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This paper studies the performance impact of making delay announcements to arriving customers who must wait before
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who must wait are told upon arrival either the delay of the last customer to enter service or an appropriate average delay.
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approximations are proposed: (1) the equilibrium delay in a deterministic fluid model, and (2) the equilibrium steady-state
delay in a stochastic model with fixed delay announcements. These approximations are shown to be effective in overloaded
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1. Introduction
We study the performance impact of making delay
announcements in customer contact centers (telephone call
centers) and other many-server service systems with invis-
ible queues. (For general background on contact centers,
see Brown et al. 2005 and Gans et al. 2003.) With invisi-
ble queues, delay announcements provide prospective cus-
tomers with an estimate of the time they will have to wait
before they can start service if they decide to enter the sys-
tem, which they otherwise would not have. Making delay
announcements is important because it is a relatively inex-
pensive way to improve the customer service experience.
A maxim in the psychology of waiting is that “uncertain
waits feel longer than known finite waits;” see Maister
(1985) and the many papers that cite it; e.g., Carmon et al.
(1995) and Durrande-Moreau (1999).

With high quality of service in many-server queues,
delays tend to be negligible (as can be verified with the
M/M/s model), so that there is relatively little incentive
to provide delay announcements. However, if the system
can be overloaded for periods of time, then delays can
become significant. We think that it is important to dis-
tinguish between two different cases: The first case is the

ideal service scenario in which the service provider has the
resources and the flexibility to respond quickly to adjust
the staffing to meet unexpected high demand. In this ideal
case, the common aim of an announcement is to explain
the unusual circumstance and encourage the customer to
remain because help will soon be on its way.

We are motivated by the less ideal second case, common
in service-oriented (as opposed to revenue-generating) call
centers, in which the service provider has limited ability
to respond to unexpected high demand in the short run.
One promising way to respond to this excess demand is
to provide a call-back option, as in Armony and Maglaras
(2004a, b), but an appropriate delay-announcement scheme
may be a less costly “low-tech” way to achieve the same
objective. We assume that the goal of the delay announce-
ments, in addition to informing the customers, is to induce
some customers to balk (leave immediately without wait-
ing) or abandon earlier, hopefully to retry later when
the system is more lightly loaded, and as a consequence
reduce the delays of served customers, without significantly
altering the number of customers that receive service.
We demonstrate this important performance consequence
of delay announcements through mathematical models of
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many-server queues. We focus on overloaded regimes,
where delay announcements are especially important.

We emphasize the equilibrium behavior associated with
delay announcements, where the customers respond to
the announcements, the system performance depends on
the customer response, and the announcements depend
on the system performance. Background on equilibrium
behavior in queueing systems is provided by Hassin and
Haviv (2003). The effect of customer delay expectations on
the abandonment profile and resulting system equilibrium
is studied in several papers, where the dependence of cus-
tomer patience on expected wait is captured either through
a rational decision model (Shimkin and Mandelbaum 2004
and references therein) or a descriptive behavior model
(Zohar et al. 2002). The approach we take here is in the
spirit of Zohar et al. (2002).

There is a substantial literature on delay announce-
ments if we allow a broader class of models. For example,
Duenyas and Hopp (1995), Spearman and Zhang (1999),
and Plambeck (2004) study lead-time announcements in
production systems. Whitt (1999a) considers the effect of
delay announcement in a many-server (M/M/s) model,
comparing the no-information case with reneging to the
full-information case, where customers either balk imme-
diately or remain in queue until served. Guo and Zipkin
(2007) consider an M/M/1 system with only balking,
under different levels of information. Both of these papers
indicate the positive effect of delay information upon sys-
tem performance. The effect of real-time delay estimates
on a many-server queueing system with a call-back option
is studied in Armony and Maglaras (2004a, b).
The DLS and FD Announcement Schemes. We pri-

marily model the performance consequence of a delay
announcement, but we also have some suggestions for the
delay announcement itself. In particular, we propose two
specific announcement schemes: (i) announcing the delay
of the last customer to enter service (DLS), and (ii) mak-
ing a fixed delay (FD) announcement, corresponding to a
long-run average delay (appropriate for the time in ques-
tion, allowing for a time-varying arrival rate). The DLS
announcement is closely related to the longest waiting
time of any customer in queue, which was used as an
announcement in an Israeli bank studied by Mandelbaum
et al. (2000) and mentioned as a candidate delay announce-
ment by Nakibly (2002). We discuss motivation for DLS
announcements further in §2.

We want to understand how DLS and FD announce-
ments, or other natural delay announcements, will affect
system performance. Accordingly, we model customer re-
sponse to delay announcements. We do not examine data
of any system with delay announcements, but we pro-
vide a modelling framework for looking at such data. Data
revealing customer response to announcements are being
analyzed by Feigin (2006). Some related laboratory exper-
iments are described in Munichor and Rafaeli (2006).

As indicated before, we assume that each customer who
cannot enter service immediately upon arrival is given an
estimate w (a single number) of the waiting time before he
can begin service. We are thinking of this announced delay
being DLS or FD, but it could be obtained in other ways,
e.g., by one of the alternative estimators in Whitt (1999b).

We model the customer response to the announced
delay w by two functions: B�w� and F �t �w�. Given a delay
announcement of w, we assume that the customer balks
with probability B�w�. We assume that B is a cumulative
distribution function (c.d.f.), so that the customer is more
likely to balk as the announced delay increases. If that
customer does not balk, then that customer will abandon
before time t if he has not begun service by that time with
probability F �t � w�. We assume that F �t � w� is a c.d.f.
as a function of t with F �0 � w� = 0 for each w. Consis-
tent with our focus on invisible queues, we assume that the
reactions of successive customers are conditionally inde-
pendent, given their delay announcements.

This model greatly generalizes the model of customer
response to delay announcements proposed by Whitt
(1999a). There, all abandonment without an announcement
was replaced by balking with the announcement, and all
distributions were assumed to be exponential, so that all
models became Markovian. On the other hand, we could go
further, as in Guo and Zipkin (2007), and derive our balk-
ing and abandonment functions B�w� and F �t �w� by con-
sidering customers maximizing their expected utility from
service and waiting.
The Performance Impact of Delay Announcements.

We aim to understand the performance impact of delay
announcements in the setting of a conventional M/GI/
s+GI model. (However, DLS and FD announcements are
appealing, in large part, because they apply much more
generally.) The M/GI/s+GI model has a Poisson arrival
process (the M), s homogeneous servers working in paral-
lel, unlimited waiting space, and the first-come first-served
(FCFS) service discipline. The first GI means that suc-
cessive service times are independent and identically dis-
tributed (i.i.d.) with a general c.d.f. G. The second GI (after
the +) means that successive customers have i.i.d. times
until they will abandon if service has not yet begun, again
with a general c.d.f. F (where no announcement is given).
The service times, times to abandon, and arrival process
are assumed to be mutually independent.

For the M/GI/s+GI model without delay announce-
ments, the stochastic process representing the number
of customers in the system as a function of time and
other standard stochastic processes have proper limiting
steady-state distributions for any arrival rate under minor
regularity conditions because of customer abandonment.
Under further regularity conditions, this should also be
true with delay announcements and the i.i.d. customer
response defined above, but with the addition of the cus-
tomer response, the limiting steady-state behavior involves
a complex equilibrium, as in Hassin and Haviv (2003)
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and Shimkin and Mandelbaum (2004), because the average
announced delay should agree with the average experienced
delay. There are many open questions about system dynam-
ics: (i) Under what conditions does there exist an equilib-
rium steady state? (ii) If there is an equilibrium, when is it
unique? When can there be multiple equilibria? (iii) How
do the stochastic processes evolve as a function of the ini-
tial conditions?

Simulation is ideally suited to analyze this delay-
announcement problem, and we will use it here. But our
purpose is to supplement simulation by developing more
revealing and more efficient methods to approximately
determine the equilibrium steady-state performance of the
M/GI/s+GI model with delay announcements. Approxi-
mations are needed because direct mathematical analysis is
difficult. Even for the totally Markovian M/M/s+M base
model, a full-state description must include the announce-
ments received and possibly the elapsed waiting times of
each customer in queue.
Two Approximation Methods. We propose two meth-

ods to approximate the steady-state performance with delay
announcements, to use in addition to simulation. Both
approximation methods act as if all customers receive
the same fixed deterministic delay announcement. For
both methods, we find an equilibrium in the approximate
model, where the expected steady-state delay coincides
with the delay announcement. Those equilibrium delays
for the approximate models are our proposed approxima-
tions for the expected steady-state delay with DLS and FD
announcements.

