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Abstract

We consider a player who faces an arbitrary opponent (or environment), in the sense that actions
of the latter are not predictable. Repeated games offer an opportunity for adaptive play against such
an opponent, in the sense that the minimax payoff may be improved upon if the opponent deviates
from his worst-case strategy. For repeated matrix games, in particular, well known results establish
the existence of no-regret strategies; such strategies secure a long-term average payoff that comes close
to the maximal payoff that could be obtained by playing a fixed action that is best, in hindsight,
against the observed action sequence of the opponent. This paper considers the extension of these
ideas to repeated games with variable stage duration, where the duration of each stage of the game
may depend on the actions of both players, while the performance measure of interest is the average
payoff per unit time. We start the analysis of this model by showing that no-regret strategies, in the
above sense, do not exist in general. Consequently, we consider two classes of adaptive strategies, one
based on Blackwell’s approachability theorem and the other on calibrated forecasts, and examine their
performance guarantees. In either case we show that the long-term average payoff is higher than a
certain function of the empirical distribution of the opponent’s actions, and in particular is strictly
higher than the minimax value of the repeated game whenever that empirical distribution deviates from
a minimax strategy in the stage game. Along the way, we provide sufficient conditions for existence of
no-regret strategies in our model.
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1 Introduction

Consider a repeated game from the viewpoint of a certain player, say player 1, who faces an arbitrary
opponent, say player 2. The opponent is arbitrary in the sense that player 1 has no prediction,
statistical or strategic, regarding the opponent’s choice of actions. Such an opponent can represent
the combined effect of several other players, as well as arbitrary-varying elements of Nature’s state.
The questions that arise naturally are how should player 1 act in this situation, and what performance
guarantees can he secure against an arbitrary opponent.

In a single-stage game, the most obvious option for player 1 is to play his maximin strategy (with
respect to his own payoff function), thereby securing for himself the value of the corresponding zero-
sum game. More is possible in a multi-stage game, provided that the previous actions of the other
player (or at least some signals that depend on these actions) are observed by player 1. An adaptive
strategy of player 1 thus seeks to improve upon the zero-sum value by exploiting observed deviations
of the arbitrary player from a worst-case strategy. The point is that player 2 need not be antagonistic,
and his observed action history may indeed reveal that he is not utilizing a worst-case strategy. Still,
since past actions of an arbitrary player do not reveal anything about his subsequent choices, it is far
from obvious how to capitalize on this information.

An elegant solution was provided by Hannan (1957), in the context of repeated matrix games. Han-
nan introduced the Bayes utility against the current (n-stage) empirical distribution of the opponent’s
actions as a performance goal for adaptive play. This quantity coincides with the highest average
payoff that player 1 could achieve, in hindsight, by playing some fixed action against the observed
action sequence of player 2. Player 1’s regret can now be defined as the difference between the above
Bayes utility and the actual n-stage average payoff obtained by player 1. Hannan established the
existence of no-regret strategies for player 1, that guarantee non-positive regret in the long run. More
precisely, an explicit strategy was presented for which the n-stage regret is (almost surely) bounded
by an O(n−1/2) term, without requiring any prior knowledge on player 2’s strategy or the number of
stages n. Consequently, when the empirical distribution of the opponent’s actions deviates from his
worst-case strategy in the matrix game, the long-term average payoff for player 1 exceeds the minimax
value of the game.

Hannan’s seminal work was continued in various directions. No-regret strategies in the above sense
have been termed regret minimizing, Hannan consistent, and universally consistent. The original strat-
egy proposed in Hannan (1957) is essentially perturbed fictitious play, namely playing best-response
to the current empirical distribution of player 2, to which a random perturbation is added. Subse-
quent works developed no-regret strategies that rely on Blackwell’s approachability theory (Blackwell,
1956b; Hart and Mas-Colell, 2000, 2001), smooth fictitious play (Fudenberg and Levine, 1995, 1999),
calibrated forecasts (Foster and Vohra, 1997, 1999), multiplicative weights (Freund and Schapire, 1999),
and online gradient ascent (Zinkevich, 2003). Extensions have considered monitoring of rewards only
(Auer et al., 2002), general signal monitoring (Rustichini, 1999), and wider definitions of regret (Fu-
denberg and Levine, 1999a; Lehrer, 2003). For an overview see Foster and Vohra (1999), Hart (2005),
Cesa-Bianchi and Lugosi (2006).

The model we consider in this paper extends the standard repeated matrix game model by associ-
ating with each stage of the game a temporal duration, which may depend on the actions chosen by
both players at the beginning of that stage. Moreover, the performance measure of interest to player
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1 is the average reward per unit time (rather than the per-stage average). We refer to this model as a
repeated variable-duration game. The interest in this model is quite natural, as many basic games and
related decision problems do have variable length: One can number in this group sequential gambling,
board games, investment choices, medical treatment selection, and many others. The proposed model
is then the relevant one provided that the player’s interest is indeed in the average reward per unit
time, rather than the average reward per stage.

Let us expand briefly on two (somewhat academic) examples to illustrate how the variable-duration
model arises in specific problems. Consider the game of chess first. Each game instance (ending with
win, loose or draw) can be considered as a matrix game, with a finite albeit impractically large number
of actions. However, our player may well consider choosing at the start of each game between a
much simpler set of decisions, such as the choice of an opening, or adopting an “aggressive”, “mild” or
“defensive” play (with similar choices for the opponent, augmented possibly by the opponent’s strength
in case of a random Internet opponent). Each of these options may lead to a different play time for
each game (on the average). Now, if our player is interested in maximizing the percentage of games
won, then the game duration is of no consequence to her and the standard repeated game model is
appropriate. But if, alternatively, our player is interested in maximizing the number of points won
per unit time (as might be the case if winning is each game is associate with monetary gain, or if our
player wishes to increase her Internet player rating as quickly as possible), then the appropriate model
is that of a variable-duration repeated game.

As a second illustration consider the problem of sequential investment in an arbitrarily varying
market. This problem has been well studied, and overviews may be found in Cover and Thomas (2006),
Cesa-Bianchi and Lugosi (2006). Consider the variant where the player needs to choose between several
available investment vehicles, say a couple of non-redeemable fixed-term bonds with different maturity
dates. In the standard problem formulation the player can change his choice at every time unit, which
leads to a repeated game formulation. However, for non-redeemable bonds, this is not the case, and
the simplest model that accommodates this restriction is that of a variable-duration repeated game.

Our purpose then is to examine decision strategies and performance goals that are suitable for
adaptive play against a arbitrary opponent in repeated variable-duration games. While this model
may be viewed as the simplest non-trivial extension of standard repeated games, it will quickly turn
out that a direct extension of Hannan’s no-regret framework is impossible in general. We start by
formulating a natural extension of Hannan’s empirical Bayes utility to the present model, to which we
refer as the empirical best-response envelope. This average payoff level is easily seen to be attainable
when the stage duration depends only on player 2’s action. However, a relatively simple counter-
example shows that it cannot be attained in general. Hence, in the rest of the paper we turn our
attention to weaker performance goals that are attainable. This will be done using two of the basic tools
that have previously been used for regret minimization in repeated matrix games, namely Blackwell’s
approachability theorem and calibrated play.

We note that the repeated variable-duration game model that we consider here is closely related to
certain stochastic game models (in the sense of Shapley, 1953). This relationship and its consequences
will be further discussed in Section 7.

The paper is organized as follows. Our repeated game model is presented in section 2, together with
some preliminary properties. Section 3 defines the empirical Bayes envelope for this model, gives an
example for a game in which this envelope is not attainable, and presents some more general conditions
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under which the same conclusion holds. Section 4 discusses briefly certain desiderata for adaptive play
against an arbitrary opponent. These properties will provide a yardstick for measuring the performance
of the strategies we subsequently consider. In Section 5 we apply approachability theory to our model.
By applying a convexification procedure to the Bayes envelope, we exhibit a weaker performance goal,
the convex Bayes envelope, which is indeed attainable. In Section 6 we examine calibrated play and its
associated performance guarantees. The final Section 7 considers some additional options of interest
for adaptive strategies, discusses the relation to stochastic games, and closes with some directions for
further study.

2 Model Formulation

We consider two players, player 1 (P1) and player 2 (P2), who repeatedly play a variable-duration
matrix game. Let I and J denote the finite action sets of P1 and P2, respectively. The stage game is
specified by a reward function r : I×J → IR and a strictly positive duration function τ : I×J → (0,∞).
Thus, r(i, j) denotes the reward corresponding to the action pair (i, j), and τ(i, j) > 0 is the duration
of the stage game1. Let Γ(r, τ) denote this single-stage game model. We note that the reward function
r is associated with P1 alone, while P2 is considered an arbitrary player whose utility and goals need
not be specified.

The repeated game proceeds as follows. At the beginning of each stage k, where k = 1, 2, . . . , P1
chooses an action ik and P2 simultaneously chooses an action jk. Consequently P1 obtains a reward
rk = r(ik, jk), and the current stage proceeds for τk = τ(ik, jk) time units, after which the next stage
begins. The average reward per unit time over the first n stages of play is thus given by

ρn =
∑n

k=1 rk∑n
k=1 τk

. (2.1)

We shall refer to ρn as the (n-stage) reward-rate. It will also be convenient to define the following
per-stage averages:

r̂n =
1
n

n∑

k=1

rk , τ̂n =
1
n

n∑

k=1

τk

so that ρn = r̂n/τ̂n. The beginning of stage k will be called the k-th decision epoch or k-th decision
point.

We will consider the game from the viewpoint of P1, who wishes to maximize his long-term reward
rate. P2 is an arbitrary player whose goals are not specified, and whose strategy is not a-priori known
to P1. We assume that both players can observe and recall all past actions, and that the game
parameters (r and τ) are known to P1. Thus, a strategy σ1 of P1 is a mapping σ1 : H → ∆(I),
where H is the set of all possible history sequences of the from hk = (i1, j1, . . . , ik, jk), k ≥ 0 (with h0

the empty sequence), and ∆(I) denotes the set of probability measures over I. P1’s action ik is thus
chosen randomly according to the probability measure xk = σ(hk−1). A strategy of P1 is stationary if
σ1 ≡ x ∈ ∆(I), and is then denoted by (x)∞. A strategy σ2 of P2 is similarly defined as a mapping
from H to ∆(J). We denote this repeated game model by Γ∞ ≡ Γ∞(r, τ).

