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Abstract— Differentiated services architectures are scalable
solutions for providing class-based Quality of Service (QoS) over
packet switched networks. While qualitative attributes of the
offered service classes are often well defined, the actual differenti-
ation between classes is left as an open issue. We address here the
proportional QoS model, which aims at maintaining pre-defined
ratios between the service class delays (or related congestion
measures). In particular, we consider capacity assignment among
service classes as the means for attaining this design objective.

Starting with a detailed analysis for the single hop model,
we first obtain the required capacity assignment for fixed flow
rates. We then analyze the scheme under a reactive scenario,
in which self-optimizing users may choose their service class in
response to capacity modifications. We demonstrate the existence
and uniqueness of the equilibrium in which the required ratios
are maintained, and address the efficient computation of the
optimal capacities. We further provide dynamic schemes for
capacity adjustment, and consider the incorporation of pricing
and congestion control to enforce absolute performance bounds
on top of the proportional ones. Finally, we extend our basic
results to networks with general topology.

I. INTRODUCTION

A. Background and Motivation

The need for providing service differentiation over the
Internet is an ongoing concern in the networking commu-
nity. The Differentiated Services architecture [2] has been
proposed as a scalable solution for QoS provisioning. Instead
of reserving resources per session (e.g., as in the Integrated
Services (IntServ) model [3]), packets are marked to create
a smaller number of packet classes, which offer different
service qualities. The premise of differentiated services is to
combine simple priority mechanisms at the network core with
admission control mechanisms at the network edges only, in
order to create diverse end-to-end services.

Several service classes in specific architectures such as
Diffserv [2] have been formally defined. For instance, the
purpose of the Expedited Forwarding (EF) class [4] is to
provide no-loss and delay reduction to its subscribers. The
Assured Forwarding (AF) [5] services are intended for users
who need reliable forwarding even in times of network con-
gestion. A Service Level Agreement (SLA) is formed between
the user and the network provider, in which the user commits
to interact with the network in a given way, usually reflected
by the allowed bandwidth for each service class. Yet, current
technical specifications (e.g., Diffserv standards) deliberately
do not quantify the provider part of the agreement, i.e., the
actual service characteristics, which users will obtain by using
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the above mentioned classes. Hence, the two elements that
jointly determine the QoS in the different service classes,
namely, the resource allocation policy (which may be carried
out by internal packet scheduling rules) and the regularization
of user traffic (e.g., by admission control or pricing) are left as
open design issues. Apparently, service characteristics would
have to be defined and publicly declared in order to make the
distinction between the service classes meaningful to the user
and possibly worth paying for.

Differentiated services networks cannot offer strict quality
guarantees, as resources are allocated to the service classes
based on some average network conditions [6]. Hence, these
networks are considered as a “soft QoS” model [7]. The
provider may thus declare loose upper bounds on QoS mea-
sures, or alternatively provide probabilistic or time-dependent
guarantees. Another option, which we consider here, is to
announce relative quality guarantees, which means that some
traffic is simply intended to be treated better than other
traffic (faster handling and lower average loss rate). The
proportional QoS model [8] has been introduced in order to
add concreteness to the notion of relative guarantees. In this
model, pre-defined QoS ratios between the classes are to be
maintained. These announced ratios are independent of the
congestion level of the network. Thus, when a user signs an
SLA for a class based on relative performance guarantees, it
always gets a concrete performance enhancement over lower
service classes. Consequently, the QoS can be easily quantified
and advertised as, for example: “service class K provides half
the delay of service class K + 1, at any given time”. We note
that this proportional QoS can be offered alongside absolute
bounds on the relevant performance measure, as we elaborate
below (Section V).

In this paper we concentrate on delay-like performance
measures, which are formulated through general congestion-
dependent cost functions. Delay quality is essential for several
modern applications, such as carrying voice over the Internet.
Delay ratios are easier to maintain in comparison with absolute
end-to-end delay guarantees, primarily because they may hold
for different levels of congestion, and secondly because keep-
ing the ratios locally (on a link basis) leads to fulfilling this
objective on the network level. Although our focus is on delay,
other QoS measures may potentially be included within the
proportional QoS framework. We briefly consider in Section
II-D the extension of the proportional QoS model to relative
packet-loss differentiation.

Dovrolis et al. [8] proposed a class of schedulers, based on
the Proportional Delay Differentiation (PDD) model, which
aims at providing predetermined delay ratios. The schedulers
are implemented by observing the history of the encountered
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delays (or alternatively, by measuring the delay of the packet
at the head of each service class), and serving the class which
most exceeds its nominal delay ratio relative to other classes.
In [9], proportional delays are maintained by modifying the
weights of a Weighted Fair Queuing (WFQ) scheduler [10]
based on predictions of the average delays. Several other
schedulers were suggested for obtaining proportional QoS over
other congestion measures, separately or simultaneously (see
[11] for a survey). These schedulers have been incorporated in
various applications such as class provisioning [12] and optical
burst switching networks [13].

In the present work we do not impose the delay ratios on
a per packet basis (which usually requires time monitoring
of queued packets), but rather propose using capacity alloca-
tion for this objective. While the capacity allocation model
abstracts away the details of packet scheduling, it may be
considered an approximated model for existing schedulers
such as WFQ. This is further discussed in Section II. We model
the differentiation mechanism as a general capacitated link, in
which the capacity (e.g., in bits per seconds) assigned to each
service class determines its performance. Since users are free
to modify their flows subsequent to each capacity allocation,
we examine the viability of our framework under a reactive
user model. The network provider assigns a capacity manager
in order to maintain the delay-ratios design objective, in face
of changing network conditions. We pose the overall model
as a non-cooperative game between the manager and the net-
work users, and explore the associated capacity management
policies and equilibrium conditions.

An important consideration for our model is the time
scale at which capacity updates take place. We view capacity
management as the means to regulate proportional QoS where
service quality is averaged over relatively long time scales,
ranging perhaps from minutes to hours. Even longer time
scales should be considered for fixed capacity allocation.
Accordingly, capacity allocation and updates should be based
on average network conditions over time intervals of corre-
sponding duration.

Several previous papers have addressed differentiated ser-
vices models with reactive users. Perhaps the simplest ap-
proach is Odlyzko’s Paris Metro Pricing (PMP) proposal [14],
where differentiation is induced by assigning a different price
to separated service classes. Other papers explicitly consider
the connection between the network (social or economic)
objective, scheduling mechanism, and the underlying user
model. For example, [15] and [16] determine the prices that
maximize the provider’s profits using a priority queue and
a WFQ scheduler, respectively. In [17], the authors focus
on incentive prices in priority queues, leading to a socially
optimal equilibrium. Our approach differs from the above
references, by considering the maintenance of the relative
service characteristics as a primary management priority.

Our model allows users to choose between the service
classes according to their needs. This choice can be viewed
as a selection of a route, hence leading to a selfish routing
problem. Other papers have considered selfish routing with
infinitesimal users, originated in the transportation literature
[18] and has been extensively studied since (see [19] for a

recent survey). The case of finitely many users, each carrying
substantial flow has been introduced to the networking liter-
ature more recently (see [20]–[22]). We shall use a similar
routing model to represent the user’s choice of service class
in response to given capacity allocation.

B. Contribution and Organization

Our starting point is a single hop (or single link) network
which offers a fixed set of service classes. This model will
later serve as a building block for the general network case. It
can also be considered as an approximation of a single path
in a network, neglecting variations in traffic over intersecting
network paths. Under mild assumptions on the delay functions,
we first show that there exists a unique capacity assignment
which induces the ratio objective for every set of fixed flows,
and show how it may be efficiently computed. Having estab-
lished these properties, we extend our analysis of the capacity
allocation problem within a reactive user environment. Using
a standard flow model (see [23], Sec. 5.4) we represent the
user population as a set of self-optimizing decision makers,
who may autonomously decide on their flow assignment to
each service class. Users differ by their flow utility, their
sensitivity to delay and by the way in which they sign up
to the network. We show that for every required delay ratios,
there exists an equilibrium point, in which the declared ratios
are fulfilled; this equilibrium is unique under some further
conditions. We provide an efficient computation scheme of
the optimal capacity allocation, which can be used when full
information of user-specific characteristics is available. How-
ever, since in most cases a user model can only be estimated,
two alternative reactive schemes are suggested, in which the
network manager adapts its capacity based on current per-class
conditions only. We provide partial convergence results for the
reactive schemes.

The basic model described above is extended in several
directions. We address the incorporation of pricing and con-
gestion control mechanisms alongside capacity management.
We show that keeping the total incoming flow (over all service
classes) below a certain level, suffices to ensure upper bounds
(which correspond to the same pre-specified ratios) on the
delays of each service class. This leaves a degree of freedom
regarding the regulation of the individual service class flows,
which can be exploited to satisfy supplementary network
objectives that include profit maximization and fairness. We
finally show how proportional QoS can be carried over to
general network topologies, by maintaining the specified pro-
portions over each link separately.