The first approximation method is a deterministic fluid
model, extending the fluid model approximation for the
G/GI/s+GI model in Whitt (2006). The fluid model is
appealing because it is remarkably tractable. The fluid
model provides useful insight here only in an overloaded
regime, where the traffic intensity exceeds one, but that is
when delay announcements are especially important.

First, for a general all-exponential stochastic model intro-
duced in §5, where the customer response has expo-
nential structure and the underlying queueing model is
M/M/s+M , there is a simple equation any fluid equilib-
rium must satisfy; see (5.2). For a natural special case,
there exists a unique equilibrium for the fluid model and it
has a simple explicit formula; see (5.3). On the other hand,
for the more general stochastic model, if regularity condi-
tions are not imposed, there can be multiple equilibria for
the approximating fluid model. We show that correspond-
ing multiple equilibria hold in the corresponding stochastic
models.

For the general fluid model, we prove that there exists
a unique equilibrium delay under very general regularity
conditions. That strongly supports our conjecture that a
unique equilibrium steady-state delay exists with DLS and
FD announcements under the same conditions. We also
show how to perform a perturbation analysis of the fluid
equilibrium delay to estimate its sensitivity to stochastic

fluctuations (which are not considered directly). We are
thus better able to understand the observed performance of
the fluid model when compared to simulations.

For the fluid model, all served customers necessarily
wait the same deterministic time. That fixed-delay property
of the fluid model motivates using an FD announcement
with the M/GI/s+GI model as an approximation. (The
fluid model proves its worth by that insight alone!) Our sec-
ond approximation method is an iterative numerical algo-
rithm (INA) for calculating the approximate steady-state
performance in the M/GI/s+GI model, based on Whitt
(2005), assuming an FD announcement.

For the INA, we use the numerical algorithm for approx-
imating the steady-state performance of the M/GI/s+GI
model in Whitt (2005). The first step in that algorithm
is to approximate the given M/GI/s+GI model by an
associated Markovian M/M/s+M�n� model with state-
dependent abandonment rates. The second step is to numer-
ically solve for the steady-state performance measures in
the M/M/s+M�n� model, which begins with the num-
ber in system, because that is a birth-and-death process.
That same approximation applies with the FD announce-
ments, because the delay announcements produce a new
Poisson arrival process and a new time-to-abandon distri-
bution, and thus a new M/GI/s+GI model. Thus, for
our model of customer response, the algorithm in Whitt
(2005) applies with FD announcements just as without
delay announcements; we just need to iteratively apply the
algorithm to find the equilibrium FD announcement, where
the announced fixed delay coincides with the expected
conditional steady-state delay, given that the customer is
served.

We could also have used alternative numerical algo-
rithms in our INA, such as an exact numerical algorithm
for the M/M/s+GI model and heavy-traffic approxima-
tions developed by Zeltyn and Mandelbaum (2005). The
main point, to be shown, is that the M/M/s+GI model
with an FD announcement yields a good approximation for
the corresponding model with a state-dependent DLS delay
announcement as well as with an FD announcement.
Contributions. We make several contributions in this

paper. First, we suggest two specific single-number delay
announcement schemes: FD and DLS. Second, we intro-
duce a model of customer response to these announcements
in the setting of invisible queues, based on the c.d.f.’s B�w�
and F �t �w� . Third, we use simulation to study the equilib-
rium behavior of these DLS and FD announcements in the
M/GI/s+GI model. The simulations show that the state-
dependent DLS announcements are more effective having
smaller variance. Fourth, we introduce and analyze two
approximation methods for analyzing the equilibrium per-
formance of the stochastic model with customer response:
a deterministic fluid model, extending Whitt (2006), and an
INA for approximately calculating the steady-state behav-
ior, extending Whitt (2005), both based on using FD. Fifth,
we obtain insight into the equilibrium behavior in this
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setting. For example, we show how our model can be
used to explore the consequences of biased announcements.
Finally, we provide a framework for empirical research
that will investigate the actual human response to delay
announcements. More broadly, we advance research bridg-
ing the behavioral and quantitative-modelling traditions.
Organization of this Paper. We start in §2 by discus-

sing the motivation for DLS and FD announcements. In §3,
we describe the fluid model, both with and without delay
announcements, focusing on the overloaded regime. In §4,
we establish basic properties of the fluid model. In partic-
ular, we show that there exists a unique equilibrium fluid
delay under very general regularity conditions. In §5, we
introduce some all-exponential stochastic models, which we
will consider in our numerical comparisons. In §6, we con-
duct experiments, comparing the fluid and INA approxima-
tion methods to simulation for the all-exponential stochastic
models. In §7, we perform perturbation analysis of the all-
exponential fluid model to understand how the fluid model
performance is affected by ignoring stochastic fluctuations.
In §8, we give an example of multiple equilibria that are
possible when the regularity conditions are not satisfied.
In §9, we make some concluding remarks. Additional mate-
rial appears in an e-companion maintained by the jour-
nal (available at http://or.journal.informs.org/) and an online
supplement (Armony et al. 2007). In the e-companion, we
use the fluid model to study the impact of biased delay
announcements, where the announcement is designed to
differ from the actual delay. We also briefly discuss the
consequence of increasing patience in response to delay
announcements.

2. Motivation for the DLS and
FD Announcements

When making delay announcements, we think that it is
important to identify two cases, depending on the cus-
tomer’s ability to process information. A customer’s abil-
ity to process information can be either quite low, as in
a conventional telephone call, or quite high, as in service
over the Internet, where information can be presented on
the screen and read while waiting. With limited customer-
information-processing ability, we may want to restrict the
announcement to only a few numbers, perhaps only one.

In either case, it is not easy to make reliable delay
estimates because future delays are inevitably uncertain.
However, we contend that useful delay announcements
can be made without great difficulty, even if limited to
a single number. In particular, we propose the DLS and
FD announcements as simple and robust single-number
schemes. We focus especially on the DLS scheme.

Of course, no announcement at all is made if a customer
can enter service immediately. Moreover, as observed by
Hui and Tse (1996), delay announcements are more impor-
tant when the delays are long, so that the actual announce-
ment can be tuned to the estimated size of the delay. For

example, when the delay is likely to be short, the customer
might be told, “We should be able to serve you soon; the
last customer to enter service waited less than one minute.”
On the other hand, when the delay is likely to be long,
the customer might be told, “We are currently experiencing
unexpected high demand; the last customer to enter service
had to wait x minutes before beginning service. We will
do our best to serve you without excessive delay, but you
might want to try again later.”

The DLS scheme is appealing for several reasons. First,
the DLS announcements are transparent, directly commu-
nicating historical experience, so that customers are not left
wondering how the estimate was made. Second, the DLS
scheme extends directly to multiclass skill-based-routing
scenarios; then, we can announce the delay of the last
customer to enter service of that class. Finally, the DLS
scheme makes no specific model assumptions. It can be
used with conventional models without having to know
the number of servers or the service-time distribution. The
DLS scheme even allows for unconventional service mech-
anisms including heterogeneous servers, a random num-
ber of servers used per customer, and service interruptions
(where service is conducted over several disjoint time inter-
vals). Such phenomena commonly arise in contact centers,
such as those providing technical support over multiple
media. The DLS scheme also responds automatically to
dynamic time-varying conditions.

We develop mathematical models showing that DLS
announcements are effective, first, by having reasonable
predictive power (e.g., low mean squared error) and, finally,
by achieving the desired goal: causing some customers to
leave earlier without receiving service and reducing the
delays of served customers. For the overloaded model con-
sidered in §6, the DLS announcements reduce the average
delay of served customers by 50%.

We also suggest FD as a simple alternative to the DLS
announcements. With FD, the single-number announce-
ment would be based on the average day of recent cus-
tomers to complete service. For the fluid model, it turns out
that FD coincides with DLS. Simulation results show that
DLS is more accurate than FD, but they are quite close.

As the customer information-processing ability in-
creases, we may want to announce additional informa-
tion. Natural additions (or alternatives) are (i) the average
delay among the last k customers to enter service for some
k > 1 (which becomes our FD announcement if k is suit-
ably large), and (ii) the estimated average delay computed
by multiplying the current queue length times the average
time between successive customer departures. For scenarios
in which customer-information-processing ability is higher,
we also propose a vector extension of the DLS announce-
ment scheme: to provide an estimate of the probability
distribution of the delay as well as a point estimate, we
propose announcing the delays of the last k customers to
enter service, in temporal order, for some k� 1 (in addition
to a few summary statistics, such as the mean). For display
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on a computer screen, we might display histograms of the
last k delays for various k. A further extension would be a
longer record of past experienced delays, together with the
times that these customers entered service.