1In some applications it may be more natural to specify the model in terms of a reward-rate function ρ(i, j), in which

case r(i, j) = ρ(i, j)τ(i, j). The two representations are of course equivalent.
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We next establish some additional notations and terminology. It will be convenient to denote ∆(I)
by X and ∆(J) by Y . An element x ∈ X is a mixed action of P1, and similarly y ∈ Y is a mixed
action of P2. We shall use the bilinear extension of r and τ to mixed actions, namely

r(i, y) =
∑

j

r(i, j)yj ,

r(x, y) =
∑

i,j

xir(i, j)yj ,

and similarly for τ .
The reward-rate function ρ : X × Y → IR is defined as

ρ(x, y)
4
=

r(x, y)
τ(x, y)

=

∑
i,j xir(i, j)yj∑
i,j xiτ(i, j)yj

. (2.2)

This function will play a central role in the following. It is easily seen (using the strong law of large
numbers and the renewal theorem) that for any pair of stationary strategies σ1 = (x)∞ and σ2 = (y)∞

we have

lim
n→∞

ρn = ρ(x, y) (a.s.) (2.3)

lim
n→∞

IE(ρn) = ρ(x, y) . (2.4)

As usual, the a.s. qualifier indicates that the respective event holds with probability one under the
probability measure induced by the players’ respective strategies.

We further define an auxiliary (single-stage) game Γ0(r, τ) as the zero-sum game with actions sets
X for P1 and Y for P2, and payoff function ρ(x, y) for P1. Note that ρ as defined by (2.2) is not
bilinear in its arguments. We next establish that this game has a value, which we denote by v(r, τ),
as well as some additional properties of the reward-rate function ρ.

Lemma 2.1 (Basic properties of ρ)

(i) v(r, τ)
4
= max

x∈X
min
y∈Y

ρ(x, y) = min
y∈Y

max
x∈X

ρ(x, y) .

(ii) Let X∗ denote the set of optimal mixed actions for P1 in Γ0(r, τ), namely the maximizing set
in the max-min expression above, and similarly let Y ∗ be the minimizing set in the min-max
expression. Then X∗ and Y ∗ are closed convex sets.

(iii) For every fixed y, ρ(·, y) is maximized in pure actions, namely

max
x∈X

ρ(x, y) = max
i∈I

ρ(i, y) .

(iv) The best-response payoff function ρ∗(y)
4
= maxx∈X ρ(x, y) is Lipschitz continuous in y.

Proof: As we note below, the stated results may be deduced from known ones for semi-Markov games.
For completeness we outline a direct proof. Let v and v denote the max-min and min-max values in
(i), respectively. Obviously v ≤ v, so we need to show that v ≥ v. Let v0 satisfy the equation

val{r(i, j)− v0τ(i, j)} = 0,
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where val{m(i, j)} is the value of the zero-sum matrix game with payoffs m(i, j). Existence of such v0

easily follows by continuity, as the left-hand side is clearly positive for v0 small enough, and negative
for v0 large enough. It may easily be verified that v ≥ v0 and v0 ≥ v, thus establishing (i). Part (ii)
now follows by verifying that the optimal action sets of P1 and P2 in the matrix game just described
coincide with X∗ and Y ∗, respectively. Part (iii) follows similarly by noting that α = maxx∈X ρ(x, y)
is equivalent to maxx∈X(r(x, y) − ατ(x, y)) = 0, where the last function is linear in x, hence attains
its maximum at extreme points. Finally, (iv) follows since τ is bounded away from 0, so that ρ∗ is the
maximum of a finite number of functions (from (iii)) which are Lipschitz continuous over Y . ¤

Part (i) of this lemma together with (2.4) imply that v(r, τ) is the min-max value of the repeated
game Γ∞(r, τ) when both players are restricted to stationary strategies. We note that this is also the
value for general strategies, namely

v(r, τ) = inf
π2

sup
π1

lim sup
n→∞

IE(ρn) = sup
π1

inf
π2

lim inf
n→∞

IE(ρn) .

where the infimum and supremum are taken over all the strategy sets of the respective players, and
the expectation is according to the measure induced by the strategy pair in effect. This follows from
the results of Lal and Sinha (1992), as the repeated game Γ∞ that is considered here is a special case
of Semi-Markov Games which are treated in that paper.
Remark: We assume for simplicity that the rewards and durations in the stage game are deterministic
quantities. This model may be extended to accommodate random rewards and durations, with r(i, j)
and τ(i, j) now representing their expected values. All main results of this paper can be extended
to this case under appropriate technical conditions — for example, bounded second moments for the
reward and duration random variables, and stage durations which are bounded away from zero.

3 No-Regret Strategies and the Best-Response Envelope

In this section we define the empirical best-response envelope as a natural extension of the correspond-
ing concept for fixed duration games. P1’s regret is defined as the difference between this envelope
and the actual reward-rate, and no-regret strategies must ensure that this difference becomes small (or
negative) in the long run. We first observe that no-regret strategies indeed exist when the duration
of the stage game depends only on P2’s action (but not on P1’s). However, the main result of this
section is a negative one – namely that no-regret strategies need not exist in general. This is first
shown in a specific example, and then shown to hold more generally under certain conditions on the
game parameters.

We note that a counter example similar in spirit to Example 3.1 below has been given in Mannor
and Shimkin (2003) in the context of regret minimization for stochastic games. As these two examples
rely on the specifics of the relevant models, neither implies the other.

Let ŷn ∈ Y denote the empirical distribution of P2’s actions up to stage n. That is,

ŷn(j) =
1
n

n∑

k=1

1{jk = j},

where 1{C} denotes the indicator function for a condition C. Clearly ŷn ∈ Y . The best-response
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envelope (or Bayes envelope) of P1, ρ∗ : Y → IR, is defined by

ρ∗(y)
4
= max

i∈I

r(i, y)
τ(i, y)

= max
i∈I

ρ(i, y) . (3.1)

Observe that ρ∗(y) maximizes ρ(x, y) over mixed actions as well, namely

ρ∗(y) = max
x∈X

r(x, y)
τ(x, y)

= max
x∈X

ρ(x, y) , (3.2)

as per Lemma 2.1(iii).
We consider the difference ρ∗(ŷn) − ρn as P1’s n-stage regret. As elaborated below, this may be

interpreted as P1’s payoff loss for not playing his best action against ŷn over the first n stages. This
leads us to the following definition.

Definition 3.1 (No-regret strategies) A strategy σ1 of P1 is a no-regret strategy if, for every
strategy of P2,

lim inf
n→∞

(ρn − ρ∗(ŷn)) ≥ 0 (a.s.) . (3.3)

A no-regret strategy of P1 is said to attain the best-response envelope. If such a strategy exists we say
that the best-response envelope ρ∗ is attainable by P1.

The following observations provide the motivation for our regret definitions.

Lemma 3.1

(i) Suppose that P2 uses a fixed sequence of actions (j1, . . . , jn), with corresponding empirical distri-
bution ŷn. Then ρ∗(ŷn) is the maximal reward-rate ρn that P1 could obtain by playing any fixed
action i ∈ I over the first n stages.

(ii) Let P1 play a mixed stationary strategy (x)∞. Then, for any strategy of P2,

lim
n→∞

(ρn − ρ(x, ŷn)) = 0 (a.s.) ,

and consequently
lim inf
n→∞

(ρ∗(ŷn)− ρn) ≥ 0 (a.s.) .

Proof: (i) With ik ≡ i we obtain, by (2.1),

ρn =
∑n

k=1 r(i, jk)∑n
k=1 τ(i, jk)

=
r(i, ŷn)
τ(i, ŷn)

= ρ(i, ŷn) . (3.4)

The required conclusion follows by definition of ρ∗.
(ii) Using the strong low of large numbers for the Martingale difference sequence Dn =

∑n
k=1(r(ik, jk)−

r(x, jk)), it follows that with probability 1

lim
n→∞

(r̂n − r(x, ŷn)) ≡ lim
n→∞

1
n

n∑

k=1

(r(ik, jk)− r(x, jk)) = 0 .

The same holds with r replaced by τ . The first claim now follows since ρn = r̂n/τ̂n and ρ(x, ŷn) =
r(x, ŷn)/τ(x, ŷn), with τ bounded away from 0. The second claim then follows by (3.2). ¤

The last lemma indicates that ρ∗ is indeed the natural extension of Hannan’s best-response envelope.
Part (i) implies that ρ∗(ŷn) is the best reward-rate that P1 could achieve by using any fixed action
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given the empirical distribution ŷn of P2’s actions. Thus, the difference ρ∗(ŷn)−ρn can be interpreted
as P1’s regret for not using that action throughout. Part (ii) implies that ρ∗(ŷn) is also the best that
P1 could achieve by any fixed mixed action, at least in the long run.

A particular case where the best-response envelope is attainable is when P1’s actions do not affect
the duration of the stage game. This includes of course the standard model with fixed stage durations.

Proposition 3.2 Suppose that the stage duration depends on P2’s actions only, namely τ(i, j) = τ(j)
for every action pair. Then the best-response envelope is attainable by P1.

Proof: Since τ(ik, jk) = τ(jk), we obtain

ρn =
∑n

k=1 r(ik, jk)∑n
k=1 τ(jk)

=
r̂n

τ(ŷn)
,

where τ(ŷn) = 1
n

∑n
k=1 τ(jk). Similarly,

ρ∗(ŷn) = max
i

r(i, ŷn)
τ(ŷn)

.

By cancelling out the corresponding denominators it follows that the required inequality in the defini-
tion of a no-regret strategy reduces in this case to

lim inf
n→∞

(
r̂n −max

i
r(i, ŷn)

)
≥ 0 .

This is just the standard definition for a repeated matrix game with fixed stage duration and reward
function r, for which no-regret strategies are well known to exist. ¤

The situation becomes more intricate when the stage durations do depend on P1’s actions. This
is demonstrated in the following example, which serves as a starting point for the main part of this
paper.

Example 3.1 (A game with unattainable best-response envelope). Consider the variable
duration matrix game Γ(r, τ) defined by the following matrix:

(
(0, 1) (5, 1)
(1, 3) (0, 3)

)
,

where P1 is the row player, P2 the column player, and the ij-th entry is (r(i, j), τ(i, j)).

Figure 3 depicts the best-response envelope ρ∗(y) for this example, which is just the maximum of
ρ(i, y), i = 1, 2. Note that both ρ(1, y) and ρ(2, y) are linear functions of y in this example, which is
the case since τ(i, j) depends on P1’s actions only. As a consequence ρ∗(y) turns out to be a convex
function.

