function is computed exactly each time the model
is changed (see Algorithm 2, equation (13); also, see Section 5). In this section we pro-
pose an incremental variant of the ARL, which we call IARL (standing for Incremental
ARL). This algorithm only performs back-ups of Value Iteration at the currently vis-
ited kernel-action pairs, instead of the exact calculation. The IARL is inspired by a
similar algorithm for finite state spaces, presented in Strehl et al. (2006a). We note that
intermediate versions (that perform several back-ups at each time step) can be treated
similarly, but are not explicitly addressed here.

27

Below we present the modifications to the original algorithm. First, at each time
t, for every action a ∈ A, and for each kernel φa

i ∈ Φt(a), we maintain an (online)
estimate Q̂t(i, a) of Q̃t(i, a) , Q̃t(φ

a
i) (see equation (14)). This estimate is initialized

to Q̂0(i, a) ≡ Vmax. At time t, let

Ut(i, a) , r̃(φa
i) + γ

[
min

y∈UI(φa
i)

V̂t(y) + ω̄(2β∆(φa
i))

]
, (37)

where

V̂t(x) , max
a∈A




|Φt(a)|∑

i=1

φa
i (x)Q̂t(i, a)



 . (38)

Also, our incremental variant of the algorithm receives an additional parameter εQ,
which we call the upper Q-function accuracy parameter, to be specified in Theorem 4
below. Then, at time t, Q̂t is updated as follows:

Q̂t+1(i, a) :=





Ut(i, a), if at = a, xt ∈ supp(φa
i), and Ut(i, a) < Q̂t(i, a)− εQ,

Q̂t(i, a), otherwise.
(39)

That is, the update takes place only for the “visited” kernel-action pair, and only if
this update changes the estimate by more than εQ.

Each time a kernel φ is split, the upper Q-function estimates of the new kernels
φ1, ..., φK are initialized to the estimate of the parent kernel φ. The policy will be
recomputed each time the estimates change, and it is the greedy policy with respect to
Q̂t:

πt(x) = argmax
a∈A




|Φt(a)|∑

i=1

φa
i (x)Q̂t(i, a)



 . (40)

To summarize, we have the following modifications to the ARL algorithm:

1. The UVF computation (15) is replaced by the update rule (39).

2. The policy computation (16) is replaced by (40).

3. The policy is recomputed each time the estimates and/or the model change.

4. The estimates of the new kernels after a split are initialized to the estimate of the
parent kernel.

Now we have the following results regarding this modified algorithm.

Theorem 4. Assume that the IARL algorithm receives the input parameter ∆ε as in
Theorem 1 as well as εQ > 0. Then, the prior mistake bound is

PMC

(
ε +

εQ

1− γ

)
≤

(|Φε| |A| (N + 1)

1− γ
+

2 |Φε| |A|Vb

εQ

)
ln

2Vb

ε
.

In particular, choosing εQ = ε(1− γ) yields

PMC(2ε) ≤
(|Φε| |A| (N + 1)

1− γ
+

2 |Φε| |A|Vb

ε(1− γ)

)
ln

2Vb

ε
.

28

Theorem 5. Assume that the IARL algorithm receives the input parameter ∆ε as in
Theorem 1 as well as εQ > 0. Then, the posterior mistake bound is

PMC

(
ε +

εQ

1− γ

)
≤

(
2N∞(x0)N

1− γ
+

2N∞(x0)Vb

εQ

)
ln

2Vb

ε
.

In particular, choosing εQ = ε(1− γ) yields

PMC(2ε) ≤
(

2N∞(x0)N
1− γ

+
2N∞(x0)Vb

ε(1− γ)

)
ln

2Vb

ε
.

Observe that the bounds of Theorems 4 and 5 have an additional term compared to
these of Theorems 1 and 3. This term compensates for the inaccuracy that is introduced
by using an estimated UVF V̂ for policy computation, instead of the exact UVF Ṽ .
Note that the order of magnitude of this new term is approximately 1/ε(1 − γ) times
that of the first term (recall the definition of Vb in equation (1)).