The organization of the paper is as follows: The basic
network model is described in Section II. We then consider
the calculation of the manager’s capacity allocation for fixed
network flows (Section III). The equilibrium analysis for
a reactive user model is given in Section IV. Section V
concentrates on pricing and congestion control issues. General
network topologies are considered in Section VI. Conclusions
and further research directions are outlined in Section VII.
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Fig. 1. The single hop network.

II. THE SINGLE-HOP MODEL

A. Network Description

In our single hop model all users employ the same link for
shipping their flow. Let I = {1, 2, . . . , I} be a finite set of
users, which share a link that offers a set of service classes
A = {1, 2, . . . , A}. We consider the link with its respective
service classes as a two terminal (source-destination) network,
which is connected by a set of parallel arcs (see Figure 1).
Each arc represents a different service class. Thus, the set of
arcs is also denoted by A, and the terms service class and
arc are used interchangeably. Denote by f i

a the flow which
user i ships on arc a, and by fa =

∑
i∈I f i

a the total flow on
that arc. The network manager has available a constant link
capacity C, to be divided between the service classes. This
capacity is to be dynamically assigned in order to address
different network conditions. We denote by ca the allocated
capacity at arc a. The capacity allocation of the manager is
then the vector c = (c1, . . . , cA). An allocation c is feasible
if its components obey the nonnegativity and total capacity
constraint, namely (i) ca ≥ 0, a ∈ A and (ii)

∑
a∈A ca = C.

The set of all feasible capacity allocations c is denoted by Γ.

B. Latency Functions

Let Da be the latency (delay) function at service class a.
An important example of a latency function is the well known
M/M/1 delay function, namely

Da(ca, fa) =

{
1

ca−fa
fa < ca

∞ otherwise
(1)

(with the possible addition of a fixed propagation delay, see
[23]). More generally, Da may stand for a general measure of
link congestion. We shall consider latency models that comply
with the following assumptions.

B1 The delay in each service class a is a function of ca and
fa only. Namely, Da(c, f) = Da(ca, fa).

B2 Da is positive, finite and continuous in each of its two
arguments for ca > fa.

B3 Da = ∞ for ca < fa, and Da →∞ for fa → ca.
B4 Da is strictly increasing, convex and continuously dif-

ferentiable in fa for ca > fa.
B5 Da is strictly decreasing in ca for ca > fa.

Assumption B1 implies that the performance in each service
class is unaffected by the capacity and traffic intensity in other
service classes. This would be the case when separate network

resources are allocated at any given time to each service
class (e.g., separate queues and wavelengths in a WDM fiber
system). In shared multiplexing systems such as WFQ and
Weighted Round Robin (WRR) [24], the same assumption
may be still applied to approximate the delays under heavy
traffic conditions (in which differentiation is mostly crucial)
[16]. Assumption B3 induces a strict meaning to the notion
of capacity as an upper bound on sustainable flow, which
is central to this paper. The monotonicity and continuity
properties in Assumptions B2, B4, B5 are natural, while the
convexity assumption in B4 is necessary for the analysis and is
consistent with common latency models like (1). An additional
assumption which will be required for some of our results is:

B6 Da is a function of (ca − fa) only, and is strictly
decreasing in (ca − fa) over ca > fa.

Note that the last assumption, together with Assumption B4,
implies that if Da(ca, fa) > Da(ĉa, f̂a) then ∂Da(ca,fa)

∂fa
>

∂Da(ĉa,f̂a)
∂fa

. Consequently, ∂Da

∂fa
is uniquely determined by the

value of Da.

C. The manager’s objective

We can now precisely formulate the proportional QoS
objective. Taking the delay of class 1 as a reference, the ratios
are described by a vector ρ = (ρ1, . . . , ρA), 0 < ρa < ∞,
where ρ1

4
= 1. The manager’s objective is to have the delays

D1, . . . , DA satisfy

Da(ca, fa) = ρaD1(c1, f1) ∀ a ∈ A. (2)

We refer to that relation as the fixed ratio objective. For
concreteness, we shall assume that ρ1 ≤ ρ2 ≤ · · · ≤ ρA,
so that service classes are ordered from best to worst. It will
be convenient to define the following cost function for the
manager which complies with the fixed ratio objective:

JM (c, f) =

{
0 if (2) holds,
∞ otherwise.

(3)

D. QoS Criteria

While the treatment in this paper is geared towards delay
as a main QoS measure, in some applications other QoS
measures, such as packet-loss or jitter, may be as important.
Observe that our model definitions and assumptions through-
out this section are not specific to delay. Any congestion
measure (or combination of several congestion measures)
which can be quantified through an appropriate flow-based
model may be considered, as long as (i) the set of assumptions
B1-B5 is obeyed for that measure, and (ii) the measure is
additive over the path links, a property which is required for
distributed capacity allocation in general network topologies
(see Section VI).

As an example, we address the possible incorporation of
packet-loss performance within the proportional QoS frame-
work. Packet losses naturally occur as a consequence of finite
buffer space. A proportional-loss objective may be considered,
where the manager is interested in maintaining predetermined
loss-probability ratios between the service classes (perhaps in
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conjunction with certain delay ratios). An interesting issue here
is the meaning of “capacity” in relation to the loss metric.
Capacity may stand for service-rate (as in (1)), buffer space,
or a combination of them both.

Note that although the loss metric is multiplicative, loss
can be approximately treated as additive, assuming low loss
rates, which hold under moderate congestion levels. Verifying
compliance with Assumptions B1-B5 requires explicit models
for loss over the Internet, which are usually unavailable.
However, examination of a simplified queueing model, the
M/M/1/K queue [25], indicates that when capacity corresponds
to service-rate, the average loss complies with most of these
assumptions (excluding B3, which is not needed when the
loss is not excessive). The detailed study of loss and other
performance measures, as well as multiple QoS criteria, is
left for future research.

III. CAPACITY ASSIGNMENT WITH FIXED FLOWS

In this section we consider the network manager’s optimal
capacity assignment, i.e., an assignment which induces the
ratio objective for given network flows. We show the existence
and uniqueness of this assignment, and moreover provide the
means for its calculation. We exemplify our results by the
M/M/1 delay model. The proofs for the results of this section
appear in Appendix I.

The analysis of the fixed flow case is significant on its own,
as it suggest that the manager is always able to induce the ratio
objective, at least for short terms. Additionally, the optimal
capacity assignment for fixed flows naturally serves as the
manager’s best response in the game formulation with reactive
users, to be considered in Section IV.

A. Basic Properties

We consider the manager’s optimal capacity assignment to
a given set of service-class flows f1, . . . , fA. Henceforth, we
will refer to this assignment as the best response capacity
allocation. The best response here is a capacity allocation
which minimizes (3); note that if the minimum is finite, then
(2) is satisfied. We show next that the manager has a unique
best response, which can be computed by a monotone search
over a scalar variable.

Proposition 1: Consider the single-hop model with latency
functions obeying Assumptions B1-B5 and a desired ratio
vector ρ. Let (f1, . . . , fA) be a fixed flow configuration with∑

a∈A fa < C. Then (i) there exists a unique capacity
allocation c ∈ Γ such that the ratio objective (2) is met. (ii)
This capacity allocation can be obtained by a monotone search
procedure over the scalar c1, which is specified in the proof.

Instead of monotone search, the best response capacity
allocation can also be obtained as the solution of a convex
optimization problem.

Proposition 2: Under the conditions of Proposition 1, the
best response capacity allocation can be obtained by solving

the following convex optimization problem:

min
c=(c1,...,cA)

ĴM (c, f), s.t. ca ≥ fa ∀a ∈ A,

A∑
a=1

ca = C,

where

ĴM (c, f) = −
A∑

a=1

∫ ca

fa+εa

g
(
ρ−1

a Da(xa, fa)
)
dxa (4)

and g(·) is any continuous and strictly increasing function
with g(0) = 0, g(∞) = ∞. Further, εa ≥ 0 is a small
non-negative constant, which is taken to be strictly positive
if

∫ fa+δ

fa
g
(
ρ−1

a Da(xa, fa)
)
dxa = ∞ for every δ > 0.

For example, if we take g(x) = x then εa > 0 is required
for the M/M/1 delay function (1), while εa = 0 can be used
for Da(ca, fa) = 1√

ca−fa
.