In addition, we might provide additional state informa-
tion, such as the current queue length. However, we empha-
size that even a full description of the current system state
does not include the delay history we are advocating. As
emphasized by Larson (1987) and Munichor and Rafaeli
(2006), it is also helpful for customers to see that progress
is being made. Thus, on a computer screen, customers
could be shown the evolving queue and their place in it
(we do not study the impact of such additional feedback
here). In some circumstances, it may be good to also tell the
customers the service times and/or response times (wait-
ing times plus service times) of the last k customers to
complete service. Here, we focus on delays before start-
ing service, assuming that we announce a single number
immediately upon arrival if a customer cannot enter service
immediately.

The single-number assumption applies directly to the
DLS scheme for k = 1, but applies more generally to
the DLS scheme with k > 1 if we understand w to be
a one-dimensional summary of the k-dimensional vector
of delays, such as the median or the mean. However, it
remains to investigate if, and how, customer response to a
vector delay announcement can be accurately summarized
by a single number.

For any given announcement scheme, we should ask
how customers will interpret the announcement. The DLS
scheme is so transparent that there should be little ambigu-
ity in the customer’s mind, except for the possibility that
the customer may doubt whether the information is truth-
ful. The interpretation is easier for the customer if he is
also told the queue length and his position in it through
time while he is waiting. Here, we assume that there is only
a single-number announcement immediately upon arrival.
That leaves the queue invisible, and makes it reasonable to
assume that customer responses are mutually independent.

For non-DLS announcements, most customers should
recognize that the announcement is only an estimate, nec-
essarily being subject to error. Customers should learn
how to interpret the announcements through experience.
It is important to recognize, though, that the customer
response is likely to depend on the way the announce-
ment is made, beyond just the number w itself. Recalling
Maister’s (1985) propositions about waiting, we recom-
mend that the announcement attempt to explain both what
has happened and what action management recommends,
as well as remove uncertainty and reduce anxiety (we do
not consider such issues further here).

3. Fluid Model
In this section, we review the fluid model introduced
in Whitt (2006) and develop an extension for delay
announcements.

An Approximation for a Many-Server Queueing
Model. Our starting point is the G/GI/s+GI queue-
ing model, which allows for a general stationary arrival
process. It is specified by a model 4-tuple �A� s�G�F �:
A≡ �A�t��t � 0� is the arrival process, understood to be a
stationary point process with arrival rate �, s is the number
of servers, G is the service-time c.d.f., and F is the time-
to-abandon c.d.f. It is understood that there is an unlimited
waiting room and the FCFS queue discipline is being used.
Let S be a generic service time and let T be a generic time
to abandon. Our assumptions mean that G�t� ≡ P�S � t�
and F �t�≡ P�T � t� for t � 0. Let �−1 ≡E�S� be the mean
service time and �−1 ≡ E�T � be the mean time to aban-
don, both assumed to be finite. For simplicity, and without
loss of generality (by appropriately choosing the measuring
units for time), we assume throughout this paper that the
mean service time is �−1 = 1. So, time is measured in units
of mean service times.

In this setting of the G/GI/s+GI model with � = 1,
the fluid model we use arises in the limit as

�→� and s→� with �≡ �

s
held fixed� (3.1)

As the limit indicates, the fluid model is intended for sce-
narios with large s and �. The parameter � defined in
(3.1) is the traffic intensity in the original queueing model.
It becomes the fluid arrival rate in the fluid model. The
fluid model has been shown to be asymptotically correct in
the limiting regime (3.1). There is a proviso, however: the
asymptotic correctness has only been verified for a discrete-
time analog of the general G/GI/s+GI fluid model in
Whitt (2006). Because the time increments can be arbi-
trarily short in the discrete-time model, the discrete-time
model can be made arbitrarily close to the continuous-time
model. Thus, the discrete-time proof suffices for practical
engineering purposes, but it remains to directly treat the
continuous-time model.

The fluid model describes the evolution over time of the
system, but we will only consider the steady-state behavior,
under the condition that �> 1. Without customer abandon-
ment, the system would be unstable when �> 1, and there
would be no proper steady state; but with customer aban-
donment, a proper steady-state distribution exists for the
G/GI/s+GI queueing model (under regularity conditions)
and the limiting fluid model for all �> 0. Indeed, with cus-
tomer abandonment, having � > 1 is quite natural. Whitt
(2006) has shown that the fluid model provides a remark-
ably good approximation when � and s are large and �> 1.
For example, we might have s = 100 and � = 1�2 as in
Table 1 of Whitt (2006). We anticipate that the fluid model
will provide a useful approximation for queueing models
with delay announcements in the same overloaded settings.
However, we should be careful that the balking and aban-
donment not be so great that the system cease to be over-
loaded. The accuracy of the fluid approximation degrades
when the system ceases to be heavily loaded.
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Figure 1. Possible steady-state densities of fluid con-
tent: (i) without delay announcements (upper
dotted curve), (ii) announcing the initial
delay w̃1 (lower dotted curve), and (iii) with
an equilibrium delay announcement w̃e (solid
curve).

In queueIn service

Time t

1

0

~

~w1+ u~

Gc(u)

ρ

ρ(we)
ρFc(t)

~ρ(w1)

w1
~w2

~we

The Steady-State Behavior Without Delay Announce-
ments. Figure 1 depicts three possible steady-state distri-
butions for the fluid model. Each curve in Figure 1 shows
the steady-state density of fluid content that has been in the
system for a period of length t as a function of t, where
time t increases toward the left. It is not unreasonable to
have t increase toward the left because t represents time
in the past. We are looking at the system at one time in
steady state. The plotted function at t represents current
fluid content that arrived time t in the past.

From the fluid model, the approximate number of cus-
tomers in the associated queueing system is obtained by
multiplying by s: the arrival rate in the queueing system
is �s when the fluid arrival rate is �; the approximate queue
length is s�F c�t� when the fluid queue content is �F c�t�.

We start by focusing on the upper dotted curve,
which depicts the steady-state behavior without any delay
announcements. This fluid density is a deterministic func-
tion, but nevertheless the two model c.d.f.’s F and G play a
prominent role in the description. At the right in Figure 1,
we see a density of � > 1 at t = 0 for the upper dotted
curve, which corresponds to the fluid arrival rate. Fluid
abandons according to the c.d.f. F up until time w̃1 (sub-
script 1 denoting the first delay, without announcements).
For 0 < t < w̃1, a proportion F �t� of the fluid that would
have been in the system for t time units has abandoned,
while the remaining proportion F c�t� ≡ 1 − F �t� remains
in the system. The initial waiting time before served fluid
enters service, w̃1, is determined by the requirement that

�F c�w̃1�� 1 and �F c�t� > 1 for 0� t < w̃1� (3.2)

In (3.2), we allow the complementary c.d.f. (c.c.d.f.) F c to
have a discontinuity at w̃1. In doing so, we assume that

ties are broken in favor of entering service: Throughout
this paper, we assume that customers �or fluid� first enter
service if possible and then afterwards the rest abandons.
Thus, fluid enters service at rate 1 after waiting w̃1. Thus,
abandonment is occurring constantly at the rate �− 1.

In Figure 1, we show the fluid arrival rate � being much
higher than the maximum possible fluid service rate 1. In
practice, we think of the fluid arrival rate being not so much
higher. We display a larger difference here to be able to
clearly show the impact of delay announcements in this
same scenario.

Although the density of fluid content is deterministic, we
interpret the experience of individual customers or “atoms
of fluid” as stochastic, regarding these as i.i.d. (The strong
law of large numbers is acting behind the scenes to convert
the individual independent actions into an overall system
deterministic behavior.) Each “customer” abandons before
time t with probability F �t�, while the customer remains in
the system after time t with probability F c�t�, provided that
0 < t < w̃1. At time w̃1, customers enter service at rate 1
(because, at any given time, we assume that customers
enter service before they consider abandoning). There could
also be abandonment exactly at time w̃1 if the c.d.f. F has
a jump at w̃1. The abandonment rate at time w̃1 is thus
�F c�w̃1−�− 1, assuming that �F c�w̃1−� > 1 � �F c�w̃1�.
Hence, each customer abandons at time w̃1 with probabil-
ity F �w̃1−�−�−1, which will be zero unless F has a jump
at w̃1.