9 Analysis of the IARL Algorithm

Below is the outline of the analysis. To start, we show that the estimated UVF V̂t

indeed upper bounds the optimal value V . Then, we prove an analogue to Lemma 6,
which states that under certain conditions on the kernel set, the optimal policy with
respect to the estimated UVF is an ε-optimal policy. Finally, we provide a bound on
the number of times that the escape event can occur.

First, we prove that the estimated upper value function (38) is indeed an upper
bound on the optimal value, at each time t.

Lemma 8. V̂t(s) is an upper bound on the optimal value function. That is, at every
time t, we have that

V̂t(x) ≥ V (x), ∀x ∈ X.

Proof. This claim is easily proved by induction on t. First, since Q̂0(i, a) ≡ Vmax,
the base case is satisfied. Now, assume that Q̂t(i, a) ≥ Q(x, a) for all i such that
x ∈ supp(φa

i), where Q is the optimal Q-function. For time t + 1, if the update of the
estimated upper Q-function takes place for (i, a), we have for all x ∈ supp(φa

i), that

Q̂t+1(i, a) = r̃(φa
i) + γ

[
min

y∈UI(φa
i)

V̂t(y) + ω̄(2β∆(φa
i))

]
≥ r(x, a) + γV (f(x, a)) , Q(x, a),

where the inequality follows by the continuity assumption and the induction assump-
tion, similarly to the proof of Lemma 3. Finally, if the update does not take place for
(i, a), it holds that Q̂t+1(i, a) = Q̂t(i, a) ≥ Q(x, a) by the induction assumption. We
thus have shown that

Q̂t(i, a) ≥ Q(x, a), ∀t, ∀(i, a) : x ∈ supp(φa
i).

Hence,

V̂t(x) , max
a∈A

|Φt(a)|∑

i=1

φa
i (x)Q̂t(i, a) ≥ max

a∈A
Q(x, a) , V (x), ∀t, ∀x ∈ X.

29

To proceed, we need to obtain an analogue to Lemma 6. To that end, we introduce
the following modified definitions of the known kernel-action pairs and the episode.

Definition 12 (Episode). An episode is a maximal period of time [t0, t1], in which:

(i) All visited state-action pairs (xt, at) at times t = t0, ..., t1− 1 satisfy that for each
kernel φat

i ∈ Φt(at) with xt ∈ supp(φat
i), it holds that

(a) ∆(φat
i) ≤ ∆ε,

(b) φat
i was previously sampled (that is, was previously visited).

(c) The upper Q-function estimate for φat
i satisfies:

Ut(i, at) ≥ Q̂t(i, at)− εQ,

where Ut is defined in (37).

(ii) At time t = t1, the algorithm encounters a pair for which the conditions in (i) are
not true.

Definition 13 (Known Pairs). At any time t, we define the set of known kernel-action
pairs:

Kt ,




(φa
i , a) ∈ Φt(a)× A : ∆(φa

i) ≤ ∆ε, φa
i was previously sampled,

and Q̂t(i, a)− Ut(i, a) < εQ



 .

The escape event is defined as previously (Definition 10). We note that the modified
definition of the known pairs (and that of the escape event) depends on the size threshold
parameter ∆ε and on the upper Q-function accuracy parameter εQ. We then have the
following.

Lemma 9. Let ε > 0 be given. Assume that the incremental variant receives an input
∆ε as in Lemma 6, and an input εQ > 0. Then,

V̂t(x)− JAt
M (x) ≤ ε +

εQ

1− γ
+ I{Et(x)}Vb

holds for all t and x ∈ X.

Proof. Similarly to the proof of Lemma 6, at given time t0, we consider the execution
of the (non-stationary) policy At0 for Tε/2 time steps in M . As previously, the escape
event is expressed by the I {Et0(x)}Vb term in the bound.