B. Iterative Capacity Assignment

A rather different approach for obtaining the best response
allocation during network operation would be to simply update
the capacities at each service class based on the observed de-
viations from the ratio objective. This approach eliminates the
need for an explicit calculation of the best response capacity
allocation. Define the average normalized delay D̂(c, f)

4
=

1
A

∑
ρ−1

a Da(ca, fa). The required capacities can be obtained
by the following update rule:

ca := ca + εαa

(
Da(ca, fa)− ρaD̂(c, f)

)
. (5)

Here ε > 0 is a small step-size, and αa = ρ−1
a . Note that the

choice of {αa} guarantees that
∑

a ca is kept fixed, which is
required by the fixed capacity constraint.

For ε small, the update rule (5) may be approximated by
the differential equation

d

dt
ca = αa

(
Da(ca, fa)− ρaD̂(c, f)

)
. (6)

We then have the following convergence result:
Proposition 3: Under the conditions of Proposition 1, the

update rule (6) converges asymptotically to the (unique) best
response capacity allocation.

Observe that in either approach (namely, a direct or an
iterative calculation) the information required by the manager
is the total flow at each service class. Alternatively, an estimate
of the current delay at each service class could be used directly,
as these are the required parameters in (4)–(5).

C. M/M/1 Latency functions

The M/M/1 delay model has special significance, as it is
frequently used for estimating queuing delays [23]. Clearly,
the results obtained so far in this section hold for the M/M/1
delay model case, since it obeys Assumptions B1-B5. Yet,
there are some additional distinctive features of this specific
model, which we highlight next. Our first result considers the
manager’s best-response capacity allocation for a given set of
per-class flows.
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Proposition 4: Consider the single-hop model with M/M/1
latency functions (1) and a desired ratio vector ρ. Then under
the conditions of Proposition 1,

ca = fa + (C −
∑

α∈A
fα)

ρ−1
a∑

α∈A ρ−1
α

. (7)

This formula provides an explicit solution for the best
response capacity allocation. Note that the excess capacity
(C − ∑

α fα) is divided between the service classes, where
each class a ∈ A obtains a share which is inversely propor-
tional to ρa. Interestingly, a similar expression is obtained for
the classical capacity assignment problem of minimizing the
network average delay (see [25] Vol. II, p.331).

We next provide a concrete expression for the cost function
(4) which is minimized by satisfying the fixed ratio objective.

Proposition 5: Consider the single-hop model with M/M/1
latency functions (1) and a desired ratio vector ρ. Let

J̄M (c, f)
4
=

∑

a∈A
waDa(ca, fa), (8)

where wa = 1
ρ2

a
. Then the (unique) feasible capacity alloca-

tion which minimizes (8) is also the best response capacity
allocation.

Proof: The function J̄M is obtained by setting g(x) = x2

in (4). Thus, it follows from Proposition 2 that the manager’s
best responses for JM and J̄M are identical. ¤

We conclude from the last proposition that by achieving
the ratio objective, the manager in fact minimizes a reasonable
social cost function, which is just a weighted sum of the delays
over the different service classes. Indeed, the weights wa are
inversely proportional in ρ2

a, which gives higher weight to
better, and naturally more expensive, service classes.

IV. REACTIVE USERS

In this section we turn our attention to the case of reac-
tive users, namely, users who modify their flow allocation
according to network conditions, and particularly in response
to capacity changes. We begin by formulating the user model
which leads to a noncooperative game description of the users-
manager interaction. We then analyze the properties of the
(Nash) equilibrium point of this game. We further consider the
convergence of adaptive algorithms for capacity assignment.
The proofs of the results in this section are provided in
Appendix II.

A. User Model

Recall that we consider a finite set I of users. Each user
i is free to choose its flow f i

a for each service class a ∈ A.
We allow for pre-specified upper bounds si

a on the users flow,
so that 0 ≤ f i

a ≤ si
a. The total flow of user i is denoted

by f i 4
=

∑
a∈A f i

a, and its flow configuration is the vector
f i = (f i

1, . . . , f
i
A). The flow configuration f is the vector of

all user flow configurations, f = (f1, . . . , f I). A user flow
configuration f i is feasible if its components obey the flow
constraints as described above. We denote by Fi the set of all
feasible user flow configurations f i, and by F the set of all
feasible flow configurations f . Finally, a system configuration

(c, f) is feasible if it consists of a feasible flow configuration
and a feasible capacity allocation (defined in Section II-A).

Users are distinguished first by their flow utility function
U i(f i), which quantifies their subjective utility for shipping a
total flow f i. Thus, we accommodate users with elastic flow
demand. We make the following assumptions regarding U i:
For every user i ∈ I, the utility function U i : < → < is
bounded above, concave and continuously differentiable. We
note that utility functions with the above characteristics are
commonly used within the networking pricing literature [6],
[26]. The total cost J i for user i is given by

J i(c, f) = βi
A∑

a=1

f i
aDa(ca, fa) +

A∑
a=1

f i
api

a − U i(f i). (9)

The left term of J i represents the delay cost, which is the total
delay of the user, multiplied by its delay sensitivity βi > 0.
The middle term stands for the network usage price, where
we assume linear tariffs [6], i.e., pi

a is the price per unit flow
of user i in class a.

The above cost function allows to treat different types
of network users in a unified mathematical framework. This
includes:
1) Elastic or Plastic users. An elastic user’s total flow is
generally not constant, and varies according to the network
conditions. A plastic user is interested in shipping a fixed
amount of total flow into the network. Such a user can be
modeled by a flow utility function which has a sharp maximum
at the required total rate.
2) Static SLA users. Static SLAs are typically negotiated
on a regular (e.g., monthly or yearly) basis. The agreement
means that the users can start data transmission (subject to
the rates they buy) whenever they wish without signaling their
Internet service providers [3]. Thus, from user i’s point of
view, static SLAs are manifested by the maximal flow rates
si

a in each service class. In this paper we do not consider
the establishment phase of static SLAs, and therefore their
associated prices are irrelevant to our analysis. Accordingly,
we have pi

a = 0 for every static SLA user, since payment was
already transferred for acquiring each si

a.
3) Dynamic SLA users. Dynamic SLA users buy differentiated
services on-demand, meaning that they pay a price per unit
traffic pi

a over each service class. In a reasonable pricing
model, these prices could be identical for all users, that is
pi

a = pa for every i ∈ I. As these users are not limited by
static SLAs, we can set si

a = M , where M > C is an arbitrary
large constant.

The prices of both static or dynamic SLAs may be viewed
as an indirect means for congestion control [6], and (among
other things) prevent flooding of the premium service classes.
In this paper, however, we concentrate on capacity assignment
as the management tool, assuming that prices are static (or
change on a slower time scale). The issue of price setting in
our context is addressed later in Section V1.

Remark 1: Strictly plastic users, i.e., users i ∈ I with a
constant rate f i, require the additional constraint

∑
a f i

a =

1One would expect that better service classes (with a lower delay) would
be more expensive, although this is not required for our derivations.
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f i. For simplicity, we will not explicitly consider the case of
strictly plastic users, yet all the results in this section still hold
if strictly plastic users are incorporated in our model (provided
their total flow requirement

∑
f i is less than the total capacity

C).

B. The Game Formulation

Having defined cost functions for all parties involved, the
interaction between the manager and the users may now be
considered as a non-cooperative game, and will be referred to
as the users-manager game. Note that the manager in our case
is not adversarial to the users, but simply wishes to impose
its ratio objective. A Nash Equilibrium Point (NEP) of our
game is a feasible system configuration (c̃, f̃) such that all
costs (JM , J i, i ∈ I) are finite, and the following conditions
hold:

JM (c̃, f̃) = min
c∈Γ

JM (c, f̃), (10)

J i(c̃, f̃ i, f̃−i) = min
f i∈Fi

J i(c̃, f i, f̃−i) for every i ∈ I

where f̃−i stands for the flow configurations of all users except
for the ith one. Namely, the NEP is a network operating point
which is stable in the sense that neither any user, nor the
manager, finds it beneficial to unilaterally change its flow or
capacity allocation, respectively.

Before analyzing the overall users-manager game, let us
consider the users reaction to a fixed capacity allocation c =
(c1, . . . , cA). In this case we still have a non-cooperative game
between the I users. The definition of the Nash equilibrium
of this game remains as in (10), but excluding the network
manager’s minimization of JM . The next result establishes
the uniqueness of the user-equilibrium flow of that game. We
note that this result is particular to the single hop (parallel
arc) case treated here, and does not fully extend to the general
network case treated in Section VI.

Proposition 6: Consider the single-hop model with latency
functions obeying Assumptions B1-B5. Then for every capac-
ity allocation c, the resulting user-equilibrium flow configura-
tion is unique.

