
JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS

Vol. 28, No. 4, July–August 2005

Fast Graph-Search Algorithms for General-Aviation
Flight Trajectory Generation

Eran Rippel,∗ Aharon Bar-Gill,† and Nahum Shimkin‡

Technion—Israel Institute of Technology, 32000 Haifa, Israel

We consider numerical algorithms for onboard flight trajectory generation and optimization in three-
dimensional space. Our approach relies on graph-search algorithms, which perform a global search over the
set of feasible trajectories. We start by formulating a simplified kinematic model that is appropriate for general-
aviation aircraft. The cost function to be optimized includes accounts for position-dependent criteria such as the
flight altitude and terrain clearance. Additional dynamic components that involve the angular velocities are intro-
duced to account for riding qualities and pilot workload. Using an approximate grid-based discretization scheme,
we transform the continuous optimization problem into a search problem over a finite graph and apply Dijkstra’s
shortest-path algorithm to this problem. To reduce the computation time to acceptable levels, we introduce a novel
state reduction technique that leads to suboptimal search. Further speedup is achieved by heuristic search tech-
niques and hierarchical methods. Performance of the proposed algorithms is evaluated for a trajectory optimization
problem with terrain following over a 100 ×× 100 km area. Our experiments demonstrate the potential of these
algorithms, when combined, to provide an onboard solution to realistic flight-trajectory-generation problems.

Nomenclature
ahorizontal, āh = aircraft horizontal acceleration

and its upper bound
avertical, āv = aircraft vertical acceleration and its upper bound
C(v, u) = cost of edge (v, u)
c(X, U) = immediate cost function
D = set of destination vertices
DTM(t) = ground level from digital terrain map
d0 = trajectory accuracy
E = set of edges of a graph
G = graph
g = cost-so-far estimation function
H = flight level
H0 = clearance height
h = cost-to-go heuristic function
hx , hy , hz = three-dimensional grid spacing
h0 = safety clearance height
i , j , k = integer grid indices
J = cost functional
m = maximal number of neighbors for each

three-dimensional point
m, n, � = integer indices for neighboring grid points
N = number of vertices in a graph
n = number of three-dimensional points in the mesh
P, Pi = point in three-dimensional Cartesian space
Rmin = minimal aircraft turn radius
S = set of vertices with known shortest-path values
S0 = finite grid in Cartesian space
s = source vertex
t f = first arrival time to a goal state
U = control signal
u, v = vertices
V = set of vertices of a graph

Received 1 January 2004; revision received 24 May 2004; accepted for
publication 24 May 2004. Copyright c© 2004 by the American Institute of
Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper
may be made for personal or internal use, on condition that the copier pay
the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rose-
wood Drive, Danvers, MA 01923; include the code 0731-5090/05 $10.00 in
correspondence with the CCC.

∗Graduate Student, Department of Electrical Engineering.
†Adjunct Faculty Member, Departments of Electrical Engineering and

Aeronautical Engineering; also Senior Aerospace R&D Associate, H-E Sys-
tems Engineering, Inc., 69358 Tel-Aviv, Israel. Senior Member AIAA.

‡Associate Professor, Department of Electrical Engineering.

V (X) = aircraft velocity at state X
wκ = cost criterion weight
X = aircraft state
x , y, z = Cartesian coordinates
α = tradeoff factor
γ = vertical flight-path angle
�γ0 = largest separation between discrete angles
κ = cost criterion index
X f = set of goal states
ψ = heading angle
� = set of cost criteria

I. Introduction

G ENERAL aviation (GA) constitutes a considerable part of to-
day’s saturated air traffic. In most instances, a GA aircraft

is flown by a single pilot, who might find himself under adverse
weather conditions, operating in single-pilot-instrument-flight-rule
(SPIFR) mode; a faulty link to air traffic control (ATC) can compli-
cate matters even more. The additional stress and workload cause
many unfortunate accidents. Technological advancements, com-
bined with increased affordability, open new venues for tackling this
SPIFR safety problem. These include, for example, ground collision
avoidance systems1,2 that employ geographic-information-system
databases.3,4