The customer experience in service is described by the
region of Figure 1 to the left of t = w̃1, i.e., for times
t > w̃1. A proportion G�u� of the fluid entering service
after waiting for a time w̃1 will have completed service by
time w̃1 + u. Conversely, a proportion Gc�u� ≡ 1 −G�u�
will remain in service. Thus, the fluid content density takes
the value Gc�u� at time w̃1 + u. The total fluid content in
service at any time is∫ �

w̃1

Gc�u− w̃1�du=
∫ �

0
Gc�u�du=E�S�= 1% (3.3)

the fluid content waiting in queue is

q ≡
∫ w̃1

0
q�t�dt = �

∫ w̃1

0
F c�u�du� (3.4)

The expected or average waiting time for all fluid is

E�Wall�=
∫ w̃1

0
F c�u�du= w̃1

�
+
∫ w̃1

0
xdF �x�= q

�
� (3.5)

which of course is less than the waiting time w̃1 of the
fluid that is served. (We remark that the corresponding for-
mula (3.10) in Whitt 2006 is incorrect.) We regard Wall

as a random variable because the experience of individual
customers (atoms of fluid) is random.
Delay Announcements and Customer Response. We

next consider making a delay announcement immediately
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upon arrival to arriving customers if they must wait. We
start by announcing the waiting time served customers have
been experiencing without delay announcements, w̃1, which
is the solution to (3.2). However, we now must consider the
impact on customer behavior of making such an announce-
ment. We assume that a proportion B�w̃1� will balk in
response to a delay announcement w̃1, where B is our
balking c.d.f. We mention one possible form for the balk-
ing c.d.f.

Definition 3.1 (Information-Consistent Balking). If
Bc�w� = F c�w� for all w � 0, i.e., if a customer balks at
an announced delay whenever that customer would have
abandoned by that time without an announcement, then
we say that we have information-consistent balking.

Information-consistent balking is a natural assumption,
but it might not hold. It is at least an important reference
case. We also have to specify how customers who decide
to wait respond to the announcement. That is done via
the conditional time-to-abandon c.d.f. F �t � w�, given any
announced delay w. Because B already accounts for balk-
ing, we assume that F �0 �w�= 0 for all w. As before, we
assume that customers first enter service, and only abandon
if that is not possible.

Definition 3.2 (Response Delay Function). A func-
tion d� �0��� → �0��� is a response delay function
for the fluid model, giving the experienced delay d�w�
associated with announcement w, if for each w � 0, either
(i) �Bc�w�� 1 and d�w�= 0, or (ii) �Bc�w� > 1 and

�Bc�w�F c�d�w� �w�� 1 and �Bc�w�F c�t �w�> 1

for 0� t < d�w�� (3.6)

Because F �· �w� is assumed to be a c.d.f. for each w� 0,
the response delay function d is well defined. Conse-
quently, served fluid waits w̃2 ≡ d�w̃1� in response to
the first delay announcement w̃1. Thus, assuming that
�Bc�w� > 1, the waiting fluid density (in queue) that has
been in the system for time t becomes �Bc�w̃1�F

c�t � w̃1�
for 0 < t < w̃2, where w̃2 = d�w̃1� satisfies

�Bc�w̃1�F
c�w̃2 � w̃1�� 1 and �Bc�w̃1�F

c�t � w̃1� > 1

for 0� t < w̃2� (3.7)

paralleling (3.2). Fluid enters service at rate 1 at time w̃2.
Paralleling (3.4), the total queue content now is

q ≡ q�w̃1�=
∫ w̃2

0
q�t � w̃1�dt

= �Bc�w̃1�
∫ w̃2

0
F c�t � w̃1�dt� (3.8)

The lower dotted curve in Figure 1 shows the steady-
state fluid distribution in response to the initial announce-
ment w̃1. The effective arrival rate is reduced from �> 1 to

��w̃1�≡ �Bc�w̃1� due to balking, and thereafter (provided
that ��w̃1� > 1) abandonment occurs before time w̃2 at a
slower rate. At time w̃2, the fluid density reaches level 1
and customers enter service at rate 1.

From Figure 1, we see that the system has benefitted
from the delay announcement because the lower dotted
curve is below the upper dotted curve. The fluid through-
put is still at the maximum value 1, but the waiting has
been reduced. All customers who are served now wait w̃2

instead of w̃1. The abandoning customers wait less as well.
The most impatient customers elect to balk when they get
the delay message. The balking rate is �B�w̃1�. Those cus-
tomers who decide not to balk abandon at a slower rate,
but the remaining abandonments occur by time w̃2.
An Equilibrium Fluid Delay. However, there is a con-

sistency problem. The announced delay for served cus-
tomers, w̃1, is not consistent with the actual delay for
served customers, w̃2, after the customer response. With
DLS announcements, we expect the average delay of served
customers to nearly equal the average announced delay.

Definition 3.3 (Equilibrium Fluid Delay). An an-
nounced delay w is an equilibrium delay for the fluid model
if d�w� = w, where d is the response delay function in
Definition 3.2; i.e., w̃e is an equilibrium delay if either
(i) �Bc�0�� 1 and w̃e = 0, or (ii) �Bc�0� > 1 and

�Bc�w̃e�F
c�w̃e � w̃e�� 1 and �Bc�w̃e�F

c�t � w̃e� > 1

for 0� t < w̃e� (3.9)

The solid curve in Figure 1 shows what might happen
if we use an equilibrium delay announcement (depending
on the detailed model elements). The equilibrium delay
announcement w̃e is less than the original delay w̃1 with-
out an announcement, but it is greater than the delay w̃2

in response to the announced delay w̃1. We still achieve
maximum throughput and we still reduce delays compared
to what we achieve with no announcement at all, but we
cannot do as well as the lower dotted curve, but that is
understandable because the response delay w̃2 associated
with announcement of w̃1 is inconsistent, which we regard
as not sustainable (an assumption about human behavior).
With the equilibrium delay w̃e, the effective arrival rate is
reduced from � > 1 to ��w̃e�= �Bc�w̃e� > 1 due to balk-
ing, and thereafter abandonment occurs before time w̃e. At
time w̃e, the fluid density reaches level 1 and all waiting
customers enter service.

4. Basic Properties of the Fluid Model
We now establish the basic properties of the fluid model.
Under regularity conditions, there exists a unique fluid
equilibrium delay, but some care is needed.

Example 4.1 (Pathological Example). Suppose that
B�w� = F �w� for all w, so that we have information-
consistent balking as in Definition 3.1. Suppose that
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�Bc�w∗� > 1 for some w∗ > 0. Moreover, suppose that
we have an extreme abandonment response to the delay
announcement: Suppose that F c�t � w�= 1, 0 � t � w and
F c�t � w� = 0 for all t > w, implying that d�w� = w, i.e.,
that all customers who do not balk abandon precisely at
time w, whatever is the announced wait w, provided 0 <
w � w∗, which we henceforth assume. We now use our
previous assumption that, at time w, we allow customers
to enter service first at time w. Then, customers enter ser-
vice at rate 1 at time w, while the remaining customers
abandon. That is, we have abandonment at rate �Bc�w�−1
at time w. All customers wait precisely w, whether they
get served or abandon. Customers enter service at rate 1
at time w, but every delay announcement w in the interval
�0�w∗� is an equilibrium delay announcement.

Condition 4.1 (Regularity Conditions). (a) F c�t �w�≡
1− F �t �w� is a continuous strictly decreasing c.c.d.f. as a
function of t with F c�0 �w�= 1 for each w� 0.

(b) Bc�w�F c�w �w� is strictly decreasing in w.
(c) Bc�w� is continuous in w.
(d) F c�t �w� is continuous in w for each t.

Theorem 4.1 (Existence and Uniqueness). Consider the
fluid model specified above. Assume that �Bc�0� > 1.

(a) If Condition 4.1(a) holds, then the delay response
function d defined in Definition 3.2 satisfies

�Bc�w�F c�d�w� �w�= 1 and �Bc�w�F c�t �w�> 1

for 0� t < d�w�� (4.1)

(b) If, in addition, Condition 4.1(b) holds, then there is
at most one equilibrium delay w̃e, as defined in Defini-
tion 3.3. If it exists, it satisfies w̃e > 0, and

�Bc�w̃e�F
c�w̃e � w̃e�= 1 and �Bc�w̃e�F

c�t � w̃e� > 1

for 0� t < w̃e� (4.2)

(c) If Conditions 4.1(a), (c), and (d) hold, then there
exists at least one equilibrium delay w̃e.

(d) If all parts of Condition 4.1 hold, then there exists a
unique equilibrium delay w̃e.