C. Analysis of the Users-Manager Equilibrium

We now return to the complete game model, where the
users react to the network congestion conditions, while the
capacity manager is concerned with keeping the delay ratios
and modifies the capacity allocation accordingly. Our next
result establishes the existence of an equilibrium point, in
which the desired ratios are met.

Theorem 7: Consider the single-hop model with latency
functions obeying Assumptions B1-B5 and a desired ratio
vector ρ. Then there exists a Nash equilibrium point for
the users-manager game. Any such NEP exhibits finite costs
for both the manager and the users. In particular, the ratio
objective (2) is satisfied.

The additional Assumption B6 on the latency function is
required to establish the uniqueness of the NEP.

Theorem 8: Consider a single-hop network with latency
functions obeying Assumptions B1-B6. The Nash equilibrium
point for the users-manager game in this network is unique.

Besides existence and uniqueness, an additional appealing
feature of our framework is the computational complexity
of calculating the equilibrium point. Generally, equilibrium
computation schemes for selfish routing even for a network
with fixed capacities are quite involved (see [27] for a survey).
Moreover, most schemes apply under certain conditions, which
need not hold in our case. However, in our framework which
includes capacity adjustment according to a pre-specified delay
ratio, the calculation becomes tractable. In the sequel we
provide the means for the explicit calculation of an equilibrium
point in the users-manager game. Let us start by assuming
that one of the equilibrium delays, say D1, is given. Our next
lemma shows that in this case, the equilibrium point can be
efficiently calculated via a set of quadratic problems.

Lemma 1: Consider the single-hop model with latency
functions obeying Assumptions B1-B6. Assume that the delay
D1 at the NEP is given. Let {Da = ρaD1} and {D′

a
4
= ∂Da

∂fa
}

be the equilibrium delays and their derivatives, as determined
by D1. Then the flows at the NEP can be calculated by
solving the following I quadratic optimization problems (with
A variables each), one for each user i ∈ I:

min
f i

{ ∑
a

1
2
βiD′

af i
a

2
+ f i

a

(
βiDa + pi

a

)− U i(
∑

a

f i
a)

}

subject to : 0 ≤ f i
a ≤ si

a. (11)
Once the equilibrium flows at each service class are de-

termined, it is a simple matter to calculate the equilibrium
capacities according to the delay formulas. Since the number
of classes in a Diffserv-like network is small, the calculation
procedure (11) is computationally manageable. The only issue
that needs to be resolved for a complete calculation scheme
is the determination of D1 at equilibrium. We next show that
D1 can be obtained as the fixed point of a monotone map.
Let D1 be an estimate of the equilibrium delay. Solving (11)
for each user yields (aggregate) flows {fa} which in turn
can be used in (4) for obtaining the manager’s best response.
This best response, together with the flows {fa} yield service
class delays which meet the ratio objective. We denote these
delays by D̃a(D1), emphasizing that they are a function of
the original estimation of D1. Our next result shows that the
equilibrium delay of class 1 can be obtained via an efficient
iterative procedure.

Proposition 9: Consider a network with latency functions
obeying Assumptions B1-B6. Then,

1) D̃1(D1) is monotonously decreasing in D1.
2) The equilibrium delay D1 is the unique solution of the

equation D1 − D̃1(D1) = 0.
3) The equilibrium delay of class 1 may thus be obtained

by a monotone search over the scalar D1, where each
stage involves the calculation of D̃1(D1) through the
solution of (4) and (11).

D. Adaptive Algorithms for Capacity Assignment
Adaptive algorithms are required to account for the reactive

and non-stationary nature of the network users. In this sec-
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tion we consider two plausible options for adaptive capacity
management, which are based on the fixed-flow analysis of
Section III. Propositions 1 and 2 allow the manager to directly
calculate its best response assignment, namely the capacity
assignment that will satisfy the fixed ratio objective given
the current network flows. This forms the basis for our first
algorithm.

Algorithm 1: The network manager periodically observes
the current network flows over each service class, and modifies
its capacity allocation to its best response capacity allocation
(described in Propositions 1–2).

An alternative approach is based on the iterative update rule
(5).

Algorithm 2: The network manager periodically observes
the current network flows, and adapts its capacity allocation
according to (5).

Algorithm 1 is essentially designed to reach the ratio objec-
tive within a small number of capacity re-allocations. Indeed,
if the users are not reactive so that network flows are fixed,
the network manager would satisfy its objective within a single
capacity modification. This algorithm inherently incorporates
substantial capacity changes in each step, as the current best
response capacity allocation may correspond to a significantly
different flow distribution in comparison with the last capac-
ity allocation. Algorithm 2 represents a different approach,
in which capacity modifications are simple and carried out
gradually, in small steps. Sudden changes in capacity can thus
be avoided, possibly at the cost of slower convergence toward
the required equilibrium. An attractive hybrid scheme may
be considered, where Algorithm 1 makes the initial capacity
updates, followed by Algorithm 2 which smoothly adapts the
capacities towards the required equilibrium point.

We next address some convergence properties of both
algorithms under a reactive user environment. To start with,
we assume that the users flow configuration reaches the user-
equilibrium point (unique by Proposition 6), and moreover that
the network manager adapts its previous capacity allocation
only after the users flow configuration is at equilibrium. It
can then be shown that both algorithms converge to the Nash
equilibrium point in the case of two service classes. A precise
statement of these results and the (somewhat lengthy) proofs
are omitted here for lack of space and can be found in
[28]. We point out that the analysis in [28] relies heavily on
monotonicity properties and is not readily extendible to more
than two service classes.

Convergence to the user-equilibrium point under best-
response (or similar) dynamics which is required for our
analysis is essentially an open problem which is resolved
in simplified scenarios only (see [20], [29], [30]). However,
assuming that users reach a stationary working point approx-
imates a reasonable scenario, where the network manager
operates on a slower time scale than that of the users. In this
section we have obviously ignored transient conditions, such
as changes in the user population and their flow requirements.
Hence, the above results should not be considered as ensuring
the convergence of the suggested iterative algorithms under
general conditions, but rather as an indication for their viability
within a more stable environment.

E. Discussion

We pause here to discuss some consequences of the previous
results, as well as some aspects of our modeling assumptions.
Our central result is Theorem 7 (existence of a Nash equilib-
rium point), which implies that the ratio objective is feasible
for any congestion level. This suggests that the network has a
stable operating point which satisfies the ratio objective even
when users are reactive and modify the flow and service class
selection according to perceived congestion.

Theorem 8 (uniqueness of a Nash equilibrium point) implies
that there exists only one such operating point which is
stable under unilateral deviations of self-optimizing users.
We note that the uniqueness property requires the additional
Assumption B6, which is not needed for existence of the
equilibrium. Generally, when the equilibrium is not unique,
the network behavior becomes less predictable. Simulation
results or computation of the equilibrium cannot be relied on
to give a complete picture of the network operation. However,
the possible existence of multiple equilibria in our case can
be tolerated, at least with respect to the network manager’s
objective, since the required ratios are met in every equilibrium
point.

From an analytical perspective, the computation of the
equilibrium point (Lemma 1 and Proposition 9) scales well
(linearly) with number of users, unlike general non-cooperative
games, in which computation is hard from three players and
above (see [31] for a recent survey). From the operational
perspective, the ability to compute the equilibrium capacities
suggests that the manager can set the equilibrium capacities
just once, and wait for the users to reach the equilibrium
flows. In terms of game theory, this approach is related to a
Stackelberg game [32], where the leading player (in our case
the network manager) announces its strategy first, and the other
players react to this strategy. Proposition 6 ensures that the
resulting equilibrium flows are unique, thus the ones expected
by the manager. Note that in our specific game the Stackelberg
strategy leads to an equilibrium point which coincides with the
(unique) NEP desired by the network manager. This property
essentially follows from the structure of the manager’s cost (3)
which assumes only two values (zero or infinity): indeed, in
every NEP the manager’s cost must be zero, and this cannot
be improved upon even when the manager acts as a leader.

We emphasize that the explicit computation of the equilib-
rium capacities requires the manager to possess considerable
per-user information, including user preferences, which can
only be estimated. Accordingly, the use of adaptive algorithms
seems more practical in our case. Still, rough estimates of the
user preferences can be used for estimating the equilibrium
capacities, which in turn may serve as a good starting point
for an adaptive algorithm.