Now, if during this execution we are visiting only known kernel-action pairs, for
Tε/2 time steps we stay in the same episode, and thus the algorithm’s policy remains

unchanged and it is the stationary policy πt0 . Assume t0 = 0, write π for π0 and V̂ for
V̂0, and recall that π is the greedy policy with respect to V̂ . Thus,

V̂ (x0) =
∑

φ
a0
i ∈Φ(a0)

φa0
i (x0)Q̂(i, a0)

≤ ∑

φ
a0
i ∈Φ(a0)

φa0
i (x0)

[
εQ + r̃(φa0

i) + γ

(
min

y∈UI(φ
a0
i)

V̂ (y) + ω̄(2β∆(φa0
i))

)]

= εQ +
∑

φ
a0
i ∈Φ(a0)

φa0
i (x0)

[
r̃(φa0

i) + γ

(
min

y∈UI(φ
a0
i)

V̂ (y) + ω̄(2β∆(φa0
i))

)]
,

30

where the inequality follows by the modified definition of the known kernel-action pairs
(Definition 13). Also, by Bellman’s equation,

Jπ
M(x0) = r (x0, a0) + γJπ

M(x1).

Thus, as in the proof of Lemma 6, we have that

V̂ (x0)− Jπ
M(x0) ≤ εQ + 2α∆ε + γ


 ∑

φ∈Φ(a0)

φ(x0)

(
min

y∈UI(φ)
V̂ (y) + ω̄(2β∆(φ))

)
− Jπ

M(x1)




≤ εQ + 2α∆ε + γ




(
V̂ (x1) + ω̄(2β∆ε)

)

 ∑

φ∈Φ(a0)

φ(x0)


− Jπ

M(x1)




= εQ + 2α∆ε + γω̄ (2β∆ε) + γ
(
V̂ (x1)− Jπ

M(x1)
)
.

Proceeding iteratively, we obtain that

Ṽ (x0)− Jπ
M(x0) ≤

Tε/2−1∑

t=0

γt
[
εQ + 2α∆ε + γω̄

(
2β∆ε

)]
+ γTε/2Vb

≤ εQ

1− γ
+

1

1− γ

[
2α∆ε + γω̄

(
2β∆ε

)]
+

ε

2
.

Now the result follows by the precondition of the lemma on ∆ε (see condition 32).

To complete the analysis, it is left to prove a bound on the number of times that
the escape event can occur.

Lemma 10. The number of times that Et(x) can occur is bounded by
(
Nε |A| (N + 1) +

2Nε |A|Vb

εQ

)
Tε/2.

Proof. The first term in the above bound is exactly the same as that of Lemma 7. The
second term addresses the modification of the definition of known kernel-action pairs in
the incremental variant (Definition 13). Below we focus on each occurrence of the escape
event, in which we have for the visited pair (φa

i , a) that Q̂t(i, a) − Ut(i, a) > εQ. Now,
since when splitting is performed, we initialize the children kernels using the estimate of
the parent kernel, and since we cannot decrease the estimate below its minimal possible
value Vmin, it follows that the number of times that an update Q̂t+1(i, a) := Ut(i, a)
can occur in a situation when Q̂t(i, a) − Ut(i, a) > εQ, is bounded by Vb/εQ. We wish
to bound the number of such updates for all possible kernel-action pairs in the course
of learning. Hence, the above bound should be multiplied by 2Nε |A|Tε/2, using similar
arguments to those of the proof of Lemma 7.

Finally, we prove the prior and the posterior mistake bounds for the incremental
variant.

Proof of Theorem 4. For each time t, we consider the execution of policy At for Tε/2

time-steps in M , with the initial state in each such execution xt. We then have that

JAt
M (xt) ≥ V̂t(xt)− ε− εQ

1− γ
− I {Et(xt)}Vb

≥ V (xt)− ε− εQ

1− γ
− I {Et(xt)}Vb,

31

θ

m

L

u

−1 1

Figure 3: A schematic drawing of the inverted pendulum.

where the first inequality holds by Lemma 9, and the second inequality holds by Lemma
8. However, by Lemma 10, the number of times the event Et(xt) can occur is bounded

by
(
Nε (N + 1) |A|+ 2Nε|A|Vb

εQ

)
Tε/2, implying that

∞∑

t=0

I
{

JAt
M (xt) < V (xt)− ε− εQ

1− γ

}
≤

(
Nε |A| (N + 1) +

2Nε |A|Vb

ε(1− γ)

)
Tε/2,

which completes the proof of the theorem, using the definition of the ε/2-horizon time,
and the fact that log1/γ C ≤ 1

1−γ
ln C, for any C.