Proposition 3.3 The best-response envelop is not attainable by P1 in the game Γ∞(r, τ) defined by
Example 3.1.

Proof: We will specify a strategy of P2 against which ρ∗(y) cannot be attained by P1. Let N be
some pre-specified integer. Consider first the following strategy for P2 over the first 2N stages:

jn =





1 for 1 ≤ n ≤ N,

2 for N + 1 ≤ n ≤ 2N.
(3.5)
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Figure 1: ρ(1, y) and ρ(2, y) as a function of y for the game of Example 3.1. ρ∗(y) is
the maximum of these two linear functions. Note that y is represented by its second
coordinate y(2).

We claim that for some ε0 > 0 and any strategy of P1, ρk < ρ∗(ŷk)− ε0 must hold either at k = N or
at k = 2N . To see that, let ζ1 =

∑N
1 1{ik = 1}/N denote the empirical distribution of P1’s action 1

over the first N stages. It is easily seen that

ρN =
ζ1 · 0 + (1− ζ1) · 1
ζ1 · 1 + (1− ζ1) · 3 =

1− ζ1

3− 2ζ1
,

and

ρ∗(ŷN ) = max
{

0
1
,
1
3

}
=

1
3

(which is obtained by action 2 of P1). Thus, to obtain ρN ≥ ρ∗(ŷN )− ε0 we need

ζ1 ≤ 9ε0
2 + 3ε0

= O(ε0) . (3.6)

Next, at k = 2N we have y2N = (0.5, 0.5) and

ρ∗(ŷ2N ) = max
{

0 + 5
1 + 1

,
1 + 0
3 + 3

}
= max

{
5
2
,
1
6

}
=

5
2

,

which is now obtained by action 1 of P1. To compute ρ2N , let ζ2 =
∑2N

N+1 1{ik = 1}/N denote the
empirical distribution of P1’s action 1 over the second N -stage period. Then

ρ2N =
(1− ζ1)N + 5ζ2N

(3− 2ζ1)N + ζ2N + 3(1− ζ2)N
,

which is maximized over ζ2 ∈ [0, 1] by ζ2 = 1, to give

ρ2N =
1− ζ1 + 5
3− 2ζ1 + 1

=
6− ζ1

4− 2ζ1
.

A simple calculation now shows that to obtain ρ2N ≥ ρ∗(ŷ2N )− ε0 we need

ζ1 ≥ 2− 2ε0
3− 2ε0

. (3.7)
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It is evident that the requirements in (3.6) and (3.7) are contradictory for ε0 small enough (say ε0 = 0.1).
To recapitulate, the essence of the above argument is: to obtain ρN close to ρ∗(ŷN ) P1 must use

action 1 during most of the first N stages. But then the most he can get for ρ2N is about 3/2, which
falls short of ρ∗(ŷ2N ) = 5/2.

We conclude that P2’s stated strategy forces P1 to have positive regret at the end of stage N or
at the end of stage 2N . P2 can repeat the same strategy with a new N ′ much larger than N , so that
the first N stages have a negligible effect. This can be done repeatedly, so that P1 has non-zero regret
(larger than, say, ε0/2) infinitely often. ¤

A few additional points should be noted regarding Example 3.1 and its consequences.

1. The proof of Proposition 3.3 uses a fixed strategy of P2, which may be disclosed to P1 beforehand
without changing the conclusion. Thus, the inability to attain the best-response envelope is not a
consequence of the unknown strategy of an arbitrary opponent. Rather, it may attributed to the
different rates at which ŷn and ρn can change due to the action-dependent time normalization of
the latter.

2. To emphasize the last point, observe that even if P1 plays his best-response to P2’s action at
each stage, he still falls short of attaining ρ∗(ŷn). Indeed, in our example, suppose that P1 reacts
to the strategy (3.5) of P2 by playing ik = 1 for the first N stages (a best response to jk = 1)
and ik = 2 for the next N stages (his best response to jk = 2). Then at n = 2N he obtains
ρn = 3/2, while ŷn = (0.5, 0.5) and ρ∗(ŷn) = 5/2.

3. The stage durations τ(i, j) in our example depend only on i, the action of P1. Combined with
Proposition 3.2, this implies that the inability to attain the best-response envelope in repeated
variable-duration games can be fully attributed to the dependence on the stage durations on P1’s
actions.

4. As already noted, ρ∗ is a convex function in this example (see Figure 3). This implies that
convexity of ρ∗ has no direct implication on its attainability. In the next section we will see that
some related convexity conditions do provide a sufficient condition for ρ∗ to be attainable.

We close this section with certain sufficient conditions for non-existence of no-regret strategies.
These conditions essentially follow by similar reasoning to that of the last counterexample. We use
X∗(y) to denote the set of best response strategies against y. That is:

X∗(y) = arg max
x∈X

ρ(x, y).

Proposition 3.4

(i) Suppose there exist y1, y2 ∈ Y and α ∈ (0, 1) such that:

ρ∗ (αy1 + (1− α)y2) > max
x1∈X∗(y1), x2∈X

αr(x1, y1) + (1− α)r(x2, y2)
ατ(x1, y1) + (1− α)τ(x2, y2)

. (3.8)

Then the best-response envelope is not attainable by P1.

(ii) More generally, suppose there exist y1, y2, . . . , yM ∈ Y and α1, . . . , αM > 0 with
∑M

m=1 αm = 1
such that the following system of inequalities (in x1, x2, . . . , xM ∈ X):

ρ∗
(∑`

m=1 αmym∑`
m=1 αm

)
≤

∑`
m=1 αmr(xm, ym)∑`
m=1 αmτ(xm, ym)

, ` = 1, 2, . . . , M (3.9)

does not have a solution. Then the best response is not attainable by P1.
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Proof: The proof of (i) is very similar to that of Proposition 3.3, and we only provide a brief outline.
The strategy used by P2 over the first N stages (with N a large pre-specified number) is to play y1 for
αN stages (taking the integer part thereof) and play y2 for the remaining (1−α)N stages. We take N

to be large enough so that stochastic fluctuations (due to possibly mixed actions) from the expected
averages become insignificant. The empirical distribution of P1’s actions at the end of the first period
must then be close to some x1 ∈ X∗(y1) to guarantee that ρn is close to ρ∗(ŷn) ≈ ρ∗(y1) at n = αN .
However, equation (3.8) implies then that at the end of stage N the reward rate ρN falls short of the
best response ρ∗(ŷN ), no matter what actions P1 uses against y2.

The claim in (ii) is just a multi-period extension of (i). The strategy used by P2 is to play y1 for
α1N stages, then play y2 for α2N and so forth. Again we can ignore stochastic effects by taking N

large enough. Since there is no sequence (xm) that satisfies (3.9), it follows that ρn < ρ∗(ŷn) must
hold at the end of one of these M periods. Furthermore, we claim that this inequality is satisfied
with some uniform margin, namely that there exists ε0 > 0 (which depends only on y1, . . . , yM ) so
that ρn ≤ ρ∗(ŷn)− ε0. This follows by the compactness of X and continuity of the right-hand side of
(3.9), which imply that at least one of the opposite inequalities to those in (3.9) is satisfied with some
uniform margin ε0 > 0, independent of the choice of x1, . . . , xM . As in the proof of Proposition 3.3,
we can now extend P2’s strategy to the entire time horizon by repeating it with increasingly larger N ,
so that P1 has non-zero regret (larger than, say, ε0/2) infinitely often. ¤

We note that the maximum over x and x∗ in Equation (3.8) is in fact obtained in pure actions (see
Lemma 2.1(iii)), and (3.8) can be simplified accordingly.
Remark: Corollary 6.3 in Section 6 provides a sufficient condition for attainability of the best-
response envelope, which can be written in the following way. Suppose that for every M > 1,
y1, y2, . . . , yM ∈ Y and α1, . . . , αM > 0 with

∑k
i=1 αi = 1 we have

ρ∗(
M∑

m=1

αmym) ≤ min
x∗m∈X∗(ym)

{∑M
m=1 αmr(x∗m, ym)∑M
m=1 αmτ(x∗m, ym)

}
.

Then the best response is attainable. This sufficient condition may be viewed as a partial converse to
the necessary condition of (3.9).

4 Desiderata for Adaptive Play

Given the negative results of the previous section regarding the non-existence of no-regret strategies,
it follows that in general we will need to settle for less ambitious goals. It will thus be useful to
consider at this point some desired properties for adaptive play, against which the performance of
specific strategies can be compared. Following Fudenberg and Levine (1995), in part, we consider the
following desiderata for adaptive play of P1 against an arbitrary opponent.

(1) Safety: P1’s long-term payoff should be at least his min-max payoff in the repeated game.

(2) Adaptivity: When the opponent’s play deviates from a worst-case strategy (according to some
pre-specified criterion), the long-term payoff for P1 should be strictly higher than his min-max
payoff.

(3) Best-response to stationary strategies: If the opponent’s strategy is stationary, then P1’s long-
term payoff should be as high as his best-response payoff to the opponent’s strategy.
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Property (2) requires a measure for deviation of P2 from a worst-case strategy. The standard choice for
repeated games is the deviation of P2’s empirical action distribution (ŷn) from his optimal adversarial
mixed action in the stage game. This is the one we adopt in this paper as well. Furthermore, it is
important to quantify the expected gain (over the min-max payoff) as a function of this deviation:
without such a quantitative estimate, one could hardly justify the effort involved in implementing an
adaptive strategies. Such estimates will indeed be provided below in the form of performance envelopes.

Property (3) is motivated by the observation that in a stationary environment, achieving the best-
response payoff is easy. The point of course is that stationarity is not assumed here a-priori, and the
required best-response property should be achieved together with properties (1) and (2). A no-regret
strategy, as per Definition 3.1, is easily seen to satisfy all three properties. As we have seen, however,
such a strategy need not exist in general. The approachability-related strategies proposed in the next
section will be seen to satisfy properties (1) and (2), while the calibration-related strategies of Section
6 satisfy all three.

5 Approachability and Regret Minimization

The theory of approachability, introduced in Blackwell (1956a), is one of the fundamental tools that
have been used for obtaining no-regret strategies in repeated matrix games. In this section we apply
the approachability framework to our model of repeated variable-duration matrix games. The analysis
will yield a sufficient condition on the model parameters for existence of no-regret strategies. It will
also allow us to specify a relaxed goal for adaptive play, the convex best-response envelope, which is
always attainable, and provides some useful performance guarantees.