V. PRICING AND CONGESTION CONTROL

In the previous sections we have established that, under
our assumptions on the latency functions, proportional QoS
can be maintained at any congestion level. Still, excessive
congestion should obviously be avoided. We briefly consider
in this section two alternatives for regulating the flow level
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of the network, namely pricing and congestion control. The
underlying objective in either case is to guarantee an upper-
bound Dmax

a on the average delay at each service class a,
while still keeping the ratio objective, thus

Dmax
a = ρaDmax

1 , a ∈ A. (12)

Accordingly, both pricing and congestion control are as-
sumed to take place alongside capacity management, which
is still responsible for keeping the delay ratios. Furthermore,
in the differentiated services context, pricing and congestion
control can be considered as complementary, in the sense
that pricing operates on a slower time scale than congestion
control. Prices are expected to vary slowly (see, e.g., [6]
p. 256), to give the users enough time to evaluate their
price-quality tradeoff and decide which service class to join.
Thus, price regulation is carried out by taking into account
average network conditions. Congestion control mechanisms,
on the other hand, should discard excess flow (or block
user access) when momentary performance is not adequate.
We will demonstrate here that the ratio objective, which is
enforced by capacity management, fits well with both pricing
and congestion control. In a sense, their implementation in a
shared-resources multi-class network can become easier, when
performed in concert with the ratio maintenance.

The user cost model (9) of the previous sections already
includes pricing at linear tariffs. We will not fully address
here the price setting issue, which is a broad research area in
communication networks (e.g., [6], [26], [33] and references
therein). We do provide a qualitative monotonicity result
regarding the effect of prices on equilibrium delays, which
should be significant to the implementation of any pricing
scheme. Our focus is on the dynamic SLAs framework (see
Section II), where price is identical for all users, i.e., pi

a = pa.
Theorem 10: Consider the single-hop model, where the

delay functions obey Assumptions B1-B6, and two pricing
vectors p = (p1, . . . , pA) and p̃ = (p̃1, . . . , p̃A). If p̃ ≥ p
(i.e., p̃a ≥ pa for all a ∈ A) then (i) D̃a ≤ Da at equilibrium
for every service class a ∈ A. (ii) If, moreover, p̃a > pa and
0 < f i

a < si
a for some i ∈ I and a ∈ A, then D̃a < Da at

equilibrium for every a ∈ A.
Proof: (outline) It can be shown that all users submit

less or equal total flow when prices are higher, thus delays
are lower. The full details can be found in [28]. ¤

The result above indicates that increasing the prices for
any subset of service classes results in reduced delays at all
service classes. This is of course a consequence of capacity
re-allocation that takes place to maintain the delay ratios. The
theorem above leaves a degree of freedom as to which of
the prices should be modified in order to satisfy the required
upper bounds (12) on {Da}. This should be determined by
other (economic) pricing objectives along with the required
delay ratios.

We now turn our attention to active congestion control.
In a shared-resource multi-class environment, the question of
congestion control becomes multidimensional, as removing
traffic from one service class also affects the others. Our
goal here is to provide guidelines for determining the target
flow levels in each service class at congestion periods. We

emphasize that the short time scale on which congestion
control must operate and react, necessarily leads us to consider
its effect relative to the current flow demands. This stands in
contrast to the above analysis of pricing, which considers its
effect on equilibrium flows.

The next central result fully characterizes the admissible
region of service-class flows, which allow to maintain the
required delay bounds.

Theorem 11: Consider the single-hop model, where the
delay functions obey Assumptions B1-B6. Assuming that
capacities are set according to (4), there exists a critical flow
level fmax so that Da ≤ Dmax

a holds for every class if and
only if

∑
a∈A fa ≤ fmax.

Proof: The claim immediately follows from the following
fact: Let f and f̂ be two fixed flow vectors. If

∑
a fa ≤

∑
a f̂a,

then the respective best response capacity allocations yield
class delays which satisfy Da ≤ D̂a for every a ∈ A. To
prove this, Assume by contradiction that Da > D̂a for some a
(hence for every a). Then by Assumption B6, ca−fa < ĉa−f̂a.
Summing this inequality over all service classes, and noting
that the total capacity is fixed, we obtain that

∑
a fa >

∑
a f̂a,

which is a contradiction. ¤
The significance of this result is threefold. First, as a

consequence of the underlying capacity management, the ad-
missible set of flows

∑
a∈A fa ≤ fmax is simple and requires

to regulate the total flow only. Second, the set of feasible
flows is naturally expanded (as compared with maintaining the
required delay bound at each service class without capacity
sharing). Third, the network faces a degree of freedom in
setting the target flow levels in each class, which could be
exploited to promote diverse objectives. We outline here two
such options:
1. Profit maximization. Assume that users pay for their good-
put only (i.e., they do not pay for their discarded flow).
Keeping that in mind, the network could be interested in
maximizing its profits by discarding the excess flow from
cheaper service classes (recall that class prices are fixed
during short time scales which are considered here). However,
the network should usually keep an adequate flow rate at
each service class (e.g., due to static SLA commitments). To
formalize this tradeoff, denote by fd

a the current total user
demand for class a (without congestion control) and by f0

a

the rate for class a which the network must allow. Whenever
congestion control is called upon, the allowed input rates can
be obtained from the following optimization problem.

max
f1,...,fA

{ ∑
a

fapa

}
(13)

s.t.
∑

a

fa = fmax, min{fd
a , f0

a} ≤ fa ≤ fd
a ∀a ∈ A.

The solution to this optimization problem follows easily by
ordering the service classes in increasing price order, and
discarding flow according to this order (while obeying the f0

a

constraint) until the total flow reaches fmax.
2. Fairness. Consider the following network-wide performance
criterion

∏
a

fa

Da
, which is known as the product form of the

user’s powers (rate over delay) [34]. Maximizing this criterion
captures a natural tradeoff between class utilization and delay.
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Noting that the target delays are known under congestion,
the target flow levels could be chosen as the solution to the
following optimization problem

max
f1,...,fA

{ ∏
a

fa

Dmax
a

}
, (14)

subject to the same constraints as in (13). This is in fact a
geometric program ( [35], p.160), which can be easily con-
verted into a convex optimization problem, and consequently
solved efficiently. The maximizer of (14) is known to obey
certain fairness properties among the service classes, which
coincide with the Nash bargaining solution. The properties of
the bargaining solution and their association with fairness are
summarized in [34], [36].

We emphasize that as long as the admitted flow does not
exceed fmax, any other alternative for excess flow removal
would ensure compliance with the upper bound delays. We
conclude this section with a brief summary of implementation
issues related to the removal of excess flow from overloaded
service classes. Perhaps the simplest way to attain the required
flow levels in each service class is through call admission
control (CAC), i.e., denying service from some users which
access an overloaded service class. In this context, denying
service from dynamic SLA users (who contract with the
network through short term agreements) seems more natural;
static SLA users, on the other hand, usually cannot be denied,
unless their contracts explicitly allow that. The important issue
of determining which specific users to reject is beyond the
scope of this discussion.

Note that the total user demand fd
a in each class, which is

required in (13) and (14), is comprised of the currently admit-
ted flow fa, and the sum of user requests for obtaining class
a’s service (e.g., through dynamic SLAs). In practice, the first
quantity can be assessed through edge router measurements of
the actual flow-rates at each service class. The latter quantity
is available, for example, at the Bandwidth Broker (BB) entity,
part of the Diffserv architecture [3].

VI. GENERAL NETWORK TOPOLOGIES

In this section we extend our results to the general network
case, in which every user has its own source and destination,
and a given unique route which leads from that source to the
destination2. We assume that the route is predetermined by
some routing protocol, and is not a part of the user decisions.
Note that since users choose and maintain a service class on
an end-to-end basis, we cannot reduce the network case to an
independent game over each link. Thus, those results obtained
for the single hop model which involve user choice of service
class need not carry over to general network topologies.

A. Model Definition

We consider a network of general topology which consists
of a set of links L = {1, . . . , L}. As before, let I =
{1, 2, . . . , I} be the set of users, which share the network.

2An extension to this model, where each user has multiple destinations, will
not affect the results of this section (excluding Theorem 16). For simplicity
of exposition, we focus here on the single user-path case.

BS T

1 1l aD
2 1l aD

2 2l aD
1 2l aD

Fig. 2. An example of a general topology network. This network has a
source S, an intermediate node B and a destination T. There are two links,
l1 = SB and l2 = BT . In this network A = 2, thus each link contains two
parallel arcs. We emphasize in the drawing that flows do not switch from one
service class to the other within a path.

We associate with each user i a route Ri = (li,1, . . . , li,N
i

),
where N i is the length of the route and li,k is the kth link
traversed by user i. Let Il ⊂ {1, 2, . . . , I} be the set of users
for which l ∈ Ri. Each link l carries the set of service classes
A = {1, 2, . . . , A}. As before, each link is thus represented
by a set of A parallel arcs (see Figure 2). Additionally, each
link l has a total capacity Cl, which is to be divided between
its service classes. Denoting by cla the capacity assigned to
class a in link l, a capacity assignment is feasible as long
as (i) cla ≥ 0 ∀l, a and (ii)

∑
a∈A cla = Cl. Denote by

cl = (cl1, . . . , clA) the capacity allocation vector for link l.
Let Γl denote the set of all feasible capacity allocations for
link l, and let Γ = Γ1 × . . . × ΓL be the set of all feasible
network capacity allocations c = (c1, . . . , cL) (where c can
be viewed as matrix of dimension L×A).