Proof of Theorem 5. The proof of the posterior mistake bound of the incremental vari-
ant is similar to that of Theorem 3, with the modified definition of known cell-action
pairs, as it was done above for the prior bound.

10 Practical Implementation of the ARL

In this section we discuss the applicability of the ARL algorithm and its assumptions to
a simple deterministic control problem, namely to the problem of inverted pendulum. In
addition, we discuss some improvements and extensions that can increase the practical
efficiency of the algorithm.

10.1 The Inverted Pendulum Problem

An inverted pendulum has its mass above its pivot point. The inverted pendulum is
inherently unstable, and must be actively balanced in order to remain upright. Below we
show that the assumptions in this paper hold for this problem. We consider the simplest
version of this problem, in which the control is performed by applying a torque at a fixed
pivot point, as shown in Figure 3. Moreover, we restrict the action set to A = {−1, 1},
which corresponds to application of negative and positive torque, respectively.

The dynamics of this system can be written as follows:

θ̈(t) =
mgL

J
sin (θ(t)) +

u

J
, (41)

32

where θ̈ is the angular acceleration, g is the gravitational acceleration, u ∈ A is the
control variable (that is, the torque applied at the pivot point), and J is the pendulum
moment of inertia.

The discrete time Euler’s approximation to this equation is

xa
n+1 = xa

n + hxb
n , fa(xn, u),

xb
n+1 = xb

n + h
(

mgL

J
sin (xa

n) +
u

J

)
, f b(xn, u),

where the state is the pair x , (xa, xb) = (θ, θ̇) with6 |θ| ≤ π and
∣∣∣θ̇

∣∣∣ ≤ θ̇max, and h > 0
is the step size parameter. It is easily verified that the transition function f : X×A→ X
satisfies Assumption 2. In particular, assuming that the infinity norm distance is used,
the continuity coefficient β can be taken as

β = max
{
1 + h, 1 + h

mgL

J

}
.

We consider below the following situation. Suppose that the dynamics of the system
are unknown, while the reward function is to be chosen by the planner in order to
accommodate the prescribed task. Specifically, in this problem we are interested in
balancing the pendulum in the upward position. Therefore, the reward function ideally
should be

r(x, u) =





1, x = (0, 0)

0, otherwise.

However, this function is clearly useless since we cannot expect any algorithm to “hit”
the origin exactly, implying that the estimated reward will always be zero. Hence, a
smoothed version of this reward function should be chosen. For example, using the
infinity norm distance to the origin, we can set:

r(x, u) =





1−max
{∣∣∣ xa

Ka

∣∣∣ ,
∣∣∣ xb

Kb

∣∣∣
}

, |xa| ≤ Ka,
∣∣∣xb

∣∣∣ ≤ Kb

0, otherwise,
(42)

where Ka ≤ π and Kb ≤ θ̇max. In this case, we have that the reward continuity
coefficient α = max {1/Ka, 1/Kb}.

We applied the ARL algorithm with B-splines of degree 0 (that is, with strict state
aggregation) to this problem. Some illustrative results can be seen in Figures 4 and
5. Figure 4 shows an optimal policy and two particular optimal trajectories obtained
by exact computation using a dense uniform grid. Figure 5 shows the (common) grid7

produced by the ARL in the long term. The discount factor of γ = 0.99 was used, the
splitting scheme parameters were K = 4 and λ = 0.5, and the algorithm was executed
with the threshold parameters N = 10 and ∆ε = 0.25. The total number of cells after
convergence was N∞(x0) = 5280; compare to |Φε| |A| ≈ 480000, which can be estimated
using Lemma 4. We note that the fine resolution in the left part of the state space is
due to the second optimal trajectory (cf. Figure 4), which was occasionally traversed

6We note that we can always take the interval [−θ̇max, θ̇max] large enough to ensure that the angular
velocity falls in this interval during the learning process.