The results of Section 6 show that the performance guarantees available for calibrated play dominate
those obtained for approachability-related strategies. The latter are however easier to implement, and
provide additional theoretical insight.

5.1 Approachability for Repeated Variable-Duration Games

We start by adapting the required definitions and results of approachability theory to our repeated
variable-duration model. We augment the model of Section 2 by replacing the reward function with a
vector-valued reward ~r : I ×J → IRL, where L ≥ 1. Thus ~r(i, j) = (r1(i, j), . . . , rL(i, j)). Consider the
corresponding n-stage reward rate vector

~ρn =
∑n

k=1 ~r(ik, jk)∑n
k=1 τ(ik, jk)

.

As in the scalar game we let ~r(x, y) denote the bilinear extension of ~r to mixed action (note that τ

remains a scalar in the vector-valued game). The average vector-valued reward is

~ρ(x, y) =
~r(x, y)
τ(x, y)

.

Let Γ∞(~r, τ) denote the corresponding repeated variable-duration matrix game.
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Definition 5.1 A set B ⊂ IRL is approachable2 (by P1) if there exists a strategy σ1 of P1 so that,
for any strategy of P2,

lim
n→∞

d(~ρn, B) = 0 (a.s.)

where d(~ρ,B) = infb∈B d(~ρ, b) denotes the Euclidean point-to-set distance in IRL.

A strategy of P1 that satisfies this property is called an approaching strategy for the set B. The
following theorem extends Blackwell’s characterization of approachability in Blackwell (1956a) to the
variable duration model. The proof follows in essence Blackwell’s original argument, with some modi-
fications that are required to handle the different time normalization of the average reward vector. For
completeness we provide an outline in Appendix A.

Theorem 5.1 Let B be a closed set in IRL.

(i) B is approachable if for every point a 6∈ B there exists a mixed action x ∈ X so that

〈ca − a, ca − ~ρ(x, y)〉 ≤ 0 for every y ∈ Y, (5.1)

where ca is a closest point in B to a and 〈a, b〉 is the standard inner product in IRL. An ap-
proaching strategy for P1 is then to play an arbitrary xn if ~ρn−1 ∈ B, and otherwise play any xn

that satisfies the separation condition (5.1) with a = ~ρn−1.

(ii) Assume that B is a convex set. Then the last condition is both necessary and sufficient for B to
be approachable. Furthermore, it is equivalent to either one of the following conditions:

(a) For every unit vector u ∈ IRL there exists x ∈ X so that

〈u, ~ρ(x, y)〉 ≥ inf
b∈B

〈u, b〉 for every y ∈ Y .

(b) For every y ∈ Y there exists x ∈ X so that ~ρ(x, y) ∈ B.

An approaching strategy in this case is to play, whenever a = ~ρn−1 6∈ B, a mixed action xn ∈
arg maxx miny〈u, ~ρ(x, y)〉, where u = (ca − a).

5.2 The Temporal Best-Response Envelope

We now return to our original model with a scalar reward function r. We aim to formulate the no-
regret requirement of Definition 3.1 (or a relaxed one) as an approachability condition, and apply the
conditions of Theorem 5.1. Following Blackwell (1956b), our first attempt will be to define the payoff
vector ~ρn = (ρn, ŷn), so that attaining the best-response ρ∗(y) is equivalent to approaching the set

B0 = {(ρ, y) ∈ IR× Y : ρ ≥ ρ∗(y)} .

However, two obstacles stand in the way of applying the approachability result of Theorem 5.1. First
and foremost, ρn and ŷn are normalized by different temporal factors. Second, B0 need not be a convex
set as the best-response envelope ρ∗(y) is not convex in general, so that condition (b) in that theorem
may not be applicable.

2Blackwell’s definition of approachability requires also a uniform rate of convergence (independent of P2’s strategies).

We note that the proof of Theorem 5.1 indeed provides explicitly such a uniform rate. However, in the present paper we

omit this requirement from the definition as it is not required for our results.
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To address the first difficulty, we reformulate the approachability problem. Let πn denote the vector
of P2’s action rates, namely

πn =
1
τ̂n

ŷn .

Note that πn(j) gives the temporal rate, in actions per unit time, in which action j was chosen over
the first n stages. Obviously πn is not a probability vector, as the sum of its elements is τ̂n. The set
of feasible action rates is given by

Π =
{y

τ
: y ∈ Y, τ ∈ T (y)

}
, (5.2)

where T (y) is the set of average stage durations τ which are feasible jointly with the empirical distri-
bution y:

T (y) =





∑

i,j

αijτ(i, j) : α ∈ ∆(I × J),
∑

i

αij = y(j) for all j



 (5.3)

=





∑

j

y(j)τ(xj , j) : xj ∈ X for all j



 .

Note that Π is a convex set; indeed, it is the image of the convex set {y, τ : y ∈ Y, τ ∈ T (y)} under a
linear-fractional function (Boyd and Vanderberghe, 2004).

We proceed to formulate the set to be approached in terms of π instead of ŷ. Note first that the
action rate vector πn uniquely determines the empirical distribution vector ŷn via ŷn = πn/|πn|, where
|π| is the sum of elements of π. Given P2’s action-rate vector π ∈ Π, we define the best-response payoff
for P1 as its best-response payoff against the empirical distribution ŷ = π/|π| induced by π. That is,
for π ∈ Π,

ρ̃∗(π)
4
= ρ∗

(
π

|π|
)

= max
i∈I

∑
j r(i, j)π(j)∑
j τ(i, j)π(j)

, (5.4)

where |π| was cancelled out from the last expression. Thus, although defined on a different set, ρ̃∗ turns
out to be identical in its functional form to ρ∗. We refer to ρ̃∗ : Π → IR as the temporal best-response
envelope.

Convexity of ρ̃∗ turns out to be a sufficient condition for existence of no-regret strategies.

Theorem 5.2 Suppose the temporal best-response envelope ρ̃∗(π) is convex over its domain Π. Then
P1 has a no-regret strategy (in the sense of Definition 3.1), namely, a strategy that attains the best-
response envelope ρ∗(ŷ).

Proof: Suppose that we have a vector-valued game where the immediate reward vector at stage n is
(rn, ejn), where ek is a vector of zeros except for the k-th position which is one. This vector-valued
reward has as a first coordinate the (per-stage) reward and a vector indicating which action was chosen
by P2 in the rest of the |J | coordinates. Using our definitions for the vector-valued game, we obtain that
the average reward vector is ~ρn = (ρn, πn). We will now show that the following set is approachable
by P1 with this reward vector:

B1 = {(ρ, π) ∈ IR×Π : ρ ≥ ρ̃∗(π)} .

14



Indeed, B1 is convex as ρ̃∗ is a convex function (by assumption) over a convex domain Π, and B1 is
its epigraph. We next verify condition (b) in Theorem 5.1. Note that

~ρ(x, y) =
~r(x, y)
τ(x, y)

= (ρ(x, y),
y

τ(x, y)
) ,

so that ~ρ(x, y) ∈ B1 is equivalent to

ρ(x, y) ≥ ρ̃∗
(

y

τ(x, y)

)
≡ ρ∗(y) . (5.5)

For each y, we choose an x that maximizes ρ(x, y), namely ρ(x, y) = ρ∗(y). Thus the last inequality is
satisfied with equality, and ~ρ(x, y) ∈ B1. Thus condition (b) is satisfied and B1 is approachable.
Recall next that ρ∗(y) is Lipschitz continuous by Lemma 2.1(iv). Since τ is bounded away from zero it
follows that ρ̃∗(π) is also Lipschitz continuous. It is therefore easily verified that d(~ρn, B1) → 0 implies
that lim infn→∞(ρn − ρ̃∗(πn)) ≥ 0, and since ρ̃∗(πn) = ρ∗(ŷn) we obtain the required inequality in
(3.3). Thus, any approaching strategy for B1 is a no-regret strategy of P1. ¤

Note that an approaching strategy, as specified in Theorem 5.1, requires P1 to keep track only of
πn and ρn, or equivalently of ŷn and τ̂n.

The convexity condition in Theorem 5.2 is clearly satisfied for the standard model of fixed-duration
matrix games, where τ ≡ 1, y = π, and ρ̃∗(π) = ρ∗(y) = maxi r(i, y) is a convex function (as the
maximum of linear functions). This assumption is also satisfied when P2 alone controls the game
duration, namely τ(i, j) = τ0(j). We then obtain that Π = {y/τ0(y) : y ∈ Y }, so that

∑
j τ(j)π(j) = 1

and by (5.4), ρ̃∗(π) = maxi

∑
j r(i, j)π(j). This is again convex (as the maximum of linear functions),

and we thus recover the conclusion of Proposition 3.2. However, ρ̃∗ must be non-convex whenever the
best-response envelope ρ∗(ŷ) is not attainable, as in the game of Example 3.1.

5.3 The Convex Best-Response Envelope

When ρ̃∗ is not convex, the preceding analysis provides no performance guarantees for P1. To proceed,
we will need to relax the goal of attaining the best-response.

Definition 5.2 (Convex best-response envelope) The convex best-response envelope ρ̃co : Π →
IR is defined as the lower convex hull of ρ̃∗ over its domain Π.

We now have the following result.

Theorem 5.3 (ρ̃co(π) is attainable) The convex best-response envelope ρ̃co(π) is attainable by P1.
Namely, there exists a strategy of P1 so that

lim inf
n→∞

(ρn − ρ̃co(πn)) ≥ 0 (a.s.) (5.6)

for any strategy of P2.

Proof: The proof is identical to that of Theorem 5.2, with ρ̃∗ replaced by ρ̃co. Clearly ρ̃co satisfies the
convexity requirement by its definition. Since ρ∗(π) is Lipschitz continuous, it follows that its lower
convex hull is Lipschitz continuous. Condition (b) of Theorem 5.1 is satisfied since ρ̃co ≤ ρ̃∗, again by
its definition, so that any point ~ρ(x, y) that belongs to the set B1 also belongs to the relaxed set that
corresponds to ρ̃co. ¤
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It will be useful to formulate the performance guarantee of the last proposition in terms of the
empirical distribution ŷn rather than the action rates πn. This is easily done by projecting ρ̃co from
Π back Y . For ŷ ∈ Y , define

ρco(ŷ) = min{ρ̃co(π) : π ∈ Π,
π

|π| = ŷ} . (5.7)

For simplicity we also refer to ρco as the convex best-response envelope (over Y ). The following
corollary to Theorem 5.3 is immediate.