Proof. For part (a), existence of a solution to the equa-
tion in (4.1) follows from the intermediate-value theorem,
using the continuity in Condition 4.1(a). The inequality
in (4.1) follows from the strict monotonicity in Condi-
tion 4.1(a). Part (b) is immediate from Condition 4.1(b) and
the required equality in (4.1). As for the existence claim
in (c), existence of a solution to the equation in (4.2) fol-
lows from Conditions 4.1(c) and (d) using the intermediate-
value theorem. The required inequality in (4.2) is then
satisfied by the strict monotonicity of F c�t � w� by Condi-
tion 4.1(a). Part (d) combines parts (b) and (c). �

The regularity conditions in Condition 4.1 ensuring a
unique fluid equilibrium seem reasonable, but we should be

cautious about human response. From a practical perspec-
tive, Condition 4.1(b) might be questioned. Violation of (b)
can lead to multiple equilibria; see §8.

If Condition 4.1 holds, so that there exists a unique equi-
librium fluid delay w̃e, that equilibrium delay w̃e is easy to
calculate. Assuming that �Bc�0� > 1, we can simply plot
the strictly decreasing function �Bc�w�F c�w � w� and see
where it equals one. Alternatively, we can perform bisec-
tion search.

As we discuss in the e-companion, we can also con-
sider iteration to find the equilibrium fluid delay, but if we
let wk+1 = d�wk�, then we can get oscillation in the fluid
model. However, under further regularity conditions, there
is monotone convergence in the fluid model of the damped
iteration wk+1 = pd�wk�+ �1− p�wk for 0 < p < 1 if p is
chosen small enough. Iterative schemes are not so impor-
tant for the fluid model itself, but they can be very useful
in practice as well as for the INA. In practice, the iterative
process can be an important management tool for finding
the right FD announcement. Thus, the results about iterative
schemes for the fluid model provide valuable insight into
corresponding iterative schemes for FD announcements, for
both the actual system and stochastic models of it. The
main insights are, first, that oscillations are possible, even
when there exists a unique equilibrium fluid delay, and sec-
ond, that oscillations can usually be avoided by using a
damped iteration.

5. All-Exponential Stochastic Models
The analysis tools we develop apply to general proba-
bility distributions, but in our examples we consider all-
exponential models. In doing so, we first assume that the
base queueing model is M/M/s+M with arrival rate �,
exponential service times having mean �−1 = 1, and expo-
nential times to abandon with mean �−1. We assume
that the associated traffic intensity satisfies �≡ �/s > 1.
We then assume that the two customer-response func-
tions B and F �· � w� are built from exponential c.d.f.’s
as well.

As a general exponential form, we assume that the
c.c.d.f. for balking is Bc�w�≡ 1−B�w�= e−)w, w� 0 for
some )� 0, and the conditional abandonment c.c.d.f. is

F c�t �w�=


e−*�w�t� 0� t �w�

e−*�w�we−+�w��t−w�� t > w�
(5.1)

where *�w� and +�w� are two component abandonment-
rate functions, assumed to be continuous and positive in
the announced delay w. Definition (5.1) allows for differ-
ent customer abandonment behavior for times less than and
greater than the announced delay w. One exponential with
rate *�w� prevails up to time w, while a different expo-
nential with rate +�w� prevails afterwards. It also allows
the pure-exponential special case in which +�w� = *�w�
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for all w; then, we have the exponential time-to-abandon
distribution with rate *�w�, a function of w.
The Equilibrium Delay Equation for the Fluid Model.

Assuming that �> 1, we directly see that all possible equi-
librium delays for the all-exponential fluid model must sat-
isfy the equilibrium delay equation

w= log ���
)+*�w�

� (5.2)

Note that the equilibrium delay Equation (5.2) is indepen-
dent of the second abandonment rate function +�w�. As a
consequence, any fluid equilibrium delay w̃e itself is inde-
pendent of the function +�w�.

If *�w� is nondecreasing as well as continuous, there
necessarily exists a unique solution to (5.2) because the
left side of (5.2) is linearly increasing in w, while the
right side is necessarily nonincreasing in w, starting from
log ���/�)+ *�0�� > 0 at w= 0. It is elementary to check
that Condition 4.1 is satisfied for the all-exponential fluid
model above, provided that the two rate functions *�w� and
+�w� are nondecreasing as well as continuous. Then, there
is a well-defined delay-response function d and a unique
equilibrium fluid delay w̃e.

From the equilibrium Equation (5.2), it is readily appar-
ent how the fluid equilibrium delay w̃e depends on the
model parameters � and ) and the function *�w�, assum-
ing that *�w� is nondecreasing. As a special case of
Theorem 12.1 (in the electronic companion; see §10), we
see that w̃1� e > w̃2� e if *1�w� < *2�w� for all w > 0.

The Simple All-Exponential Model. We will focus on
the elementary special case in which both abandonment-
rate functions *�w� and +�w� are constant functions with
*�w�≡ * and +�w�≡ +; we call this case the simple all-
exponential model. Condition 4.1 is, of course, satisfied for
this special case. Then, we have the explicit equilibrium
fluid delay formula

w̃e =
log ���
)+*

� (5.3)

again independent of +.
Without announcements, we have the abandonment

rate �; with announcements, we have the balking rate )
and the abandonment rate *, up until time w̃e. For this
elementary model, the deterministic fluid approximations
are w̃1 = log ���/� for the delay of all served fluid with-
out an announcement and w̃e = log ���/�) + *� for the
equilibrium delay of all served fluid with an announce-
ment. Those simple equilibrium delay formulas show that
announcements cause the average delay to be multiplied by
the constant factor �/�)+*�. We anticipate the parameters
will be such that the multiplicative factor �/�)+*� is less
than one. For example, that will be true if ) = �, which
occurs if we have information-consistent balking as defined

in Definition 3.1. However, the main point is that we have
a simple quantification, which is a useful reference point,
both before and after performing more detailed analysis.

In the next section, we will show that the fluid approxi-
mation is remarkably accurate for the simple all-exponential
model when + = *, but not when + differs significantly
from *. That can be explained by the discontinuity in the
abandonment rate, right at the equilibrium point; we elabo-
rate in §7. Fortunately, the equilibrium expected steady-state
delay from the INA for the M/GI/s+GI model with an FD
announcement tends to provide a more accurate prediction.

6. Numerical Comparisons for
the All-Exponential Models

In this section, we compare the two approximations—the
fluid model and the INA—to simulations for the overloaded
simple all-exponential stochastic model with constant aban-
donment rates *�w�≡ * and +�w�≡ +.
The Iterative Numerical Approximation (INA). The

INA method determines the approximate equilibrium
expected steady-state delay for the associated M/M/s+GI

queueing model, assuming an FD announcement. The balk-
ing first reduces the arrival rate as a function of the
announced delay from � = �s to �e−)w as a function of
the fixed announcement w. In the queueing models, we
treat balking exactly because our balking mechanism is
equivalent to an independent thinning of a Poisson process,
which itself is a Poisson process.

Then, the abandonment distribution is the nonexponen-
tial distribution in (5.1) with two exponential components,
again as a function of the announced delay w, where
the two rates * and + are constants. The algorithm is
applied iteratively, with the new FD announcement being
the previously calculated expected conditional steady-state
delay given that the customer is served, until the observed
expected conditional steady-state delay differs only negli-
gibly from the fixed announced delay.

The approximation method in Whitt (2005) approximates
the M/GI/s+GI model by an M/M/s+M�n� model with
state-dependent abandonment rate. We refer to that paper
for a detailed explanation of the algorithm. Following (3.3)
of Whitt (2005), we construct the state-dependent abandon-
ment rate here out of the two individual exponential com-
ponents, having rates * and +. In our first attempt to do
so, we used the crude approximation with r�k�= r�k∗�*+
�k− k∗�+ for k > k∗, but we found that approximation led
to multiple fixed points, caused by �w crossing over an
integer point. Hence, we go beyond Whitt (2005) to care-
fully treat the boundary here. For that purpose, let 
x� be
the greatest integer less than or equal to x. Here, we let the
approximating state-dependent abandonment rate be r�k�,
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where

r�k�=




k*� 1� k� 
�w��
r�
�w��+ ��w−
�w��*

+ �
�w�+ 1−�w�+� k= 
�w�+ 1�

r�
�w�+ 1�+ �k−
�w�− 1�+�

k� 
�w�+ 2�

(6.1)

where � in (6.1) is the arrival rate after balking, i.e., �e−)w,
and w is the current FD announcement.
Comparisons with Simulations. We compare the two

approximation procedures—the fluid approximation and the
INA—to simulations. The simulation program was written
in C. The simulation results are based on 100 independent
replications of runs each with 1�000× � (=140,000 here)
arrivals. Data were collected after it was verified that initial
conditions had only negligible effect on performance. The
sample standard errors (standard deviation of the sample
mean over the 100 replications) are shown in Table 2 below
the estimates in parentheses.