7See the Appendix for the definition of the common grid in the case of strict state aggregation

33

−3

0

3

−π 0 π

Figure 4: An approximation of the optimal policy and two particular optimal trajecto-
ries for the inverted pendulum problem, using exact computation on a dense uniform
grid. In the darker regions the optimal action is −1, while in the lighter regions the
optimal action is 1.

-4 - - -1 0 1 2 3 4
-25

-20

-15

-10

-5

0

5

10

15

20

25

π− 0 π

25−

0

25

Figure 5: The common grid produced by the ARL in the long term, after convergence
to the marked trajectory.

34

by the algorithm during the learning process. This example supports the conjecture
that the actual number of kernels in the long term should be much less than |Φε| |A|.
Therefore, the bound of Theorem 3 is indeed considerably tighter than that of Theorem
1.

10.2 Ideas for Enhancing ARL

Our goal in this paper was to develop the simplest possible adaptive-resolution algo-
rithm for which formal guarantees can be obtained, in order to emphasize the related
essential ideas. Therefore, we used a very simple splitting criterion. For practical imple-
mentations, the proposed algorithm may be modified and extended to make its actual
performance (rather than the performance bound) more efficient. We list below few
ideas for such extensions, leaving the analysis of their effect to future work.

Splitting and Merging Rules. More elaborate splitting rules and possible merging
schemes should be considered, as for example in Munos and Moore (2002) and Bonarini
et al. (2007). For instance, one may consider to merge kernels based on recency of the
visits or homogeneity of the values. Regarding the splitting criterion, it maybe useful to
employ a variable count threshold Nt. In particular, it seems reasonable to start with a
relatively large threshold and gradually decrease it. This will eliminate numerous splits
at an early stage of the algorithm and will allow it to explore the state space. As time
progresses, the threshold should be decreased in order to boost the convergence to the
optimal trajectory.

Multiple Samples. In principle, our algorithm uses a single sample to estimate the
model. However, as was already mentioned in Section 4.2, more efficient empirical
models may be used. For example, one may replace a sample with a “better” new
sample (see Section 4.2 for a possible meaning of “better”). Moreover, all the samples
can be saved and used in order to define the model. This is obviously necessary when
considering stochastic domains, but can be also useful in deterministic ones. The only
requirement is that the obtained model will be “optimistic” in the sense that the rewards
are upper bounded and the transitions are in the corresponding uncertainty set.

Non-Uniform Modulus of Continuity. Our algorithm uses uniform continuity
coefficients α and β. In practice, it may be possible to obtain tighter non-uniform
coefficients α(x) and β(x). For example, consider a continuous approximation of the
reward function for the inverted pendulum problem given in (42). This function is zero
in most of the regions of the state space. If we know that in advance (which is certainly
the case when the planner sets the reward function), we can just use a coefficient α = 0
for these regions. As a result, the convergence of the algorithm may be boosted since
there is no need to “explore” these regions, at least as far as the reward function is
concerned. Moreover, if the agent knows the exact reward function, he can use the
actual upper bound on the reward in each kernel (instead of the upper bound that is
based on the continuity coefficient α).

35

11 Conclusion

We presented a learning algorithm which combines a model-based approach and kernel-
based value function approximation, in order to solve the online, continuous state space
reinforcement learning problem in deterministic domains, under continuity assumption
of model parameters. We note that we focused on deterministic domains for simplicity,
but we believe that the proposed approach and results can be extended to stochastic
systems by adding stochastic confidence bounds.

Our analysis was meant to show feasibility in the sense of sample efficiency. To our
best knowledge, this is the first online performance bound result for kernel-based RL
algorithm in continuous state space. In addition, an incremental variant was presented
and analyzed. This variant is a more practical version of the original algorithm, with
reduced computational complexity at each stage.

Two types of mistake bounds were established: prior and posterior. The prior
bound is similar to the bound for the finest resolution model (up to factor N + 1),
and is not necessarily obtained by a näive approach, where the finest resolution model
is treated as a finite-state MDP, and an efficient exploration technique is used on this
MDP (as discussed in Section 6). The posterior bound is expressed in terms of the
actual kernel set discovered in the course of learning. As far as we know, this is the
first time that a bound of this type was established for RL in continuous state spaces.
As the simulation results presented in Section 10.1 suggest, this bound should be much
tighter in practice than the prior bound.