Corollary 5.4 (ρco(ŷ) is attainable) The convex best-response envelope ρco(ŷ) is attainable by P1.
Namely, there exists a strategy of P1 so that

lim inf
n→∞

(ρn − ρco(ŷn)) ≥ 0 (a.s.). (5.8)

In fact, any strategy of P1 that attains ρ̃co(π) also attains ρco(ŷ).

Figure 5.3 illustrates the resulting convex best-response envelope for the game of Example 3.1. We
note that ρco was computed analytically, but the computation is technical and is omitted here. As ρ∗

is not attainable in this example, it is clear that ρco must be strictly smaller than ρ∗ for some values
of y, as is indeed the case.
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Figure 2: ρ∗(y) (dotted) and ρco(y) (thick line) for the game of Example 3.1. The right
figure zooms on the segment [0, 0.08].

The next lemma presents some general properties of ρco that will be related to its performance
guarantees.

Lemma 5.5 (Properties of ρco) The convex best-response envelope ρco(y) satisfies the following
properties. For each y ∈ Y ,

(i) v(r, τ) ≤ ρco(y) ≤ ρ∗(y) .

(ii) If ρ∗(y) > v(r, τ), then ρco(y) > v(r, τ).

Proof: (i) Fix y, and take any π ∈ Π with π/|π| = y. Then

ρco(y) ≤ ρ̃co(π) ≤ ρ̃∗(π) = ρ∗(y) ,
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where all inequalities follow directly from the definitions of the respective envelopes. Also, since
ρ∗ ≥ v(r, τ), the same property is inherited by ρ̃∗, ρ̃co and ρco, again by their respective definitions.

(ii) We will show that ρco(y) = v(r, τ) implies that ρco(y) = v(r, τ). Suppose ρco(y) = v(r, τ). Then
there exists some π ∈ Π such that π/|π| = y and ρ̃co(π) = v(r, τ). By Caratheodory’s Theorem there
exist ` points π1, . . . , π` in Π (where ` ≤ 2 + |J |) and coefficients α1, . . . , α` > 0 with

∑`
m=1 αm = 1

such that π =
∑`

m=1 αmπm and v(r, τ) = ρ̃co(π) =
∑`

m=1 αmρ∗(πm). Since ρ∗(π) ≥ v(r, τ), this
implies that ρ∗(πm) = v(r, τ) for all m. Recall now from Lemma 2.1(ii) that the set Y ∗ of mixed
actions y ∈ Y for which ρ∗(y) = v(r, τ) is convex. The set Π∗ = {π′ ∈ Π : π′/|π′| ∈ Y ∗} is thus
an image of a convex set under a linear-fractional transformation, and is therefore convex (Boyd and
Vanderberghe, 2004). Noting that πm ∈ Π∗ for all m (which follows from ρ∗(πm) = v(r, τ)) and π

is their convex combination, it follows that π ∈ Π∗ and in particular that y = π/|π| ∈ Y ∗, which is
equivalent to ρco(y) = v(r, τ). ¤

Both properties that were stated in the last lemma can be observed in Figure 5.3.
We can now examine the performance guarantees that P1 secures by attaining ρco. Referring to

Section 4, safety is clearly implied since ρco ≥ v(r, τ). More interestingly, adaptivity is also satisfied, as
implied by Lemma 5.5(ii). Thus, P1’s long-term reward rate will be strictly higher than the min-max
value of the game whenever the empirical distribution of P2’s actions deviates from as optimal strategy
in the stage game. We note however that property (3), best-response to stationary strategies, need
not hold in general. Specifically, if P2 uses a stationary strategy (y)∞ for which ρco(y) < ρ∗(y), then
ρn may well fall short of ρ∗(y), although it will still be strictly higher than v(r, τ).
Remark: Our use of approachability for regret minimization follows the formulation of Blackwell
(1956b), where the set to be approached is defined in the joint space of the average reward and empirical
distribution of P2’s actions. More recent applications of approachability to this problem have taken
an alternative view, whereby the set to be approached is defined as the negative quadrant in the |I|-
dimensional space where each coordinate corresponds to the regret with respect to some action i ∈ I

(see Hart and Mas-Colell, 2000). In terms of the present model, we could similarly define

Ln(i)
4
= ρ(i, ŷn)− ρn =

∑n
k=1 r(i, jk)∑n
k=1 τ(i, jk)

−
∑n

k=1 rk∑n
k=1 τk

,

so that the no-regret requirement is equivalent to lim supn Ln(i) ≤ 0, i ∈ I. Unfortunately, the
approachability results in Theorem 5.1 cannot be applied here, as the two terms on the right hand side
of the last equation have different temporal factors in their denominators.

6 Calibrated Play

In calibrated play, P1 uses at each stage a best-response to his forecasts of the other player’s action
at that stage. The quality of the resulting strategy depends of course on the quality of the forecast;
it is well known that using calibrated forecasts leads to no-regret strategies in repeated matrix games.
See, for example, Foster and Vohra (1997) for an overview of the regret concept and its relations to
calibration. In this section we consider the consequences of calibrated play for repeated games with
variable stage duration.

We start with a formal definition of calibrated forecasts and calibrated play in the next subsection.
We then introduce in Subsection 6.2 the calibration envelope ρcal(ŷ), and show that it is attained
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by calibrated play in the sense that ρn ≥ ρcal(ŷn) holds asymptotically. As ρcal(ŷ) ≥ v(r, τ) and
ρcal(ŷ) > v(r, τ) whenever ρ∗(ŷ) > v(r, τ) (Lemma 6.4), it follows that calibrated play satisfies the
safety and adaptivity properties from Section 4. We then proceed to compare the calibration envelope
with the convex best-response envelope of the previous section, and show that ρcal ≥ ρco. We identify
certain classes of games where equality holds, but show that the inequality may be strict in general.
Thus, the performance guarantees provided by the calibrated envelope are superior to those implied by
the convex best-response envelope of the previous section. In Subsection 6.4 we show that calibrated
play achieves the best-response to stationary strategies, namely attains the best-response payoff ρ∗(ŷn)
when P2 is stationary. It thus follows that calibrated play achieves all three desiderata of adaptive
play that were proposed in Section 4.

6.1 Calibrated Forecasts and Calibrated Play

A forecasting scheme specifies at each decision point k a probabilistic forecast qk ∈ Y of P2’s action jk.
More specifically, a (randomized) forecasting scheme is a sequence of maps µk : Hk−1 → ∆(Y ), k ≥ 1,
which associates with each possible history hk−1 a probability measure µk over Y . The forecast qk ∈ Y

is selected at random according to the distribution µk. Note that the realized value qk is included in
the history sequence hk.

We shall use the following definition of calibrated forecasts.

Definition 6.1 (Calibrated forecasts) A forecasting scheme is calibrated if for every (Borel mea-
surable) set Q ⊂ Y and every strategy of P2,

lim
n→∞

1
n

n∑

k=1

1{qk ∈ Q}(ejk
− qk) = 0 . (6.1)

This form of calibration property has been introduced into game theory by Foster and Vohra (1997),
and several algorithms have been devised to achieve it (Foster and Vohra, 1998; Foster, 1999; Fudenberg
and Levine, 1999b; Kakade and Foster, 2004). These algorithms typically start with predictions that
are restricted to a finite grid, and the requirement in the last definition may be achieved by gradually
increasing the number of grid points. A notable deviation from grid-based procedures is presented in
Mannor et al. (2007), where a computationally efficient calibration scheme is devised. However, except
for some special cases, the scheme of Mannor et al. (2007) is calibrated only against a restricted class
of opponents. Stronger notions of calibration were considered in Kalai et al. (1999), Sandroni et al.
(2003).

In calibrated play, the active player (P1) essentially chooses a best-response action to his forecast
of the other player’s actions. That is: ik ∈ I∗(qk), where

I∗(y) = arg max
i∈I

r(i, y)
τ(i, y)

, y ∈ Y . (6.2)

To be more specific, we shall assume some fixed tie-breaking rule when I∗(y) is not a singleton. Thus,
we have the following definition.

Definition 6.2 (Calibrated Play) A calibrated strategy for P1 in the variable-duration repeated
game Γ∞(r, τ) is given by

ik = io(qk) (6.3)
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where (qk) is a calibrated forecast of P2’s actions, and i0(y) ∈ I∗(y) for each y ∈ Y .

The choice of ik as a best response to qk in the game Γ0(r, τ) with payoff ρ(x, y) is motivated by
the definition of the best-response envelope in (3.1). Note that the chosen action does not maximize
expected one-stage reward rate, namely

∑
qk(j) r(i,j)

τ(i,j) , which cannot be easily related to the repeated
game payoff. In the final Section 7 we shall mention another reasonable option for choosing ik in
response to qk.

6.2 The Calibration Envelope

Let
Y ∗

i = {y ∈ Y : i ∈ I∗(y)}
denote the (closed) set of mixed actions to which i ∈ I is a best response in Γ0(r, τ). We shall assume
that each Y ∗

i is non-empty; actions i for which Y ∗
i is empty will never be used and can be deleted from

the game model.
Let ∆d(Y ) denote the set of discrete probability measures on Y , and let mµ =

∫
yµ(dy) denote the

barycenter of µ ∈ ∆d(Y ). The calibration envelope ρcal is defined as follows, for ŷ ∈ Y :

ρcal(ŷ) = inf
{∫

r(i(y), y)µ(dy)∫
τ(i(y), y)µ(dy)

: µ ∈ ∆d(Y ), mµ = ŷ, i(y) ∈ I∗(y)
}

. (6.4)

The restriction to discrete measures is for technical convenience only and is of no consequence, as the
infimum is already attained by a measure of finite support. This follows from the next lemma which
also provides an alternative expression for ρcal, alongside a useful continuity property.

Lemma 6.1

(i) Let co(Y ∗
i ) denote the convex hull3 of Y ∗

i . Then

ρcal(ŷ) = min

{∑
i∈I αir(i, yi)∑
i∈I αiτ(i, yi)

: α ∈ ∆(I), yi ∈ co(Y ∗
i ),

∑

i∈I

αiyi = ŷ

}
. (6.5)

(ii) The infimum in (6.4) is attained by a measure µ of finite support.

(iii) ρcal(ŷ) is continuous in ŷ ∈ Y .