We simulate both the specified M/M/s+GI model with
the DLS state-dependent announcements and the same
model having fixed announcements. We iterate the simu-
lations of the M/M/s+GI model having fixed announce-
ments until the long-run average delay for served customers
coincides with the fixed announced delay.

Table 1. A comparison of the fluid approximations with numerical calculations of steady-state performance
measures in the all-exponential model, without and with a delay announcement in the case �= 140.

All-exponential model with �= 140, s = 100, �= �= )= 1�0, * = 0�5, and two cases for +

Without an announcement With one announcement w̃e = 0�224

Performance measure Exact Fluid Numer. �+= 0�5� Numer. (+= 4�0) Fluid

Initial arrival rate 140�0 140�0 140�0 140�0 140�0
Balking rate 0�0 0�0 28�1 28�1 28�1
Reduced arrival rate 140�0 140�0 111�9 111�9 111�9
Abandon rate 40�0 40�0 12�1 12�2 11�9
Throughput rate 100�0 100�0 99�8 99�7 100�00

P�B� 0�000 0�000 0�201 0�201 0�201
P�A� 0�286 0�286 0�086 0�087 0�085
P�A∪B� 0�286 0�286 0�287 0�288 0�286

Prob�W > 0 �A∪ S� 1�000 1�000 0�956 0�938 1�000
E�Q� 40�0 40�0 24�3 17�3 23�7

E�W � S� 0�332 0�336 0�225 0�157 0�224
SD�W � S� 0�0997 0�000 0�134 0�088 0�000

E�W �A� 0�172 0�148 0�150 0�137 0�111
E�W%Bc� 0�286 0�286 0�217 0�155 0�212

P�W � 0�1 � S� 0�008 0�000 0�192 0�273 0�000
P�W � 0�2 � S� 0�092 0�000 0�443 0�647 0�000
P�W � 0�224 � S� 0�140 1�000 0�512 0�754 1�000
P�W � 0�4 � S� 0�757 1�000 0�897 1�000 1�000

Notes. Two cases are used for the greater-than-announcement-time abandonment rate: (i) �= 0�5= � and (ii) �= 4�0> 0�5= �.
In all cases, the constant fluid-equilibrium announcement w̃e = 0�224 is used as the announcement, without iteration.

We consider the simple all-exponential model with
s = 100 servers, individual service rate � = 1, individ-
ual without-announcement abandonment rate � = 1�0, and
arrival rate � = 140. We let the balking rate be equal to
the abandonment rate before an announcement () = � =
1�0) to obtain information-consistent balking. We let the
less-than-announcement-time abandonment rate * for those
who elect to wait be less than the abandonment rate with-
out an announcement (* = 0�5 < 1�0= �). For the greater-
than-announcement-time abandonment rate +, we consider
two cases: (i) one-parameter conditional abandonment, with
+= *, and (ii) two-parameter conditional abandonment,
with + �= *. Assuming that customers will become more
impatient if they have not been served by the announced
time, in the second case we assume that + > *. To take a
challenging case, we let += 4.

We display experimental results in Tables 1 and 2.
Table 1 contains preliminary results describing performance
of the two analytical methods—the fluid model and the
numerical algorithm from Whitt (2005). We describe the
performance with and without a single-number announce-
ment, but we approximate equilibrium only by making
the initial delay announcement be the fluid equilibrium
delay w̃e. (We do not iterate in Table 1.) In response to
that single announcement, the balking probability is B�w̃e�.
That produces a new M/M/s+GI model with common
reduced arrival rate �Bc�w̃e�. (Recall that there is only a
single fluid approximation for both cases because formu-
las (5.2) and (5.3) are independent of +.) In Table 1, we
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Table 2. A comparison between INA, iterative simulations with fixed delay announcements, and simulations with DLS
announcements in the all-exponential model.

Equilibrium fixed delay announcements vs. state-dependent announcements
Simulation results for �= 140, s = 100, �= �= )= 1�0, * = 0�5, and two cases for +

+= 0�5= * += 4�0 > 0�5= *

Equilibrium fixed State-dependent Equilibrium fixed State-dependent

Perf. measure INA Sim. DLS INA Sim. DLS

Announcement 0�225 0�225 last 0�1616 0�155 last
Reduced arr. rate 111�8 111�8 112�1 119�11 119�8 118�6
P�B� 0�201 0�201 (0.000091) 0�199 (0.00022) 0�149 0�144 (0.00010) 0�153 (0.00022)
P�A� 0�086 0�087 (0.00028) 0�086 (0.000092) 0�137 0�143 (0.00028) 0�132 (0.00013)
E�Q� 24�3 24�3 (0.084) 24�2 (0.030) 18�8 18�5 (0.025) 19�4 (0.027)
E�W � S� 0�225 0�225 (0.00079) 0�226 (0.00031) 0�1616 0�155 (0.00021) 0�169 (0.00026)
SD�W � S� 0�134 0�133 (0.00038) 0�091 (0.00017) 0�066 0�066 (0.00013) 0�072 (0.00012)
E�W �A� 0�150 0�149 (0.00040) 0�129 (0.00019) 0�137 0�145 (0.00010) 0�136 (0.00017)

E�Wa� 0�224 0�224 0�226 (0.00032) 0�162 0�155 0�169 (0.00026)
E�W −Wa � S� 0�00096 (0.00079) 0�011 (0.000025) 0�00050 (0.00021) 0�0057 (0.000014)
E��W −Wa� � S� 0�108 (0.00033) 0�055 (0.000081) 0�052 (0.00010) 0�039 (0.000047)
E��W −Wa�2 � S� 0�018 (0.00010) 0�0050 (0.000016) 0�0044 (0.000017) 0�0025 (0.0000056)
Prob�W >Wa� 0�456 0�367 (0.0018) 0�418 (0.00028) 0�523 0�477 (0.00097) 0�470 (0.00023)

Note. Two cases are used for the after-announcement-time abandonment rate: �= � = 0�5 and �= 4�0> 0�5= �.

often condition on the event S that the customer is served
or the event A that a customer abandons. Let B here be
the event that a customer balks. Let E�W � Bc� be the con-
ditional expected delay for those who do not balk, and let
E�W%Bc�=E�W � Bc�P�Bc�.

Because the traffic intensity is � = 1�4, the system is
significantly overloaded, so we expect close agreement
between the fluid model and the exact numerical com-
putation without a delay announcement (which is exact
because the model is M/M/100+M), and indeed, that is
what we see. With the fluid model, the equilibrium delay
is reduced from 0�336 without an announcement to w̃e =
0�224 with the equilibrium fluid announcement. With that
equilibrium delay, the reduced arrival rate after balking
is 111�9, so that the system remains overloaded after the
announcement.

From Table 1, we see that the performance predictions
for the fluid model agree very closely with those from the
numerical algorithm in the case + = * = 0�5, but are not
nearly so close when += 4�0 > 0�5= *. The balking prob-
ability is necessarily the same, and the abandonment prob-
ability is very close, but the mean queue length E�Q� and
the mean waiting time of served customers E�W � S� differ
considerably when +> *.

Table 2 displays corresponding equilibrium results for
the INA and simulations for the two specific cases dis-
cussed in Table 1: (i) + = 0�5 = * and (ii) + = 4�0 >
0�5 = *. In addition to the previous notation, Wa denotes
the announced waiting time, which is itself a random
variable with state-dependent announcements. We per-
form two different simulations, both involving equilibrium
behavior. First, we iterate simulations in which we make

FD announcements, iterating until the fixed announcement
agrees with the long-run average delay of a served cus-
tomer, and second, we simulate with DLS announcements.
The iterative simulation is directly verifying the accuracy
of the INA. In Armony et al. (2007), we show the numer-
ical results for each of the iterations used to obtain the
equilibrium fixed delays. In these cases, no more than four
iterations were required.

Tables 1 and 2 show, first, that the two approximation
methods—the fluid model and INA—are both remarkably
accurate (with less than 1% error) when += * = 0�5, and
second, that the INA is quite accurate (with 4% error) in the
second case when + = 4�0 > 0�5 = *. However, the fluid
approximation is not nearly so accurate (with 33% error)
in the second case when + = 4�0 > 0�5 = *. We saw in
Equation (5.3) that the fluid equilibrium is independent of
the second abandonment rate +. Evidently, that is a short-
coming of the fluid approximation for this model. Thus, as
stated before, the fluid approximation should be regarded
as only a crude approximation.