It is worthwhile to mention that the prior bound is new even in the non-adaptive
case, when we start the ARL with the finest resolution model from the outset (cf.
Theorem 2). Thus, we consider the prior bound a novel contribution of this paper to
the theory of RL.

We note that, ideally, one would want the bound to be in terms of “the best” or
“natural” kernel set for the domain. This can be defined, for example, as the minimal
kernel set needed in order to obtain an ε-optimal policy. However, how to discover
such an “optimal” kernel set remains an open and difficult question (even in an offline
setting) which requires new tools for its analysis.

Finally, we list below some ideas for future work.

• Evaluation of the algorithm and possible variants using extensive simulations
would be interesting from the practical point of view.

• The effect of the enhancements proposed in Section 10.2 on the mistake bounds
should be analyzed.

• The extension of similar ideas to the stochastic domains seems possible, under a
different continuity assumption (namely, under continuity of transition density as
in Chow and Tsitsiklis (1991)). Preliminary results for the special case of adaptive
aggregation can be found in Bernstein (2007). A possible future direction here is
to formulate an algorithm that will work for both the stochastic and deterministic
cases, under a unified continuity assumption, similarly to the approach taken by
Nouri and Littman (2008).

• The model used in this paper assumes a finite action space. We note that the
proposed algorithm can be applied also to continuous action space by using some

36

fixed (predefined) discretization of the action space. More efficient algorithm may
possibly be obtained by using adaptive aggregation of the action space, similar to
that of the state space.

• Other reward criteria should be considered – average reward (with associated loss
bounds), and shortest path problems (total reward). In particular, the shortest
path formulation is often associated with such deterministic problems, as naviga-
tion in a maze.

Acknowledgements

We would like to thank the editor and the reviewers for helpful comments, suggestions,
and discussions.

Appendix

Below we discuss two important special cases of the general kernel-based framework,
where the UVF computation procedure proposed in Section 5 can be carried out in an
efficient way.

Constant Kernels – State Aggregation

Consider the important special case where constant kernels are used. Namely, for all
a ∈ A and φa

i ∈ Φt(a) we have that

φa
i (x) = I {x ∈ supp(φa

i)} ,

and only one kernel is active for each x. These kernels correspond to B-splines of the
degree 0, in the terminology of Unser (1999). Observe that our general framework in
this case reduces to (adaptive) grid-based representation of the state space, since each
“kernel” aggregates a part of the state space, and there is no overlap in the supports of
different kernels in the same action kernel set. A splitting scheme in this case is simply
dividing a cell (that is, the support of the corresponding kernel) into disjoint subcells
which cover the original cell.

Also, the computational procedure described in Section 5 reduces to that of the
Adaptive Aggregation Algorithm (AAA) (Bernstein and Shimkin, 2008)8. Indeed, the
UVF Ṽt(x) is a piecewise constant function and the minimization in (20) reduces to a
minimum of a finite number of values. In particular, let

St(a) = {s = supp(φ) : φ ∈ Φt(a)}

be the grid that is used by the algorithm at time t for action a. We denote by St the
coarsest grid which is a refinement of all St(a) at time t. That is

St ,
∧

a∈A
St(a),

8We note however that the proposed algorithm differs from the AAA algorithm as explained in the
introduction section.

37

fk(x)

x[]

minx∈UIf (φa
i
)fk(x)

UIf (φa
i)

Figure 6: Minimization problem in the case of triangular kernels. Empty circles denote
the set G(i, a) of “knot” and boundary points. The minimum of fk is attained at the
point denoted by the filled circle.

where the intersection operator is defined as:

A ∧B , {sA ∩ sB : sA ∈ A, sB ∈ B} \ {Ø} .