Proof: (i) Note first that the minimum in (6.5) is indeed attained, as we minimize a continuous
function over a compact set (co(Y ∗

i ) is closed since Y ∗
i is closed). Let ρ1(ŷ) denote the right-hand

side of (6.5). To show that ρ1 ≤ ρcal, note that by Caratheodory’s Theorem each yi ∈ co(Y ∗
i ) can be

written as yi =
∑

j∈J βijyij , with yij ∈ Y ∗
i and βi ∈ ∆(J). It follows that for each ŷ the argument of

(6.5) can be written as the special case of the argument of (6.4), from which ρ1(ŷ) ≤ ρcal(ŷ) follows.
Conversely, given µ ∈ ∆d(ŷ) and the selection function i(y) ∈ I∗(y), define αi =

∫
y:i(y)=i

µ(dy), and
yi =

∫
y:i(y)=i

yµ(dy)/αi (with yi arbitrary if αi = 0). Note that yi ∈ co(Y ∗
i ), since i(y) ∈ I∗(y) implies

y ∈ Y ∗
i , and yi is defined as a convex combination of such y’s. The argument of (6.4) is thus reduced

to the form of (6.5), which implies that ρ1(ŷ) ≤ ρcal(ŷ).

3Y ∗
i need not be convex, as the functions ρ(i, y) are generally not linear in y. For concreteness, consider a two action

game with ρ(1, y) concave and ρ(2, y) linear.
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(ii) Follows immediately from the indicated reduction of the argument of (6.5) to that of (6.4).
(iii) Continuity follows since the minimized function in (6.5) is continuous in its arguments α and

(yi), while the minimizing set is upper semi-continuous in y. ¤
We next establish that calibrated play attains the calibration envelope.

Theorem 6.2 (ρcal is attainable) Suppose P1 uses a calibrated strategy. Then, for any strategy of
P2,

lim inf
n→∞

(ρn − ρcal(ŷn)) ≥ 0 (a.s.) .

Proof: It will be convenient to use for this proof the shorthand notations an
o(n)
= bn for limn→∞(an−

bn) = 0, and an

o(n)

≥ bn for lim infn→∞(an − bn) ≥ 0. All relations between random variables are
assumed by default to hold with probability 1. Let Yi = {y ∈ Y : io(y) = i}, so that qk ∈ Yi implies
ik = i; note that Yi ⊂ Y ∗

i . We thus have

1
n

n∑

k=1

r(ik, jk) =
1
n

∑

i∈I

n∑

k=1

1{qk ∈ Yi}r(i, jk)

o(n)
=

1
n

∑

i∈I

n∑

k=1

1{qk ∈ Yi}r(i, qk)

=
1
n

∑

i∈I

n∑

k=1

1{qk ∈ Yi}r(io(qk), qk)

=
1
n

n∑

k=1

r(io(qk), qk) .

The second (o(n)) equality follows from (6.1). Repeating the argument for τ we obtain

1
n

n∑

k=1

τ(ik, jk)
o(n)
=

1
n

n∑

k=1

τ(io(qk), qk) .

Since τ(i, j) is bounded away from zero, it follows that

ρn
o(n)
=

∑n
k=1 r(io(qk), qk)∑n
k=1 τ(io(qk), qk)

, (6.6)

while the latter expression satisfied the following inequality by definition of ρcal:
∑n

k=1 r(io(qk), qk)∑n
k=1 τ(io(qk), qk)

≥ ρcal(q̂n) , where q̂n =
1
n

n∑

k=1

qk .

Thus,

ρn

o(n)

≥ ρcal(q̂n) .

Note also that from (6.1), with Q = Y , we have ŷn
o(n)
= q̂n. The required equality now follows by

continuity for ρcal(y) in y, as noted in Lemma 6.1. ¤
The following immediate consequence provides a sufficient condition for the best-response envelope

ρ∗ to be attainable, namely for the existence of no-regret strategies.

Corollary 6.3 Suppose that ρcal(y) = ρ∗(y) for all y ∈ Y . Then ρ∗ is attainable by P1.
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The condition of the last corollary is satisfied in standard (fixed-duration) repeated matrix games. In
general, however, ρcal can be strictly smaller than ρ∗. In particular, this must be the case when ρ∗ is
not attainable.

We proceed to establish some basic bounds on ρcal, that highlight the performance guarantees of
calibrated play.

Proposition 6.4 (Properties of ρcal)

(a) v(r, τ) ≤ ρcal(ŷ) ≤ ρ∗(ŷ) for all ŷ ∈ Y .

(b) ρcal(ŷ) = ρ∗(ŷ) at the extreme points of Y , which correspond to the pure action set I.

(c) For each ŷ ∈ Y , ρ∗(ŷ) > v(r, τ) implies ρcal(ŷ) > v(r, τ).

Proof: (a) ρcal(ŷ) ≤ ρ∗(ŷ) follows since the argument of (6.4) equals ρ∗(ŷ) when µ is concentrated
entirely on ŷ. The inequality ρcal(ŷ) ≥ v(r, τ) is established in part (c) below.

(b) The stated equality follows since µ in (6.4) must be entirely concentrated on ŷ when ŷ is an
extreme point.

(c) We first note that ρcal(ŷ) ≥ v(r, τ), which follows from (6.4) since for every y and i(y) ∈ I∗(y)
we have

r(i(y), y)
τ(i(y), y)

= max
i∈I

r(i, y)
τ(i, y)

≥ v(r, τ) (6.7)

where the last equality holds by Lemma 2.1(iii). Recall next that Y ∗ = {y ∈ Y : ρ∗(y) = v(r, τ)} is
a closed convex set by Lemma 2.1(ii). Consider some ŷ with ρ∗(ŷ) > v(r, τ), namely ŷ 6∈ Y ∗, and let
µ and {i(y), y ∈ Y } attain the minimum in (6.5). Since

∑
i∈I αiyi = ŷ 6∈ Y ∗ and Y ∗ is convex, there

is at least one y0 in the support of µ (namely, µ({y0}) > 0) so that y0 6∈ Y ∗. Since i(y0) ∈ I∗(y0) we
obtain

r(i(y0), y0)
τ(i(y0), y0)

= ρ∗(y0) > v(r, τ).

Noting that (6.7) holds for every y, it follows from (6.4) that ρco(ŷ) > v(r, τ) as claimed. ¤
We may now examine the performance guarantees of calibrated play, as per the desired properties

in Section 4. Similar to our discussion in the previous section, it is seen that safety is ensured by part
(a) of the last lemma, while adaptivity follows for part (c).

Our third desideratum, best-response to stationary strategies, cannot be deduced from the cal-
ibration envelope alone, as ρcal can be strictly smaller that ρ∗ (and indeed must be so when ρ∗ is
not attainable). Still, we will show in Subsection 6.4 that this property does hold in general. How-
ever, before tending to that we proceed to show that the calibration envelope dominates the convex
best-response envelope from the previous section.

6.3 Comparison with the Convex Best-Response Envelope

The results obtained so far establish that both the convex best-response envelope ρco (defined in Section
5.3) and the calibration envelope ρcal are attainable, using different strategies. Here we compare these
two performance envelopes, and show that the calibration envelope dominates ρco. We first show that
ρcal is at least as large as ρco, and identify certain class of variable-duration games for which equality
holds. We then provide an example where ρcal is strictly larger than ρco.

Proposition 6.5 (ρcal dominates ρco)
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(i) ρcal(ŷ) ≥ ρco(ŷ) for all ŷ ∈ Y .

(ii) If the stage durations depend on P2’s actions only, namely τ(i, j) = τ0(j), then ρcal = ρco.

Proof: Let us rewrite ρco in more explicit form. Recall that ρco is defined in terms of ρ̃co in (5.7),
while ρ̃co is the lower convex hull of ρ̃∗. Thus, by Caratheodory’s theorem,

ρ̃co(π) = min

{
L∑

l=1

γlρ̃
∗(πl) : L ≥ 1, γ ∈ ∆L, πl ∈ Π,

∑

l

γlπl = π

}
,

where ∆L is the unit simplex in IRL. Therefore,

ρco(ŷ) = min
{

ρ̃co(π) : π ∈ Π,
π

|π| = ŷ

}

= min

{
L∑

l=1

γlρ̃
∗(πl) : L ≥ 1, γ ∈ ∆L, πl ∈ Π,

∑
l γlπl

|∑l γlπl| = ŷ

}
.

Now, by the definition of Π in (5.2), πl ∈ Π implies that πl = yl/τl for some yl ∈ Y and τl ∈ T (yl)
(where T (yl) is defined in (5.3)). Also note that ρ̃∗(yl/τl) = ρ∗(yl) by definition of ρ̃∗. Therefore

ρco(ŷ) = min

{
L∑

l=1

γlρ
∗(yl) : L ≥ 1, γ ∈ ∆L, yl ∈ Y, τl ∈ T (yl),

∑
l(γl/τl)yl∑

l γl/τl
= ŷ

}
, (6.8)

where we have used the fact that |yl| = 1. We now restrict the range of variables in the argument of
the last expression by choosing, for each given yl,

τl ∈ T̃ (yl)
4
= {τ(il, yl) : il ∈ I∗(yl)} ⊆ T (yl) .

Note that for il ∈ I∗(yl) we have

ρ∗(yl) =
r(il, yl)
τ(il, yl)

.

Thus,

ρco(ŷ) ≤ min

{
L∑

l=1

γl
r(il, yl)
τ(il, yl)

: L ≥ 1, γ ∈ ∆L, yl ∈ Y, il ∈ I∗(yl), . . .

τl = τ(il, yl),
∑

l(γl/τl)yl∑
l γl/τl

= ŷ

}
. (6.9)

We next parameterize γ ∈ ∆L by α ∈ ∆L in the form

γl =
τlαl∑L
l=1 τlαl

.

This finally gives, after cancelling out τl = τ(il, yl) and some rearranging,

ρco(ŷ) ≤ min

{∑L
l=1 αlr(il, yl)∑L
l=1 αlτ(il, yl)

: L ≥ 1, α ∈ ∆L, yl ∈ Y, il ∈ I∗(yl),
∑

l

αlyl = ŷ

}

= ρcal(ŷ) ,
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where the last equality is evident by the definition of ρcal in (6.4). This establishes part (i) of the
proposition. Part (ii) follows after noting that under the stated condition T̃ (yl) = {τ0(yl)} = T (yl), so
that equality holds in (6.9). ¤

Part (ii) of this proposition implies, in particular, that ρcal = ρco for the game of Example 3.1. The
next example shows that ρcal and ρco need not coincide in general.

Example 6.1 (ρcal strictly dominates ρco). Consider the variable duration matrix game Γ(r, τ)
defined by the following matrix: (

(0, 1) (2, 3)
(2, 3) (0, 1)

)
.