On the other hand, the INA is remarkably effective. The
results for the INA agree quite closely with both associ-
ated iterative simulations with FD announcements and DLS
simulations. The comparison with the iterative simulation
further substantiates the accuracy of the approximation in
Whitt (2005). The comparison with the DLS simulation
shows that the INA does indeed predict the aggregate DLS
performance remarkably well.

From Table 2, we also see that the state-dependent
DLS announcements yield more reliable predictions than
the FD announcements because the the expected abso-
lute difference E��W −Wa� � S� and the expected squared
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Figure 2. The effect of the assumed greater-than-
announcement-time abandonment rate + on
the expected delays for both DLS announce-
ments and the two approximations—the fluid
model and INA—for the current example
with * = 0�5.
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difference E��W − Wa�2 � S� are smaller with the DLS
announcements.

The poor performance of the fluid model when += 4�0 >

0�5 = * led us to investigate more carefully the depen-
dence of performance on the greater-than-announcement-
time abandonment rate +. Consistent with Table 2 and
intuition, E�W � S� decreases for DLS announcements as
+ increases. Through simulations, we found that the fluid
approximation agrees most closely with the actual perfor-
mance for DLS announcements when += *. Figure 2 pro-
vides more detail for the special case * = 0�5. Unlike the
fluid model approximation, we found that INA is consis-
tently quite accurate when + �= *. For example, INA esti-
mates E�W � S� as 0�235 when += 0�25 and as 0�189 when
+= 2�0.

The example considered in Tables 1 and 2 is quite heav-
ily loaded. We consider examples with lower arrival rates
(120 and 110) and higher balking probability () = 2�0
instead of ) = 1�0), but still with + = 4�0 > 0�5 = * in
Tables 5 and 6 of Armony et al. (2007). Because these mod-
els are also overloaded before the announcement, it should
come as no surprise that the approximations are effective
before considering the announcement. As we should antic-
ipate, the accuracy of the INA approximation after the
announcement decreases as the load decreases, with the
error increasing from 4% for �= 140 to 16% for �= 120
and 18% for �= 110, but surprisingly the error in the fluid
approximation actually declines, with the error decreasing
from 33% for � = 140 to 28% for � = 120 and 15% for
�= 110.

7. Insight into the Performance of
the Fluid Approximation

From Figure 2, we see that the fluid approximation w̃e for
the equilibrium delay is accurate when + = * = 0�5, but
is quite inaccurate when + �= *. When + < 0�5 = *, the
fluid approximation underestimates the simulated value, but
when + = 4�0 > 0�5 = *, the fluid approximation over-
estimates the simulated value. The fluid approximation is
0�224, while the simulated values for equilibrium fixed
delay and last experienced delay are 0�155 and 0�169,
respectively. For these cases, the fluid model overestimates
the actual value by about 30%. This is unexpected because
we are accustomed to fluid approximations underestimating
the actual stochastic values, because the extra variability
ignored in the deterministic fluid approximation tends to
increase congestion.

This phenomenon can be understood by, first, recog-
nizing that the actual waiting times for served customers
should fluctuate around the equilibrium expected value
E�W � S�, and second, by analyzing the consequences of
such fluctuations. Consistent with the numerical results in
the last section, we show in this section that the stochas-
tic fluctuations about the fluid equilibrium should cause no
problem when += *, but the fluid equilibrium delay should
significantly overestimate the simulated value when +> *.
Perturbation Analysis. We accomplish this goal by con-

sidering the impact of a small perturbation of the equilib-
rium announcement in the all-exponential fluid model in §5
when *�w�= * and +�w�= +. Recall that the fluid equi-
librium wait is w̃e = log ���/�) + *�. First, we consider
the case of delays greater than w̃e. For that purpose, sup-
pose that the actual delay is w̃e + 0 instead of w̃e, where
0 > 0, so that we announce w̃e+0 as well. If we work with
the fluid model, using (3.6) and (5.1), then the experienced
delay for a served customer, d�w̃e + 0�, will satisfy

�e−)�w̃e+0�e−*d�w̃e+0� = 1� (7.1)

which leads to

d�w̃e + 0�= log ���−)�w̃e + 0�

*
= w̃e −

)0

*
< w̃e� (7.2)

The situation is more interesting when we suppose that
the actual delay is w̃e−0 for 0 > 0, and announce w̃e−0 as
well. When += *, the reasoning in (7.1) applies, whether
0 is positive or negative, but in this case the experienced
delay is greater by the same difference �)/*�0. As a con-
sequence, if the true delay distribution is symmetric around
w̃e, then the two errors will tend to cancel.

However, the situation is very different when + �= *. In
this second situation when we announce w̃e − 0, (3.6) and
(5.1) produce the equation

�e−)�w̃e−0�e−*�w̃e−0�e−+�d�w̃e−0�−w̃e+0� = 1� (7.3)
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which leads to

d�w̃e − 0�= log ���
+

+ �+−)−*��w̃e − 0�

+

= w̃e − 0
�+−)−*�

+
� (7.4)

From (7.2) and (7.4), we see that if + > ) + *, then
d�w̃e + 0� < w̃e, both when 0 > 0 and 0 < 0, so we can
anticipate that stochastic fluctuations of any kind will make
the actual equilibrium wait less than the fluid approxima-
tion w̃e. That partially explains the results for + > *. (On
the other hand, if +< )+*, then d�w̃e − 0� > w̃e.)

For more general fluid models, we see that we have the
good behavior above provided that the conditional time-
to-abandon c.d.f. F �t � w� has a continuous derivative as
a function of t at t = w = w̃e. This requirement is quite
natural and should be expected to hold in practice. The
example with + = 4�0 > 0�5 = * is actually less likely to
occur. The following example shows that the good behavior
for += * extends to the more general model with nonde-
creasing functions *�w� and +�w� when +�w�= *�w� for
all w.

Example 7.1 (Linear Abandonment Rates). To inves-
tigate other all-exponential models with +�w� = *�w� for
all w, we considered the special case of linear functions:
*�w� = *0 + *1w, where *0 and *1 are positive con-
stants. To relate to the simple all-exponential model, we
chose the constants *0 and *1 to have the same equi-
librium w̃e = 0�224 as when *�w� = * = 0�5. That dic-
tates that we satisfy the equation *0 + *1�0�224� = 0�5.
Accordingly, we considered the following three cases:
(i) �*0� *1�= �0�000�2�232�, (ii) �*0� *1�= �0�250�1�116�,
and (iii) �*0� *1� = �0�450�0�223�. For these three cases,
we obtained the following simulation estimates for DLS
announcements: E�W � S� = 0�2208, 0�2216, and 0�2262,
respectively. The errors in the fluid approximations are all
less than 2%.

Quantifying the Impact of Stochastic Fluctuations.
We now consider how to approximately quantify the
impact. To do so, as a rough approximation, we suppose
that the actual delay is normally distributed with mean w̃e

and standard deviation 1e. First, we can apply (7.2) and
(7.4) to obtain

d�w̃e +1eN�0�1��≈ w̃e +d+�w̃e�1eN �0�1�+

+d−�w̃e�1eN �0�1�−� (7.5)

where d+�x� and d−�x� are the right and left derivatives
of d at x, �x�+ ≡ max�x�0� and �x�− ≡ −min�x�0� � 0.
Next, recalling that E��N�0�1��� = √

2/3 ≈ 0�8, we can
apply (7.5) to obtain the associated numerical estimate

E�d�w̃e +1eN�0�1���

≈ w̃e − 0�8
1e

2

(
)

*
+ +−)−*

+

)
� (7.6)

We can check to see if this is consistent with our numer-
ical example in Table 2. For that example, we had ) = 1
and * = 0�5. We had two cases for +: + = * = 0�5 and

+= 4�0. From (7.6), we see that the adjustment is zero, so
that d�w̃e + 1eN�0�1��≈ w̃e if += *, which is consistent
with our numerical results.

The other case with + = 4�0 leads to the approxima-
tion d�w̃e + 1eN�0�1�� ≈ w̃e − 1�051e, but we have yet
to determine the standard deviation. Suppose that we use
the simulation estimate for the standard deviation, using
the announcement of the delay of the last customer to be
served. Then, we get the estimate 1e ≈ SD�W � S�= 0�072.
That yields the detailed approximation 4 ≈ 0�224−0�076=
0�148. That produces an estimate that is 12% too small,
compared to the original fluid approximation w̃e = 0�224,
which is 32% too large.