Three-dimensional flight trajectory generation is a complex task,
involving various criteria that affect the resulting path. These in-
clude, among others, the flight duration, the degree to which differ-
ent terrain features are utilized, the workload imposed on the pilot in
order to follow the prescribed trajectory, and riding qualities (or pas-
senger comfort), which are affected by the accelerations involved.
Every generated trajectory has to accommodate for these often con-
flicting objectives. Evidently, the specified cost components and the
tradeoff between them should reflect the specific requirements of
the flight mission. For example, low altitude might be required to
avoid flying within a cloud layer, which can add to pilot stress.
“Sunday pilots,” in particular, would prefer maximum dwell time
below cloud ceiling, that is, flying as low as possible, subject—of
course—to safety constraints. The weight given to the pilot work-
load (pumping the stick and the pedals) should depend on the pilot’s
preferences. And minimal exposure to high g levels can be critical
if an injured passenger is carried onboard. All of these consider-
ations bring out the need for a flexible flight-trajectory-generation
capability.

801

802 RIPPEL, BAR-GILL, AND SHIMKIN

In this paper we address the problem of onboard generation and
optimization of three-dimensional trajectories. GA applications call
for a low-cost solution to this problem that would trace a flight path
for rescuing a person, for example, seconds after destination has
been decided on (hospital most suitable to treat the particular injury).
Thus, by onboard algorithms we refer here to algorithms that can
compute optimal flight paths within a few tens of seconds. Modern
technology should allow for such a solution, in particular, under
circumstances where communication with ATC fails and routine
visual/instrumental flight rules cannot be maintained.

An implementation of such a trajectory generator includes an
onboard computer, in which the digital terrain map (DTM) resides
and an altimeter [e.g., a global positioning system receiver], on top
of the standard navigational instrumentation normally available in
GA airplanes. Laptop computers with DTMs are indeed increasingly
being used by light aircraft and helicopters who fly rescue and other
emergency missions without adhering to prescribed routes. Also, the
provisioning of cues that enable the pilot to comfortably follow the
planned trajectory is readily implementable even in today’s low-cost
aircraft. As stated, in the sequel we focus on the trajectory generation
task.

A. Overview of the Proposed Approach
A control-oriented formulation of the trajectory optimization

problem calls for finding a control signal U(t) to minimize the cost
functional:

J =
∫ t f

0

c(X(t), U(t)) dt (1)

subject to the nonlinear differential state equation

Ẋ(t) = f (X(t), U(t)), 0 ≤ t ≤ t f (2)

In addition, various constraints can apply to the state and con-
trol variables. Theoretical solution approaches to this problem in-
clude dynamic programming, which iteratively computes the opti-
mal value function from any state, and the calculus of variations
(with the associated Euler–Lagrange equations), which traces the
optimal path.5−7 Solution of practical problems requires numerical
methods.5,8,9 State-of-the-art numerical methods related to the cal-
culus of variations are essentially based on nonlinear optimization
algorithms, such as gradient descent and Newton’s method. These
methods are basically of local nature, so that convergence to the
global minimum cannot be guaranteed unless the problem is highly
structured. This is not the case in the GA flight-generation prob-
lem, where rugged terrain and forbidden flight zones, for example,
can create multiple locally optimal trajectories. Dynamic program-
ming, on the other hand, is essentially a global method. However,
because of its exhaustive nature, it is considered computationally
feasible only for problems with low state dimension and coarse grid
discretization (compare, Ref. 5, Chapter 7, and Ref. 8).

The present work aims to develop three-dimensional trajectory
optimization methods, which are of global nature, yet computation-
ally feasible, using the basic tool of graph search. Graph-search
methods are a standard tool for shortest-path problems. However,
existing work does not address problems with dynamic aspects,
namely, when accelerations are taken into account as part of the
problem constraints and cost. We note that graph-search methods
are closely related to dynamic programming, but employ the spe-
cial structure of the shortest-path problem to enhance computational
efficiency.