As before, P1 is the row player, P2 the column player, and the ij-th entry is (r(i, j), τ(i, j)). As y

is two-dimensional it is uniquely determined by its second coordinate y(2), and we shall henceforth
identify y with the scalar y(2). It follow that

ρ∗(y) = max
{

2y

1 + 2y
,
2− 2y

3− 2y

}
.

Note that I∗(y) = {2} for y < 0.5, and I∗(y) = {1} for y > 0.5. Similarly, Y ∗
1 = [0.5, 1] and

Y ∗
2 = [0, 0.5], where both are convex sets. Further note that ρ∗(y) is strictly decreasing in y for

y ∈ [0, 0.5), and strictly increasing for y ∈ (0.5, 1].
We first claim that ρcal = ρ∗. To see that, fix y and let α ∈ ∆(I) and yi ∈ co(Y ∗

i ) = Y ∗
i , i = 1, 2,

attain the minimum in (6.5). Assume first that y ∈ Y ∗
1 (i.e., y ≥ 0.5). If α2 = 0 then y = y1 and

ρcal(y) = r(1, y1)/r(1, y1) = ρ(1, y1) = ρ∗(y). Suppose then that α2 > 0. It follows by symmetry of
the game parameters for r(1, y) = r(2, 1− y) and similarly for τ . As a result we have

ρcal(y) =
α1r(1, y1) + α2r(2, y2)
α1τ(1, y1) + α2τ(2, y1)

=
α1r(1, y1) + α2r(1, 1− y2)
α1τ(1, y1) + α2τ(1, 1− y2)

≥ ρ∗(α1y1 + α2(1− y2)) = ρ∗(y + α2(1− 2y2)) ≥ ρ∗(y),

where the last inequality follows since ρ∗(y) is strictly increasing for y ≥ 1/2 (as noted above), and
this inequality is in fact strict if y2 6= 0.5. It follows that ρcal(y) = ρ∗(y) for y ∈ Y ∗

1 . The remaining
case y ∈ Y ∗

2 is symmetric and the required equality follows similarly.
We next estimate ρco(y) at a specific point. Let y1 = (0, 1) and y2 = (1/2, 1/2). The following

observations are immediate from the definitions in the previous sections:

1. T (y1) = [1, 3], T (y2) = [1, 3].

2. ρ∗(y1) = 2
3 and ρ∗(y2) = 1

2 .

3. Let π1 = (0, 1
2 ) ∈ Π and π2 = ( 1

4 , 1
4 ) ∈ Π. Note that π1/|π1| = y1 and π2/|π2| = y2.

4. ρ̃∗(π1) = ρ∗(y1) = 2
3 and ρ̃∗(π2) = ρ∗(y2) = 1

2 .

5. Let π3 = 1
2π1 + 1

2π2 = ( 1
8 , 3

8 ), and let y3 = π3/|π3| = ( 1
4 , 3

4 ).

6. By convexity, ρ̃co(π3) = ρ̃co( 1
2π1 + 1

2π2) ≤ 1
2 ( 2

3 + 1
2 ) = 7

12 , so that ρco(y3) ≤ 7
12 .

But from our previous calculation we know that ρcal(y3) = ρ∗(y3) = 3
5 . Therefore, ρcal(y3) > 7

12 ≥
ρco(y3). ¤

A plot of ρcal = ρ∗ and ρco for the last example is shown in Figure 3. We note that ρco was
computed analytically, but details are omitted.
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Figure 3: ρcal(y) (dotted line) and ρco(y) (thick line) for the game of Example 6.1.

6.4 Best-response to Stationary Strategies

We next show that the best-response payoff ρ∗(ŷn) is attained by calibrated play when P2 follows a
stationary strategy (or even close to that in a certain sense). We note that achieving the best response
payoff when the opponent is restricted to stationary policies is easily obtainable by much simpler
policies (such as fictitious play). The point here is, then, that calibrated play achieves that while
simultaneously securing the above-presented performance guarantees against an arbitrary opponent.

We start the analysis with the following lemma.

Lemma 6.6 Suppose the sequence (yk)k≥1 of P2’s mixed actions Cesaro-converges to a stationary
strategy y0 ∈ Y , in the sense that

lim
n→∞

1
n

n∑

k=1

|yk − y0| = 0 (a.s.) . (6.10)

Then any calibrated forecast (qk) Cesaro-converges y0 in the same sense; equivalently, for any ε > 0
we have that

lim
n→∞

1
n

n∑

k=1

1{|qk − y0| > ε} = 0 (a.s.) . (6.11)

Proof: Let P1 use a calibrated forecasting scheme, and let P2 use an arbitrary strategy. For the
rest of this proof all probabilistic relations hold by default with probability 1, and we omit the a.s.
quantifier. Observe first that the calibration requirement (6.1) implies the following merging property
(see Kalai et al., 1999)

lim
n→∞

1
n

n∑

k=1

1{qk ∈ Q}(yk − qk) = 0 . (6.12)

This follows by the strong law of large numbers, applied to the Martingale difference sequence Dk =
1{qk ∈ Q}(ejk

− yk). Combined with (6.10), this clearly implies that

lim
n→∞

1
n

n∑

k=1

1{qk ∈ Q}(y0 − qk) = 0 . (6.13)
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Consider a set Q ⊂ Y so that co(Q), the closed convex hull of Q, does not contain y0. We claim that

lim
n→∞

1
n

n∑

k=1

1{qk ∈ Q} = 0 . (6.14)

To see that, denote

zn =
∑n

k=1 1{qk ∈ Q}qk∑n
k=1 1{qk ∈ Q}

(zn may be chosen arbitrarily in Q when the denominator is 0), and observe that zn ∈ co(Q) by its
definition. Expanding on (6.13), we obtain

0 = lim
n→∞

1
n

∣∣∣∣∣
n∑

k=1

1{qk ∈ Q}(y0 − qk)

∣∣∣∣∣

= lim
n→∞

1
n

n∑

k=1

1{qk ∈ Q}|y0 − zn|

≥ lim
n→∞

1
n

n∑

k=1

1{qk ∈ Q} d(y0, co(Q)) .

Recalling that y0 6∈ co(Q) by choice of Q, we have that d(y0, co(Q)) > 0, and (6.14) follows. To
conclude, note that for any ε > 0 the set {q ∈ Y : |q − y0| > ε} may be written as a finite union⋃M

m=1 Qm, where the sets Qm are mutually exclusive and with y0 6∈ co(Qm). Hence (6.14) holds for
each Qm, and since

1{|qk − y0| > ε} =
M∑

m=1

1{qk ∈ Qm}

we obtain (6.11). The Cesaro convergence of qk to y0 follows from (6.11) since the sequence (qk) is
bounded. ¤

Proposition 6.7 Let P1 use a the calibrated strategy (6.3), and suppose the sequence (yk) of P2’s
mixed actions Cesaro-converges to a stationary strategy y0, in the sense of (6.10). Then

lim
n→∞

ρn = lim
n→∞

ρ∗(ŷn) = ρ∗(y0) (a.s.) .

Proof: We first note that the assumption on (yk) implies that limn→∞ ŷn = y0, so that the second
equality follows by continuity of ρ∗ (see Lemma 2.1). To establish the first equality, observe from
Lemma 6.6 that (6.11) holds for any ε > 0, , so that

lim
n→∞

1
n

n∑

k=1

1{|qk − y0| ≤ ε} = 1 (a.s.) . (6.15)

Now, if |qk − y0| ≤ ε it follows by the definition of io(q) and the Lipschitz continuity of ρ∗ (see ibid)
that ∣∣∣∣

r(io(qk), qk)
τ(io(qk), qk)

− ρ∗(y0)
∣∣∣∣ = |ρ∗(qk)− ρ∗(y0)| ≤ Aε ,

where A > 0 depends only on the game parameters (r and τ). Since (6.6) holds under myopic calibrated
play, we obtain by combining the last two equations that

lim sup
n→∞

|ρn − ρ∗(y0)| = lim sup
n→∞

∣∣∣∣
∑n

k=1 r(io(qk), qk)∑n
k=1 τ(io(qk), qk)

− ρ∗(y0)
∣∣∣∣ ≤ εA .
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As this holds for any ε > 0, the conclusion follows. ¤
The following remarks concern Proposition 6.7.

1. The conclusion of Proposition 6.7 can be seen to hold even when the stationary strategy to which
P2 converges depends on the sample path. More precisely, on a set of probability 1, if (6.10)
holds for some y0 = y0(ω), then limn→∞ ρn = ρ∗(y0).

2. Proposition 6.7 may also be generalized by considering the case where P2’s mixed actions converge
to any convex set Y0 ⊂ Y , rather than a single point, in the sense that

lim
n→∞

1
n

n∑

k=1

d(yk, Y0) = 0 .

In that case, a similar argument to the above shows that, for any ε > 0,

lim inf
n→∞

(ρn − ρcal(ŷn, Y ε
0 )) ≥ 0 (a.s.) ,

where Y ε
0 is an ε blowup of Y0, and ρcal(ŷ, Y ε

0 ) is defined similarly to (6.4) except that Y ε
0 replaced

Y as the support of the measure µ.

3. It should noted that convergence of the empirical distribution ŷn to some value y0 is not sufficient
to obtain ρn ≥ ρ∗(y0) asymptotically. For example, if P2 plays periodically the actions a, b, a, b, ...,
then a best-response to a perfect prediction of these actions will yield the long-term reward rate
ρn ' r(io(a),a))+r(io(b),b)

τ(io(a),a))+τ(io(b),b) . This may be smaller (or larger) than ρ∗( 1
2ea + 1

2eb).

We have thus established that calibrated play satisfies all three desiderata that we posed for adaptive
play. We close this section with some remarks that concern that complexity of calibration.

1. As noted before, devising a computationally feasible algorithm for calibration is a non-trivial
task. With the exception of Foster and Vohra (1997) for binary sequences and Mannor et al.
(2007) for some other restricted cases, currently available calibration algorithms are inefficient.
Settling for ε-calibration, where the magnitude of the error in (6.1) is allowed to grow up to
some ε > 0, may lead to more feasible algorithms (e.g., Kakade and Foster, 2004). When used
for calibrated play this would lead to a proportional reduction in the guaranteed performance
envelope ρcal.

2. To attain ρcal, we actually need the calibration property in (6.1) to hold only for Q = Y and
Q = Y ∗

i , i ∈ I (as these are the properties used in the proof of Theorem 6.2). This should be
simpler than general calibration. However, the resulting scheme does not guarantee best-response
to stationary strategies.