We call St the common grid at time t. Using this notation, we can rewrite equation
(20) for the case of constant kernels as follows:

T̃ (s, a) = min
s′∈UIf (s,a)

max
a′∈A

{
r̃(s′, a′) + γ

[
T̃ (s′, a′) + ω̄(s′, a′)

]}
, (s, a) ∈ St(a)× A. (43)

Here, UIf : St(a)×A→ St, r̃ : St(a)×A→ R, and ω̄ : St(a)×A→ R are corresponding
uncertainty parameters (obtained similarly to those of the general kernel-based frame-
work) which are naturally extended to St × A. Now, observe that since the minimum
and maximum in (43) are over finite sets, the related computational procedure can be
carried out efficiently.

Triangular Kernels – Piecewise-Linear Approximation

Here we consider the special case where triangular kernels are used. An example of
such kernel is shown in Figure 1 for one-dimensional case. These kernels correspond
to B-splines of the degree 1. The construction of higher-dimensional triangular kernels
can be done for example using tensor-product basis functions as in Unser (1999).

Uniform splitting schemes in this case should be considered. One possibility is to
use a standard B-spline “pyramids” as discussed in Section 3.2 (see Figure 1). We note
that other splitting schemes, which satisfy Definition 3 are also possible.

Regarding the policy computation procedure, observe that in this case the UVF
Ṽt(x) is a piecewise linear function (as it is a finite maximum of piecewise linear functions
by its definition). Thus, the minimum in (20) is achieved at the non-differentiable points
of its argument (that is, at the “knot” points). This fact may considerably simplify the

38

computation of (20), since the cardinality of the set of such knot points is much smaller
than cardinality of UIf .

For instance, consider the one-dimensional case, recall the general computational
procedure (21), and set

fk(x) , max
a′∈A




|Φt(a′)|∑

j=1

φa′
j (x)

(
r̃(φa′

j) + γ
[
T̃ (k−1)(j, a′) + ω̄(j, a′)

])


 .

Note that fk(x) is a piecewise-linear function since it is a finite maximum of linear
combination of triangular kernels. Now, the update required in (21) is

T̃ (k)(i, a) = min
x∈UIf (φa

i)
fk(x),

which is a minimum of the piecewise-linear function fk(x) over the convex set UIf (φ
a
i).

Let
G(i, a) = {x ∈ UIf (φ

a
i) : fk(x) is non-differentiable at x} ∪ ∂UIf (φ

a
i),

where ∂UIf (φ
a
i) is the boundary of UIf (φ

a
i). However, |G(i, a)| is finite since fk(x) is

piecewise-linear. Thus, the update

T̃ (k)(i, a) = min
x∈UIf (φa

i)
fk(x) = min

x∈G(i,a)
fk(x)

can be carried out efficiently, as illustrated by Figure 6.

References

J. S. Albus. A new approach to manipulator control: the cerebellar model articulation
controller (CMAC). Journal of Dynamic Systems, Measurement and Control, 97:
220–227, 1975.

A. Antos, C. Szepesvári, and R. Munos. Learning near-optimal policies with Bellman-
residual minimization based fitted policy iteration and a single sample path. Machine
Learning, 71(1):89–129, 2008.

P. Auer and R. Ortner. Logarithmic online regret bounds for undiscounted reinforce-
ment learning. In Proceedings of Neural Information Processing Systems Conference
(NIPS), 2006.

A. Bernstein. Adaptive state aggregation for reinforcement learning. Master’s thesis,
Technion – Israel Institute of Technology, 2007. URL: http://tx.technion.ac.il/

~andreyb/MSc_Thesis_final.pdf.

A. Bernstein and N. Shimkin. Adaptive aggregation for reinforcement learning with
efficient exploration: Deterministic domains. In Proceedings of the 21st Annual Con-
ference on Learning Theory (COLT 2008), 2008.

D. P. Bertsekas. Dynamic Programming and Optimal Control, vol. 2. Athena Scientific,
Belmont, MA, third edition, 2007.

39

A. Bonarini, A. Lazaric, and M. Restelli. LEAP: an adaptive multi-resolution reinforce-
ment learning algorithm. Journal of Machine Learning Research, 2007. conditionally
accepted.

C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning: Structural assump-
tions and computational leverage. Journal of Artificial Intelligence Research, 11:
1–94, 1999.