As user routes are fixed, the user’s only decision is how
to set its flow rate in each of the service classes. Denoting
by f i,k

a the flow assigned to the kth link of user i in service
class a, we have f i

a = f i,1
a = . . . = f i,Ni

a ; namely, once the
user has determined the inter-class flow distribution, it remains
fixed along the entire path. We emphasize that each user i can
adjust only the flow rates f i

a on its entire path, but cannot
adjust the flow rates separately on each individual link thereof.
Using the same notations as in the single hop case, a feasible
flow configuration f i further obeys 0 ≤ f i

a ≤ si
a for every

a ∈ A. We adopt some additional notations from the single
hop case, namely Fi, f and F, the definition of which is given
in Section IV-A. Finally, a system configuration is feasible if
it is composed of feasible flow configurations and feasible
capacity allocations.

Turning our attention to some link l ∈ L, let fla be the
total flow in link l which is assigned to service class a, i.e.,
fla =

∑
i∈Il

f i
a. The delay of service class a at link l is

denoted by Dla. We adopt the same assumptions as in Section
II regarding the delay functions; thus Dla is a function of cla

and fla only. Let Di
a be the end-to-end delay of user i in

service class a, namely Di
a =

∑
l∈Ri Dla(cla, fla). The cost

function of each user i ∈ I is then given by

J i(c, f) = βi
A∑

a=1

f i
aDi

a +
A∑

a=1

f i
api

a − U i(f i). (15)

The objective of the network remains to impose predetermined
ratios between the delays of the service classes. Formally,
given a ratio vector ρ, the network’s goal is to have the delays
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Di
a, a ∈ A, i ∈ I obey

Di
a = ρaDi

1. (16)

As in the single-hop case, we could now proceed to define
the Nash equilibrium of the users-manager game, based on
the above ratio objective. However, in the network context
the relation (16) can in general be realized in many different
ways, as it only specifies a requirement on the end-to-end
delay, but not on specific link delays. Indeed, the following
example demonstrates that there could be more than a single
capacity allocation which meets the required delay ratios for
a fixed flow configuration, using a simple scenario.

Example 1: Consider the network in Figure 2, where the
delay in each arc is given by the M/M/1 formula (1). Assume
that the network’s objective is that the end-to-end delay in
service class a2 would be twice larger than that of service class
a1. The link capacities are Cl1 = Cl2 = 11. Further assume
a fixed flow configuration fla1 = fla2 = 4, l = {l1, l2}. The
capacity allocation cl1a1 = cl2a1 = 6, cl1a2 = cl2a2 = 5
maintains the required ratios in every link, and thus end-to-
end. A different capacity allocation which will comply with
the same delay ratio is cl1a1 = cl1a2 = 5.5, cl2a1 = 6.342,
cl2a2 = 4.658. Essentially, infinitely many capacity allocation
which meet the required ratio of 1 : 2 may be suggested,
by inducing an arbitrary finite ratio at the first link, and then
compensating for it on the second link.

We advocate here a natural link-level scheme, in which
capacity adaptation is performed independently at each link
with the objective of locally preserving the delay ratios.
Formally, this objective is given by

Dla(cla, fla) = ρaDl1(cl1, fl1), (17)

for every l and a. Obviously, (17) is sufficient for maintaining
the network’s objective (16). This link-level approach is attrac-
tive from a practical point of view, as capacity assignment can
be implemented in a distributed manner, and it does not require
links to communicate their current status. For a game-theoretic
formulation we assign to each link l its own capacity manager
Ml, equipped with capacity Cl. Accordingly, a feasible system
configuration (c̃, f̃) is a NEP if the following conditions hold:

JMl(c̃l, c̃−l, f̃) = min
cl∈Γl

JMl(cl, c̃−l, f̃), l ∈ L, (18)

J i(c̃, f̃ i, f̃−i) = min
f i∈Fi

J i(c̃, f i, f̃−i), i ∈ I,

where

JMl(c, f) =

{
0 if Dla = ρaDl1,

∞ otherwise.
(19)

Note that if each manager’s cost is finite, then the ratio
objective (16) is maintained. We will refer to this model as
the (link-based) users-managers game.

B. Main Results

We next present our main results for general topology
networks. The longer proofs are deferred to Appendix III.
Our focus in this section is on the link-level approach which
maintains the delay ratios on a link basis. A specific benefit of

this approach is that each link manager can apply its local best
response map, based on the same methods that were applied
for the single hop case. This is formalized in the following
proposition.

Proposition 12: Consider the general network model with
latency functions obeying Assumptions B1-B5. Let f be a fixed
flow configuration with

∑
a∈A fla < Cl, l ∈ L. Then there

exists a unique capacity allocation c ∈ Γ such that the delay
ratios are met locally in every link. This capacity allocation
can be obtained for each link independently using the results
of Propositions 1–2.

Proof: The proof follows directly from the proofs of
Propositions 1–2. Since the best response in each link is
unique, it follows that there is a unique best response at the
network level, where the capacity assignment is separately
calculated in every link. ¤

Similarly, the iterative capacity assignment (5) can be ap-
plied separately in each link for obtaining the required network
capacity allocation. The convergence of this scheme (for small
ε) follows directly from Proposition 3. Focusing on the M/M/1
delay model, we may still interpret the fixed ratio objective as
a social objective as in Proposition 5.

Proposition 13: Consider a general topology network with
M/M/1 latency functions (1) and a desired ratio vector ρ. Let

J̄Ri

(c, f)
4
=

∑

a∈A
waDi

a, (20)

where wa = 1
ρ2

a
. Then the (unique) feasible capacity allocation

which minimizes (20) for every i ∈ I is also the best response
capacity allocation.

Proof: Immediate from Proposition 5 by noting that
min

∑
a∈A waDi

a =
∑

l∈Ri min waDla(cla, fla). ¤
The significance of the last result is that under the best

response capacity allocation, the weighted sum of the end-to-
end delays is minimized for each user path.

Returning to the reactive user model, we show next that
an equilibrium which maintains the delay ratios on a per-link
basis (as defined in (18)) always exists.

Theorem 14: Consider a general network with latency func-
tions obeying Assumptions B1-B5. Then there exists an equi-
librium point for the link-based users-managers game at which
the delay ratios are met.

The existence of this Nash equilibrium is a basic indication
for the viability of the proportional QoS approach in general
network topologies. We next consider a special case, where
all users are strictly plastic (i.e., users whose total demand
f i is fixed, see Remark 1). As we show in the next theorem,
the equilibrium point of the users-managers game in this case
is unique, and further computable via quadratic optimization
problems, whose complexity remains the same as in the single-
hop case.

Theorem 15: Consider a general network with latency func-
tions obeying Assumptions B1-B6. Assume that all users
are strictly plastic, i.e., the total demand f i is constant for
every i ∈ I. In addition, assume that the users’ flow can be
accommodated by the network, i.e.,

∑
i∈Il

f i < Cl for every
l ∈ L. Then (i) there exists a unique equilibrium point of the
link-based users-managers game. (ii) the equilibrium can then
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be efficiently calculated by solving I quadratic problems with
A variables each.

Similar results to Theorem 15 regarding uniqueness of the
equilibrium are not currently available for general elastic users.
That is, we cannot rule out the existence of two equilibrium
points, each with a different set of capacity allocations and
user flow demands. Nonetheless, in the following theorem we
provide sufficient conditions, under which uniqueness of the
equilibrium does hold for general users.

Theorem 16: Consider a general network with latency func-
tions obeying Assumptions B1-B6. Uniqueness of the equilib-
rium point for the users-managers game holds when the user
paths satisfy either one of the following: (a) Every link is
shared by either all users, or by one user at most. (b) Every
link is shared by at most two users.

The incorporation of pricing and congestion control mech-
anisms for general network topologies is naturally more in-
volved than in the single hop case. For instance, maintaining
end-to-end performance guarantees for each user (which are
fair in some sense) becomes a considerable issue. In this
context, possible solution concepts may combine complemen-
tary routing mechanisms (e.g., constraint based routing [3])
alongside pricing and congestion control mechanisms, which
could reduce congestion at overloaded links.