7 Concluding Remarks

In this final section we consider briefly some possible alternatives and extensions to the adaptive
strategies that were suggested above. We further discuss some relations between the present model
and stochastic games, and finally conclude the paper.
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7.1 Alternative Strategies

A number of variants and alternatives of interest exist for the adaptive strategies that were proposed
in this paper. We mention the following two:

1. Modified calibrated play: According to the calibration-related strategy of Section 6, the adaptive
player (P1) maximizes his single-stage payoff ρ(x, qk) against his calibrated forecast qk of the opponent’s
action. A reasonable alternative for P1 would be to choose his action so as to maximize the expected
average reward up to and including the next stage, namely

xk ∈ arg max
x∈X

r1 + . . . + rk−1 + r(x, qk)
τ1 + . . . + τk−1 + τ(x, qk)

.

or even
xk ∈ arg max

x∈X

∑

i,j

x(i)qk(j)
r1 + . . . + rk−1 + r(i, j)
τ1 + . . . + τk−1 + τ(i, j)

.

Recalling that P1 wishes to maximize his long-term average payoff, these schemes may be viewed as
natural greedy choices with respect to the current average. However, no performance guarantees are
currently available for these modified schemes when playing an arbitrary opponent. We note that all
three options coincide for standard (fixed duration) matrix games.

2. Fictitious play: In fictitious play, P1 selects the best response against the current empirical dis-
tribution of the opponent’s actions. No-regret play is obtained for repeated matrix games by slightly
perturbing (or smoothing) this choice; see Fudenberg and Levine (1999) and references therein. Ficti-
tious play and it variants may be defined in our model using

xk ∈ arg max
x

r(x, ŷk−1)
τ(x, ŷk−1)

as a starting point. It should be easy to verify that such schemes nullify the regret when the opponent
is stationary, or, more generally, when the empirical distribution of his actions converges. However, no
performance guarantees against an arbitrary opponent are currently available.

A somewhat different approach to the definition of regret in variable duration games is the super-
game approach considered in Mannor (2002). The idea is to aggregate a variable number of consec-
utive stages of the basic game into a larger “super-game”, so that the overall length of this game is
approximately constant (in relative terms), to within a required accuracy. We then consider no-regret
strategies for the repeated super-game, where the opponents actions are now his strategies in the stage
super-game. While these super-actions are not fully observable, we can still apply existing results that
rely on the observed payoff only (e.g., Auer et al., 2002) to obtain (approximate) no-regret strategies
in this super game. The downside of this approach is that the performance guarantees are not defined
in the natural space of ŷn (the opponent’s empirical distribution in the actual stage game), and that
the complexity and convergence time of the resulting strategy are exponential in the number of stages
in the super-game, which quickly becomes prohibitive.

7.2 Regret minimization in stochastic games

There exist some interesting inter-relations between our model and certain classes of stochastic games
which are worth pointing out. First, repeated variable-duration games can be represented as a special
case of stochastic games. Specifically, when the stage durations τ(i, j) are integer (or, by scaling,
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rational) numbers, the variable duration game can be represented as a finite-state stochastic game,
where the decision points coincide with the arrival times to a fixed state. The long-term average
reward in this stochastic game coincides with the long-term reward-rate in the repeated variable-
duration game. It follows that the negative results derived here on the non-existence of no-regret
strategies immediately apply to the more general class of stochastic games, even under the assumption
of a fixed recurrent state.

We considered regret minimization for stochastic games in a previous work (Mannor and Shimkin,
2003). A counterexample was given there to existence of no-regret strategies, where regret is defined
with respect to best response payoff against the stationary strategy of the opponent that corresponds
to the conditional empirical distribution of the opponent’s actions at each state. The example given
in the present paper offers additional insight, as it pinpoints the problem to the variable duration of
time between arrivals to the recurrent state, rather than to the state dynamics. In that work we also
considered approachability-related adaptive strategies for recurrent stochastic games, and introduced
the concept of the convex Bayes-envelope which parallels the convex best-response envelope of the
present paper. However, the performance guarantees obtained here are stronger.

Regret minimization in stochastic games was considered also in Even-Dar et al. (2004). This model
is restricted to the case where P1 alone affects the state transitions, it assumes that the potential
reward in all states is revealed to P1 at every stage, and it considers the expected average reward
criterion (rather than the sample-path average).

¿From the opposite direction, it is worth pointing out certain classes of stochastic games may in
principle be reduced to repeated variable-duration games. Assuming the existence of a fixed state
that is recurrent under all strategies (as in Mannor and Shimkin (2003) for example), we can consider
segment of the game between successive visits to the recurrent state as a normal-form super-game,
in which the player’s actions are their pure strategies in such segment. This raises the possibility of
translating regret minimizing schemes for repeated variable duration games to this class of stochastic
games in the appropriate super-action space. The caveat is that the other player’s super-actions are
now not fully observed by P1, a problem which was not treated in the present paper.

7.3 Conclusion

In this paper we considered the extension of the regret minimization concept by allowing the stage
game to be of variable duration. It was shown that a natural extension of the no-regret concept to
this case cannot be supported in general (although no-regret strategies do exist in the special case
when P1 does not affect the stage game duration). Motivated by this inherent limitation, we studied
two classes of strategies for adaptive play that provide somewhat less favorable, but still significant,
performance guarantees. The first one is based on approachability, and its performance guarantee
is defined in terms of a certain function of ŷn, the empirical distribution of the opponent’s actions,
which was termed the convex best-response envelope. In particular, it was shown that this strategy
is indeed adaptive, in the sense that it achieves more than the minimax value of the game when the
opponent’s empirical distribution is non-adversarial. The second strategy is based on calibrated play,
namely playing the best response action in a related single-shot game against a calibrated forecast of
the opponent’s actions. This strategy was shown to attain the calibration envelope, which is at least
as high as the convex best-response envelope of the previous strategy, and moreover attains the best
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response (hence no regret) if the opponent happens to use a stationary strategy.
Several directions and issues remain for future work. First, the calibration-based scheme is quite

demanding, and it should be of interest to obtain similar performance using simpler strategies. Second,
a challenging question is to determine whether the performance guarantees of the calibration envelope
can be improved upon, and indeed whether a sense of optimal performance envelope exists in general.
Third, each of the alternative strategy options outlined above has some conceptual appeal, and a
study of their properties is called for. Of particular interest here would be to develop fictitious play-
like strategies with provable performance guarantees. Finally, it would be of interest to study adaptive
strategies for the variable-duration model under incomplete observation of the opponent’s action,
similar to the bandit problem in repeated matrix games (Auer et al., 2002) or the general signalling
model of Rustichini (1999), and make the connection mentioned above with stochastic games.
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A Appendix

A.1 Proof of Theorem 5.1

We provide here an outline of the proof of the approachability result in Theorem 5.1. The proof of
part (i) is essentially a simplified version of the proof of Theorem 3.1 in Shimkin and Shwartz (1993),
which deals with approachability for stochastic games with a fixed recurrent state.

We will require the following Martingale-related convergence result (see, e.g., Shimkin and Shwartz,
1993, Proposition 4.1).

Proposition A.1 Let (Xn,Fn)n≥0 be a stochastic sequence on some probability space, namely (Fn)
is an increasing sequence of sigma-algebras and Xn is measurable on Fn. Let X0 = 0, and suppose
there exists a constant Q such that, for each n ≥ 0,

IE(X2
n+1|Fn) ≤ X2

n + Q (a.s.) .

Then Xn/n → 0 (almost surely). Furthermore, the rate of convergence depends only on Q, in the sense
that

P

{
sup
n≥N

|Xn|
n

≥ ε

}
≤ δ for N ≥ 6Q

δε2
.

Assume that the condition in Theorem 5.1(i) is satisfied for a given set B. Suppose that P1 uses
the specified strategy, while P2 uses an arbitrary strategy. Let Fn be the sigma-algebra generated by
the history sequence hn = (i1, j1, . . . , in, jn). Further denote

Tn =
∑n

k=1 τk , where τk = τ(ik, jk),

rk = ~r(ik, jk),

Cn = cρn , the closest point in B to ρn, dn = d(ρn, B) ≡ ‖ρn − Cn‖2,

where we use the standard Euclidean norm. We proceed to show that E(T 2
n+1d

2
n+1|Fn) ≤ T 2

nd2
n + Q

for some finite constant Q. If dn > 0 (namely ρn 6∈ B) then, from (5.1) and the specified policy of P1
we have 〈

Cn − ρn, Cn − ~ρ(xn+1, yn+1)
〉 ≤ 0 . (A.1)

If dn = 0 this holds trivially since Cn − ρn. Observe that

~ρ(xn+1, yn+1) =
~r(xn+1, yn+1)
τ(xn+1, yn+1)

=
E(rn+1|Fn)
E(τn+1|Fn)

,

so that the inequality (A.1) can be written as

E
(〈

Cn − ρn , Cnτn+1 − rn+1

〉|Fn

) ≤ 0 . (A.2)

Next, by definition of Cn+1 we have

dn+1 = ‖ρn+1 − Cn+1‖ ≤ ‖ρn+1 − Cn‖ =
∥∥∥∥

Tnρn + rn+1

Tn+1
− Cn

∥∥∥∥ .

Therefore,

T 2
n+1d

2
n+1 ≤ ‖Tnρn + rn+1 − CnTn+1‖2 = ‖Tn(ρn − Cn) + (rn+1 − Cnτn+1)‖2 .
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Expanding the last squares, using (A.2) and recalling that dk = ‖ρn − Cn‖ gives

E(T 2
n+1d

2
n+1|Fn) ≤ T 2

nd2
n + E(‖rn+1 − Cnτn+1‖2|Fn) ≤ T 2

nd2
n + Q ,

where Q = (rmax + τmaxCmax)2 is a (finite) upper bound on the last term. Applying Proposition A.1
we can deduce that

lim
n→∞

1
n

Tndn = 0 .

But since Tn/n ≤ τmax, it follows that limn→∞ dn = 0, which establishes part (i) of the Theorem. We
note that a uniform convergence rate applies to all strategies of P2, give by

P

{
sup
n≥N

dn ≥ ε

}
≤ δ for N ≥ 6Q

δ(ετmin)2
.

Part (ii) of the theorem follows by using the minimax argument of Blackwell (1956a), after noting
the minimax equality of Lemma 2.1(i) which applies to the projected payoff functions ρu = 〈u, ~ρ〉. ¤
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