R. I. Brafman and M. Tennenholtz. R-MAX - a general polynomial time algorithm
for near-optimal reinforcement learning. Journal of Machine Learning Research, 3:
213–231, 2002.

H. Chapman. Global confidence bound algorithms for the exploration-exploitation
tradeoff in reinforcement learning. Master’s thesis, Technion – Israel Institute of
Technology, 2007.

C.-S Chow and J.N. Tsitsiklis. An optimal one-way multigrid algorithm for discrete-
time stochastic control. IEEE Transactions on Automatic Control, 36(8):898–914,
1991.

K. Doya. Reinforcement learning in continuous time and space. Neural Computation,
12:219–245, 2000.

N. Jong and P. Stone. Kernel-based models for reinforcement learning in continuous
state spaces. In 23th International Conference on Machine Learning (ICML 2006),
Workshop on Kernel Machines and Reinforcement Learning, 2006.

S. M. Kakade. On the Sample Complexity of Reinforcement Learning. PhD thesis,
Gatsby Computational Neuroscience Unit, University College London, UK, 2003.

M. Kearns and S. P. Singh. Near-optimal reinforcement learning in polynomial time.
Machine Learning, 49:209–232, 2002.

V. R. Konda and J. N. Tsitsiklis. On actor-critic algorithms. SIAM Journal on Control
and Optimization, 42(4):1143–1166, 2003.

M. Loth, M. Davy, R. Coulom, and P. Preux. Equi-gradient temporal difference learn-
ing. In 23th International Conference on Machine Learning (ICML 2006), Workshop
on Kernel Machines and Reinforcement Learning, 2006.

A. W. Moore and C. G. Atkeson. The parti-game algorithm for variable resolution
reinforcement learning in multidimensional state-spaces. Machine Learning, 21:199–
233, 1995.

R. Munos and A. W. Moore. Variable resolution discretization in optimal control.
Machine Learning, 49:291–323, 2002.

R. Munos and C. Szepesvári. Finite-time bounds for fitted value iteration. Journal of
Machine Learning Research, 9:815–857, 2008.

40

A. Nouri and M. L. Littman. Multi-resolution exploration in continuous spaces. In
Advances in Neural Information Processing Systems (NIPS) 21, pages 1209–1216,
2008.

D. Ormoneit and S. Sen. Kernel-based reinforcement learning. Machine Learning, 49:
161–178, 2002.

W. B. Powell. Approximate Dynamic Programming for Operations Research: Solving
the curses of dimensionality. John Wiley & Sons, Inc., New York, NY, USA, 2007.

M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., New York, NY, USA, 1994.

S. P. Singh, T. Jaakkola, and M. I. Jordan. Reinforcement learning with soft state
aggregation. In Advances in Neural Information Processing Systems (NIPS) 7, pages
361–368, 1995.

A. L. Strehl and M. L. Littman. A theoretical analysis of model-based interval esti-
mation. In Proceedings of the 22nd International Conference on Machine Learning,
pages 857–864, 2005.

A. L. Strehl, L. Li, and M. L. Littman. Incremental model-based learners with formal
learning-time guarantees. In Proceedings of the 22nd International Conference on
Uncertainty in Artificial Intelligence, pages 485–493, 2006a.

A. L. Strehl, E. Wiewiora, J. Langford, and M. L. Littman. PAC model-free rein-
forcement learning. In Proceedings of the 23nd International Conference on Machine
Learning, pages 881–888, 2006b.

R. S. Sutton. Generalization in reinfrocement learning: Successful examples using sparse
coarse coding. In Advances in Neural Information Processing Systems 8 (NIPS),
pages 1038–1044, 1996.

A. Tewari and P. L. Bartlett. Optimistic linear programming gives logarithmic re-
gret for irreducible MDPs. In Proceedings of Neural Information Processing Systems
Conference (NIPS), 2007.

M. Unser. Splines: A perfect fit for signal and image processing. IEEE Signal Processing
Magazine, 16:22–38, 1999.

W. Whitt. Approximations of dynamic programs, I. Mathematics of Operations Re-
search, 3(3):231–243, 1978.

41