VII. CONCLUSION

This paper considered an approach for capacity allocation in
differentiated services networks which focuses on maintaining
a fixed proportion of certain congestion measures across the
different service classes. The congestion model we consider
incorporates fairly general delay functions at each service
class, and furthermore takes into account a reactive and
heterogenous user environment. An attractive feature of the
suggested capacity allocation schemes is the ability to im-
plement per-link distributed algorithms, alongside an efficient
computation procedure for the required capacity assignment.
We have also shown how the proposed ratio objective fits
seamlessly with congestion control and pricing mechanisms,
which may be invoked to ensure delay bounds at each service
class.

We have presented a comprehensive analysis of the single-
hop case, and partially extended these results to a general
network topology. Some specific issues that remain for further
study within the general network model include: (1) more
general conditions for the uniqueness of the equilibrium, (2)
convergence properties of distributed capacity management
schemes with reactive users, and (3) the incorporation of
pricing and congestion control mechanisms on an end-to-end
basis.

The scope of our model may be enhanced in several
respects. We purpose to examine coupled latency functions,
which allow some dependence in performance of each ser-
vice class on the congestion level at other classes. These
latency functions may provide more accurate models for
common scheduling schemes such as WFQ and WRR. The
simultaneous consideration of several QoS measures is of
obvious interest. Finally, an important future direction would

be to consider routing alongside capacity assignment as a
complementary mechanism which balances the traffic in the
network.

APPENDIX I
PROOFS FOR SECTION III

Proof of Proposition 1: The proof of existence and uniqueness
of the manager’s best response rests on monotonicity proper-
ties of the best-response capacities.

Define the mapping c1 7→ T (c1) ∈ <+ as follows: for
each c1 > f1 (which induces a unique delay D1(c1, f1)),
set the remaining service class capacities c2, . . . , cA so that
the required delay ratios Da(ca, fa) = ρaD1(c1, f1) are met
for every a = 2, . . . , A. Note that ca is uniquely determined
due to the monotonicity of Da in ca (Assumption B5). We
define T (c1) as the sum of these capacities (including c1),
i.e., T (c1) =

∑
a∈A ca. Note that T (c1) need not be equal

to C, as the total capacity constraint is not enforced here. It
follows that (c1, . . . , cA) is a best response to (f1, . . . , fA)
if and only if f1 ≤ c1 ≤ C and T (c1) = C. To establish
uniqueness, it remains to show that there is a unique c1 with
these properties. For that purpose, the following observation
is required.

Lemma 2: The mapping c1 7→ T (c1) is strictly increasing
and continuous in c1.

Proof: Immediate by the continuity and strict monotonic-
ity of each delay function Da in ca. ¤

The existence and uniqueness of the manager’s best re-
sponse now follows easily. Note first that if we set c1 = f1

then T (c1) =
∑

fa < C (as assumed in the proposition’s
conditions). Setting c1 = C obviously yields T (c1) ≥ C.
Then by Lemma 2, it follows that there exists a unique value
of c1 ∈ [f1, C] such that T (c1) = C. This value of c1 induces a
unique feasible capacity allocation over the remaining service
classes, such that the ratios are satisfied. This establishes part
(i) of the proposition.

We next consider the proof of part (ii). A straightforward
conclusion from Lemma 2 is that the required capacity al-
location can be obtained by a simple search over the scalar
c1, that will induce the required delay ratios. Based on the
mapping T (c1) defined above, we search for c1 so that
T (c1) = C. Since T (c1) is monotonous in c1, several well-
known techniques could be applied for an efficient search, such
as the bisection method [35]. ¤
Proof of Proposition 2: (outline) The key idea in the proof
is to use Lagrangian techniques to establish that optimality
conditions for (4) are equivalent to the ratio objective equations
(2). Thus, by solving (4), the capacity allocation which meets
the required delay ratios is obtained. The full details can be
found in [28].
Proof of Proposition 3: (outline) Denote the (unique) ca-
pacity allocation which induces the required ratios by c∗ =
(c∗1, . . . c

∗
A). Define the following potential function:

V (c) =
1
2

∑

b

(cb − c∗b)
2. (21)

It can be shown that (21) is a Lyapunov function for the system
(6) implying its global stability. Details can be found in [28].
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Proof of Proposition 4: Noting (1) and (2), the best response
capacity allocation is derived by solving the following set of
linear equations:

A∑
a=1

ca = C; ρa(ca − fa) = (c1 − f1), a = 2, . . . , A. (22)

The unique solution of these equations is easily seen to be
given by (7). ¤

APPENDIX II
PROOFS FOR SECTION IV

Proof of Proposition 6: This proposition extends Theorem 2.1
in [20] regarding the uniqueness of the Nash equilibrium for
the parallel arcs network. The extensions are: 1) User demands
are elastic [37]. 2) Users have an upper bound si

a on their
allowed flow in each service class. Since the proof technique
resembles the one used in [20], a full proof is omitted here,
and can be found in [28].
Proof of Theorem 7: We established in Proposition 2 that the
manager’s best-response capacity allocation is also a solution
to a convex optimization problem (4). Since each user i’s cost
function is convex in its decision vector f i, then the existence
of a NEP in our model essentially follows from a well known
result regarding the existence of a NEP in convex games
[38], [39]. Nonetheless, since some technical points related
to infinite costs in our model impede a direct application of
this result, we provide a proof which is a direct application of
the Kakutani fixed point theorem (see, e.g., [40]).

Let us first precisely state the Kakutani’s fixed point theo-
rem, along with the necessary mathematical definitions. These
are taken from [40].

Theorem 17: (Kakutani) Let S be a compact and convex
subset of Rn, and let Λ be an upper semicontinuous function
which assigns to each x ∈ S a closed and convex subset of
S. Then there exists some x ∈ S such that x ∈ Λ(x).

Recall that Λ is said to be upper semicontinuous (usc) at
a point x0 ∈ S, if for any sequence (xi) converging to x0

and any sequence (yi ∈ Λ(xi)) converging to y0, we have
y0 ∈ Λ(x0). The function Λ is upper semicontinuous if it is
usc at each point of S.

Let S
4
= F × Γ. Note that any NEP belongs to S, as a

point outside S is not a feasible system configuration. We
further define the point-to-set mapping (c, f) ∈ S 7→ Λ(c, f),
as follows.

Λ(c, f) =
{
(ĉ, f̂) ∈ S : ĉ ∈ argmin

c̃∈Γ
JM (c̃, f) (23)

f̂ i ∈ argmin
f̃ i∈Fi

J i(c, f̃ i, f−i) ∀i ∈ I}
.

Note that Λ(c, f) is comprised of the best response corre-
spondences of each player (user or manager). It is readily
seen that Λ is usc for the points (c, f) ∈ S such that∑

a fa < C. Indeed, J i is continuous in (c, f) and convex
in f i, guaranteeing the usc of the user’s best response (see,
e.g., [39]). Further, we may replace JM in the definition of
Λ above by ĴM (the objective function in (4)), since the best
responses of the two coincide (see the proof of Proposition

2). Note that ĴM is continuous in (c, f) and convex in c
in the neighborhood of the best response allocation (due to
Proposition 2). Thus overall Λ is usc (note that by the strict
convexity property of the cost functions in their respective
decision variables, Λ is in fact a point-to-point mapping). For
the case where

∑
a fa ≥ C, the user’s best response still

maintains the continuity, finiteness and convexity properties,
as users can always “ignore” infinite delay arcs by shipping a
zero flow into them. The manager is indifferent as to its “best
response” to f (since the manager will obtain an infinite cost
regardless of the chosen capacity allocation), thus

{
ĉ|(ĉ, f̂) ∈

Λ(c, f)
}

= Γ. This implies that for any sequence
{
Λ(ck, fk)

}
converging to some (c0, f0), we have that (c0, f0) ∈ Λ(c, f).
For both the cases above, it is readily seen that Λ(c, f) is a
closed and convex set.

Note that the finiteness of the NEP is guaranteed, since if not
all costs are finite, then at least one player with infinite cost can
change its own flow configuration to make its cost finite. This
argument is valid, since for the case where

∑
a fa ≥ C there

exists a user who ships flow to at least a single arc with an
infinite delay. This user can make its cost finite by unilaterally
reducing (possibly nullifying) its flow in the infinite delay arcs.
For the case where

∑
a fa < C all players can employ their

best response to obtain a finite cost. Applying the Kakutani
fixed point theorem with the above definitions of S and Λ, we
conclude that there exists a NEP. This NEP is finite as shown
above, and it is also a NEP where the delay ratios are met.¤
Proof of Theorem 8: The idea of this proof is to establish
uniqueness of the user best response for the case where the
class delays are given, and then argue that the delay values
are identical in every equilibrium point. The proof proceeds
through the next three lemmas.