Of course, to be able to make a priori predictions, we
need to produce an estimate for the standard deviation
1e, without exploiting simulation results. More generally,
the nonlinear behavior of the abandonment rate at the
announcement time is likely to make the actual distribution
non-Gaussian. Better quantifying the impact of stochastic
fluctuations remains a problem for future research.

8. Multiple Equilibria
As observed in §4, the general conditions ensuring a unique
fluid equilibrium in Condition 4.1 seem quite natural, but
we should be cautious about human response. For the gen-
eral all-exponential model in (5.1), if the abandonment rate
*�w� fails to be nondecreasing, there can be multiple solu-
tions to the equilibrium Equation (5.2). It is not entirely
unreasonable to have *�w� decreasing over subintervals
because more customers will elect to balk as w increases
by our assumed exponential balking c.d.f. B. It is possi-
ble that the customers who decide to wait in response to a
delay announcement w, instead of balk, tend to be the more
patient customers as that announcement w increases; the
less patient customers may already have balked. If *�w� is
indeed decreasing over subintervals, then it is possible for
there to exist multiple equilibria.

To illustrate, we consider an example, which is chosen
to be easy to analyze rather than realistic. Suppose that

*�w�= 4�0� 0�w < 0�10�

*�w�= 7�5− 35w� 0�10�w < 0�20�

*�w�= 0�5� t > 0�20�

(8.1)

We have constructed *�w� to be constant over the two
subintervals �0�0�10� and �0�20���, linear and decreas-
ing in the interval �0�10�0�20�, and continuous overall. It
is elementary to see that the fluid model has three equi-
libria, with one in each region: the three fluid equilibria
are w̃e = 0�0672, w̃e = 0�193, and w̃e = 0�224. The aban-
donment rates at these three equilibria are, respectively,
*�0�0672�= 4�0, *�0�193�= 0�7395, and *�0�224�= 0�5.
The associated fluid queue contents are q�0�672�= 0�077,
q�0�193�= 0�180, and q�0�224�= 0�237. One may multi-
ply by s = 100 to get the associated approximating queue
lengths.
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Corresponding to each of these three fluid equilibria, we
find an INA equilibrium by iteratively applying the numer-
ical algorithm for the M/M/s+M model. The three INA
equilibria occur at 0�0643, 0�1933, and 0�225. The asso-
ciated equilibrium abandonment rates are 4�0, 0�7345, and
0�5. The associated equilibrium queue lengths are 7�89,
21�2, and 23�7. These three INA equilibria are bonafide
equilibria for the case of FD announcements, as con-
firmed by simulations. With FD announcements, the system
manager would thus have a choice of equilibrium delay
announcements. Presumably, the one yielding the lowest
delay should be used.

On the other hand, we conjecture that there exists a
unique equilibrium with DLS announcements, but with the
steady-state distributions influenced by the abandonment-
rate function. The intuition is that the adaptive DLS
announcements, together with stochastic fluctuations,
should lead to a full range of experienced delays over
time, and thus announcements, preventing the system from
“getting stuck” in the region of any fixed announce-
ment equilibrium. That means that the DLS steady-state
behavior will not be like any one fluid equilibrium, but
will in some sense reflect all of them. We illustrate
in Figure 3 by plotting histograms estimating the den-
sity of the steady-state queue-length distribution associ-
ated with DLS announcements estimated from simulation
in three cases: (i) * = 0�5, (ii) * = 4�0, and (iii) nonlin-
ear *�w� in (8.1). For constant abandonment rate, we have
the M/M/s+M model for which the queue-length distri-
bution is asymptotically normally distributed around the

Figure 3. Histograms of the steady-state queue-length distribution for the all-exponential model with +�w�= *�w� for
all w, in three cases: (i) * = 0�5, (ii) * = 4�0, and (iii) nonlinear *�w� in (8.1).
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fluid equilibrium. We see the decidedly different skewed
steady-state distribution for the nonlinear abandonment rate
in (8.1). Sample paths of the queue-length process also
show excursions in the lower-announcement and higher-
announcement regions; see the e-companion.

9. Conclusions
We introduced two specific single-number delay announce-
ment schemes intended for heavily-loaded invisible multi-
server queues: (i) the delay of the last customer to enter
service (DLS), and (ii) the equilibrium fixed delay (FD)
announcement, a fixed deterministic announced delay cho-
sen to coincide with the mean steady-state delay. We
emphasized the equilibrium behavior associated with such
delay announcements, where the customers respond to the
announcements, the system performance depends on the
customer response, and the announcements depend on
the system performance. We also introduced a modelling
framework to study the equilibrium behavior of these delay
announcements. The starting point is our modelling of cus-
tomer response through the balking and abandonment func-
tions B�w� and F �t � w�. Given that model, we showed
that simulation can be used to evaluate the steady-state
performance of delay announcements within conventional
queueing models, such as the many-server M/GI/s+GI
model, where we iteratively apply the simulation to find the
equilibrium behavior associated with FD announcements.
We can thus determine the performance impact of these
delay announcements. The simulation experiments showed
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that the delay announcements in overloaded regimes can
significantly reduce the delays of served customers with-
out adversely affecting the number of customers receiving
service.

Our investigation shows that the state-dependent an-
nouncements are more reliable than FD announcements,
yielding smaller average absolute error and average squared
error. The equilibrium FD announcement (making the
actual delay equal to the announced delay) is approximately
equal to the average of the state-dependent DLS predic-
tions, but the variation is greater.

We also developed mathematical models and analysis
techniques to provide additional insight into the perfor-
mance impact of these delay announcements. Specifically,
we introduced two methods to describe the approxi-
mate performance with these delay announcements: (i) a
deterministic fluid model, extending the fluid model in
Whitt (2006), and (ii) an iterated numerical algorithm
(INA), based on Whitt (2005), assuming the use of an
FD announcement. We conducted simulation experiments
to evaluate the accuracy of these approximations. These
approximations were found to be remarkably accurate con-
sidering that they are only simplified rough descriptions of
a very complicated system.

We showed that the fluid model is sufficiently tractable to
obtain solid theoretical results. For example, Theorem 4.1
provides general conditions for the existence of a unique
equilibrium delay in the fluid model, while formula (5.3)
provides an explicit formula for the equilibrium delay in
the simple all-exponential model. In §8, we showed that
the fluid model is effective at predicting important qualita-
tive behavior, such as the multiplicity of equilibrium points
in the case of FD announcements. In the e-companion,
we show that the fluid model can also be applied to pre-
dict the performance impact of biased announcements. We
have thus shown that the fluid model provides both impor-
tant insight and a useful means to perform “back-of-the-
envelope” performance calculations.

There are many important directions for future research.
First, we need to study the actual human response to delay
announcements, following Brown et al. (2005), Feigin
(2006), and Munichor and Rafaeli (2006). To what extent
is the customer-response model based on the balking and
abandonment functions B�w� and F �t � w� justified? And
what properties do these functions satisfy? With such
empirical studies in mind, it is also natural to investigate
to what extent these balking and abandonment functions
B�w� and F �t � w� arise via individual customers maxi-
mizing their expected utility from service and waiting, as
postulated by Guo and Zipkin (2007). If that view is appro-
priate, then we should consider equilibrium analysis in that
framework.

Second, we need to systematically investigate the effec-
tiveness of alternative real-time delay estimators based on
recent system state. A study of alternative delay estimators

based on recent delay history in the GI/M/s model, with-
out considering customer response, has been conducted by
Ibrahim and Whitt (2008). That study supports the use of
DLS, but more work is needed, including the investigation
of more complex models involving equilibrium behavior.
We have seen that the DLS delay announcements can be
quite effective for a single M/GI/s+GI model. We need
to test the performance of the DLS in more complex mul-
tiskill environments, typical of modern call centers.

Finally, we want to obtain theoretical results for DLS
and related announcements in actual queueing models, par-
alleling the theoretical results for the fluid model obtained
in this paper. To repeat what we said at the outset, there
are many open questions about system dynamics: (i) Under
what conditions does there exist an equilibrium steady-state
behavior for the actual system with DLS announcements
and the postulated customer response? (ii) If there is an
equilibrium, when is it unique? When can there be multiple
equilibria? (iii) How do the stochastic processes evolve as
a function of the initial conditions?

We would like to be able to conclude that there exists
a unique equilibrium delay for the DLS announcement
scheme under general regularity conditions. However, it is
natural to first seek easier asymptotic results. As a first
step, we could try to demonstrate asymptotic accuracy of
DLS and asymptotic validity of the fluid model in the
efficiency-driven many-server heavy-traffic limiting regime,
as in Whitt (2006). We seek asymptotic support as pro-
vided by Armony and Maglaras (2004a, b) for their call-
back scheme.

10. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.
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