To begin with, we set up a simplified model that captures the
essential ingredients of the trajectory optimization problem for
general-aviation aircraft. We apply to this model an approximate dis-
cretization scheme, which allows the application of efficient global
search algorithms to find the optimal path. In particular, we dis-
cretize the model over a state space, which includes both spatial posi-
tion and velocity, and formulate the trajectory optimization problem
as a shortest-path search problem over a finite graph. This form is ap-
propriate for the application of Dijkstra’s shortest-path algorithms,
which is an efficient single-pass algorithm. In essence, Dijkstra’s

algorithm proceeds from the target (or initial) state and iteratively
develops the front of equidistant states (or graph vertices). Thus, at
each step one new node is tagged with its optimal value, until a tar-
get state is reached. As will be seen, the sequential structure of this
scheme will allow us to introduce some important modifications to
the algorithm.

The application of the basic Dijkstra algorithm to the discretized
model is still short of providing onboard performance for problems
of realistic size. We therefore explore algorithms that accelerate the
process of trajectory generation. First, we reduce the dimensionality
of the discrete state space by removing the velocity-related compo-
nents. Nonetheless, the proposed reduced-state algorithm retains
the ability to account for the acceleration cost, albeit in a subopti-
mal manner. Further enhancements that are considered include the
addition of an A∗ heuristic and a hierarchical (coarse-fine) search
scheme. The performance of these algorithms is examined and com-
pared in simulation.

B. Related Research
The nonlinear nature of both the aircraft state dynamics and the

performance index J make the trajectory generation problem hard
to solve. We briefly review here some of the solution approaches
that have been proposed for this problem. These include definition
of various cost function components, different aircraft model for-
mulations, and algorithmic solution variants.

Funk10 performs vertical-plane optimization only, by means of
cubic splines. The splines are generated by solving a nonlinear pro-
gramming problem. He addresses only the altitude aspect of the
cost. Another trajectory optimization solution, utilizing nonlinear
programming, is given by Hargraves and Paris,11 again only for the
vertical plane.

Asseo12 tackles the three-dimensional problem by looking sep-
arately at the horizontal and vertical components. His algorithm
employs the gradient method, but restricts the gradient search to the
horizontal plane only, avoiding the convergence problems associ-
ated with vertical constraints. He achieves vertical tracks by fitting
parabola segments that clear critical points. This approach involves
no vertical optimization. Also, only the kinematics of the aircraft is
modeled, not accounting for aspects of flight dynamics.

Menon et al.13 use the optimal control approach to obtain trajec-
tories that minimize a linear combination of flight time and terrain-
following (TF) costs. They address the three-dimensional problem
by employing the adjoint method6,8 and a one-dimensional search.
The transformation allows the iterative algorithm to generate three-
dimensional trajectories, while optimizing for a single parameter.
The algorithm is complex, and its computational cost is high. Here
too, only aircraft kinematics is considered, not accounting for flight
dynamics.

Lu and Pierson14 use the optimal control approach and address
off-line calculation of optimal vertical TF trajectories. They use a
point-mass nonlinear dynamic model of the aircraft for their analysis
and utilize the Hamiltonian function, with the inverse-dynamics
approach.15

Spong et al.16 deal with the problem of bounded inputs, employ-
ing optimal decision strategy (ODS), which is a class of pointwise
optimal control strategies. Accounting for the bounded nature of
nonlinear aircraft dynamics (such as thrust and aerodynamics), Lee
et al.17 apply the ODS method to the TF flight problem. Rehbock
et al.18 convert the ODS method into a linear-programming problem,
in contrast to the previous work, where it is posed as a quadratic-
programming problem. Barnard19 combines the ODS method with
the neural-networks technique.

Hess and Jung20,21 use a generalized predictive control algorithm
that calculates an optimal control sequence several steps ahead. They
then apply only the first control of the sequence and recalculate a
new sequence (a receding horizon process). Lu22 Lu and Pierson22,23

also consider predictive algorithms.
Numeric solutions of continuous dynamic-programming meth-

ods are extensively treated in Ref. 9. However, these methods can
require multiple passes over the entire state space. For the specific
case of the shortest-path problem [which corresponds to a special

RIPPEL, BAR-GILL, AND SHIMKIN 803

case of the problem in Eqs. (1) and (2) with c(X, U) = c(X), Ẋ = U
and ‖U‖ ≤ 1], more efficient alternatives are offered by appropriate
discretization schemes coupled with efficient graph search proce-
dures. An early example for the use of this approach can be found in
Ref. 24. More recently, numerically consistent algorithms (which
converge to the exact solution when the spatial resolution is in-
creased) have been proposed in Refs. 25 and 26. All of these meth-
ods use a Dijkstra-like algorithm to perform a global search over
the discretized space. Unfortunately, these algorithms do not ac-
commodate at present the dynamic aspects of our problem, namely,
the acceleration-related costs and constraints.