Lemma 3: Let D1, . . . , DA be the class delays at some
NEP, and let D′

a
4
= ∂Da

∂fa
. Then the following equations are

met at the equilibrium for every i ∈ I and every a ∈ A
βi

(
Da + f i

aD′
a

)
+ pi

a ≤ U i(f i)′ if f i
a = si

a,

βi
(
Da + f i

aD′
a

)
+ pi

a = U i(f i)′ if 0 < f i
a < si

a,

βi
(
Da + f i

aD′
a

)
+ pi

a ≥ U i(f i)′ if f i
a = 0, (24)

where U i(f i)′
4
= dUi(fi)

dfi .

Proof: Let i ∈ I. Observe that ∂Ji(c,f)
∂fi

a
=

βi
(
Da(ca, fa) + f i

aD′
a(ca, fa)

)
+ pi

a −U i(f i)′. Then (24) is
readily seen to be the KKT optimality conditions [35] for
minimizing the cost function (9) of user i subject to the flow
constraint 0 ≤ f i

a ≤ si
a. These conditions are necessary and

sufficient by the convexity of J i in (9) in f i. ¤
Lemma 4: Consider a NEP with given class delays

D1, . . . , DA. Then the respective equilibrium flows f i
a are

uniquely determined.
Proof: Assume fixed delays Da, a ∈ A. As mentioned,

D′
a is uniquely determined by Da by Assumptions B4 and

B6. For every i ∈ I, consider the optimization problem
given in (11). Note that (11) is a strictly convex optimization
problem, since the objective function is the sum of a diagonal
quadratic term (with βiD′

a > 0 for every a) and the negation
of U i, where U i is concave. Thus, this problem has a unique
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minimum, which is characterized by the KKT optimality
conditions. It is now readily seen that the KKT conditions for
(11) coincide with the conditions in (24). Thus, by Lemma 3,
any set of equilibrium flows (f i

a)a∈A is a solution of (11). But
since this solution is unique, the equilibrium flows for every
i ∈ I are uniquely determined. ¤

Lemma 5: Consider two Nash equilibrium points (c, f) and
(c̃, f̃). Then Da(ca, fa) = Da(c̃a, f̃a) for every a ∈ A.

Proof: Denote Da
4
= Da(ca, fa) and D̃a

4
= Da(c̃a, f̃a).

Assume that D̃a > Da for some a ∈ A. Then D̃a > Da

for every a ∈ A since the ratios are met in both equilibria. It
follows by Assumption B6 that c̃a − f̃a < ca − fa for every
a. Since the total capacity C is fixed in both equilibria, then
summing the last inequality over all service classes yields that∑

a∈A f̃a >
∑

a∈A fa. This implies that there exists some
user j ∈ I for which

f̃ j =
∑

a∈A
f̃ j

a >
∑

a∈A
f j

a = f j . (25)

We next contradict (25) by invoking the next two implications:

(a) f j
a = 0 ⇒ f̃ j

a = 0; (b) f j
a > 0 ⇒ f j

a > f̃ j
a . (26)

Their proof is based on the KKT conditions (24). Since the
utility U j is concave, then by (25) we have λj 4= U j(f j)′ ≥
U j(f̃ j)′

4
= λ̃j . If f j

a = 0, then βjDa + pj
a ≥ λj ≥ λ̃j . Since

D̃a > Da, then βjD̃a + pj
a > λ̃j , hence f̃ j

a = 0. To prove
(26)(b) note first that it holds trivially if f̃ j

a = 0 or f j
a = sj

a.
Next assume f̃ j

a > 0 and f j
a < sj

a. Then by (24)

βj(Da+D′
af j

a)+pj
a ≥ λj ≥ λ̃j ≥ βj(D̃a+D̃′

af̃ j
a)+pj

a. (27)

Since D̃a > Da (hence D̃′
a > D′

a by assumptions B4 and
B6), and each βj is positive, we must have f j

a > f̃ j
a in order

for (27) to hold, which establishes (26)(b). Summing user j’s
flows according to (26) yields

∑
a∈A f̃ j

a ≤
∑

a∈A f j
a , which

contradicts (25). Thus D̃a ≤ Da. Symmetrical arguments will
lead to D̃a ≥ Da, hence D̃a = Da for every a ∈ A. ¤

The last two lemmas imply that the user flows and the
class delays in equilibrium are unique. The capacities in
the equilibrium must also be unique by uniqueness of the
manager’s best response (Proposition 1). This establishes the
uniqueness of the NEP, and completes the proof of Theorem
8. ¤
Proof of Lemma 1: Given the (assumed) equilibrium delay
D1, the remaining equilibrium delays are uniquely determined.
Hence, the conditions of Lemma 4 are established, and the
result directly follows. ¤
Proof of Proposition 9:
1) Formally, we have to prove the following: Let D1 and D̂1

be two estimates of the equilibrium delay in class 1. Then if
D̂1 > D1, it follows that D̃1(D̂1) < D̃1(D1). For the proof,
we assume that the estimate D1 is such that the resulting total
flow which is obtained from (11) is positive. This assumption
is practically met for any search scheme, since if the network
is indeed utilized in equilibrium (i.e.,

∑
fa > 0), then any

plausible search method would tune its estimates of D1 to
a range in which the resulting user-equilibrium total flow is
positive.

Observe first that the quantity
∑

fa is non-increasing
with D1 as the (aggregate) solution to the user optimization
problems (11). This fact was established in the proof of
Lemma 5. It may be easily verified that the same quantity
strictly decreases in D1 if the respective solutions to the user
optimization problems are such that

∑
a fa > 0 (by showing

that (26)(b) holds for at least a single (user, service class) pair).
Hence, since D̂1 > D1 it follows that

∑
f̂a <

∑
fa. (28)

Assume by contradiction that D̃1(D̂1) ≥ D̃1(D1). This means
that D̃a(D̂1) ≥ D̃a(D1) for every a. Hence, By Assumption
B6 we have that ĉa− f̂a ≤ ca−fa. Summing up on all service
classes we obtain that

∑
f̂a ≥

∑
fa contradicting (28). Thus,

D̂1 > D1 implies that D̃1(D̂1) < D̃1(D1).
2) Observe that D̃1(D1) is obtained through best response
map from D1, and therefore D1 = D̃1(D1) must hold for the
equilibrium value of D1 (recall that the equilibrium is unique
by Theorem 8). It therefore follows by part 1 of the proposition
and by the continuity of the associated cost functions, that the
equilibrium delay is the unique solution to D1−D̃1(D1) = 0.
This is a direct consequence of the mean value theorem.
3) The results above indicate that search methods with poly-
nomial complexity may be applied for efficiently calculating
the equilibrium delays. The key idea of any iterative search in
our context is to decrease in each step the distance between
D1 and D̃1(D1). For example, if the bisection method [35]
is applied, then the new guess in each step is the average of
the previous D1 and D̃1(D1). The number of steps which
are required by the method for a precision of ε is given by
log2 |D0

1 − D̃1(D0
1)| − log2 ε, where D0

1 is the initial estimate
of D1. ¤

APPENDIX III
PROOFS FOR SECTION VI

Theorem 14 follow similarly to the single-hop case, while
Theorems 15 and 16 require specific proofs.
Proof of Theorem 14: (outline) As in the single link case,
the existence of a NEP essentially follows from the existence
of a NEP in convex games [38], [39]. Note first that the
best response capacity allocation of each capacity manager
Ml, l ∈ L is also a solution to a convex optimization
problem (4) (Proposition 2). As to the network users, observe
that the delay cost (15) of each user i can be written as
βi

∑
l∈Ri

∑A
a=1 f i

aDla(cla, fla). Since
∑A

a=1 f i
aDla(cla, fla)

is convex in f i for every l ∈ Ri, the delay cost is convex
in f i as the sum of convex functions. Noting that the other
cost terms in (15) remain the same as the single link case,
we conclude that each user’s cost function is convex in its
decision vector. Thus, the basic conditions for the existence
of a NEP in our game (as a convex game) are established.
Some technical points related to infinite costs are resolved in
a similar manner as in the proof of existence of a NEP for the
single hop case (Theorem 7). ¤
Proof of Theorem 15(i) : (outline) The key idea is to show
that the delays at equilibrium are unique, and then establish
the uniqueness of the equilibrium flows similarly to Lemma
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4. A detailed proof is omitted due to lack of space, and can
be found in [28].
Proof of Theorem 15(ii) : (outline) The calculation of the
equilibrium flows and capacities is even easier than in the
single-hop case with elastic users. Briefly, the delays can
be obtained just from the set of total flows over each link
(which is fixed here). Consequently, (11) is solved for each
user to obtain the exact flow distribution, leading to the
capacity allocation to each link. A detailed description of this
calculation can be found in [28].
Proof of Theorem 16: The proofs here resemble the proof of
Lemma 5, see [28] for details.
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