The remainder of this paper is organized as follows. The under-
lying optimization problem, the aircraft model, and the cost func-
tion are formulated in Sec. II. The transformation of the problem
into a graph search and the application of Dijkstra’s algorithm are
described in Sec. III. Suboptimal enhancements are discussed in
Sec. IV. Section V presents simulation results that demonstrate the
performance of the proposed algorithms. Finally, in Sec. VI we con-
clude and indicate some topics of interest for further research.

II. Problem Definition
The problem we consider is of generating an optimal aerial tra-

jectory between two points: the source and the destination. The tra-
jectory has to be flyable, and hence attention is paid to the physics
of the problem, including the flight model, acceleration constraints,
and cost components that reflect passenger and pilot comfort. We
proceed to formulate the continuous model, specify some important
maneuverability constraints, and finally specify the proposed cost
functional.

A. Model Formulation
We start with a simplified, kinematic model of an aircraft fly-

ing in a three-dimensional airspace. The aircraft is considered
as a point in three-dimensional space, and its translational and
angular states at time t are defined by the configuration vec-
tor X(t) = [x(t), y(t), z(t), γ (t), ψ(t)]T ∈ G. This is illustrated in
Fig. 1. The set G is defined as �3 × [γmin, γmax] × [−π, +π]. The
coordinates x , y, and z are taken relative to an Earth frame of ref-
erence, such as WGS-84 (World Geodesic System). The extremal
values γmin and γmax are derived from the flight model, detailed in
the next subsection.

The flight speed V (t) will be taken as given and will not be a
controlled variable in our model. This is the common situation is
GA flight. However, we do allow the speed to be a (static) function of
the configuration vector X(t), namely, V (t) = g(X(t)). In particular,
V might depend on the flight altitude, as well on the climb angle
γ (t). We note that during climbs, even with throttle compensation,
the aircraft can lose roughly 20% of its velocity, and during descends
can gain up to 20% increased velocity. Wind-speed data can also be
used to modify V according to the heading angle ψ(t). We shall not
proceed further here with a precise modeling of these effects.

We assume instantaneous control of the angular rates, so that
the control signal U(t) coincides with (γ̇ , ψ̇). The state equations

Fig. 1 Airspace position and orientation.

Ẋ(t) = f (X(t), U(t)) can now be written as

ẋ(t) = V (t) cos γ (t) cos ψ(t), ẏ(t) = V (t) cos γ (t) sin ψ(t)

ż(t) = V (t) sin γ (t), γ̇ (t) = U1(t), ψ̇(t) = U2(t) (3)

The control and state variables will be further constrained by the
flight model, as detailed in the next subsection. Given an initial
state X0 and the goal set X f , feasible trajectories are continuous so-
lution paths X(t) that start at X(0) = X0 and terminate at X(t f) ∈X f .
We shall be interested in optimal trajectories that minimize a cost
functional to be defined in the following.

B. Flight Model Constraints
Aircraft performance is subject to physical constraints that affect

its maneuverability. Additional restrictions can be applied to en-
sure passenger and pilot comfort. Assuming that upper bounds are
specified for the lateral accelerations, we will find it convenient to
represent them by corresponding bounds on the angular velocities
and the aircraft turn radius.

Under normal flight condition of GA aircraft, decoupling of the
motion plane components is justified, resulting in two approximate
acceleration measures:

avertical = V γ̇ , ahorizontal = V ψ̇ (4)

These accelerations approximate the two components of the lateral
acceleration relative to the aircraft frame. Accordingly, they should
not exceed certain levels for comfort. Assuming hard bounds āv

and āh on the vertical and horizontal accelerations, respectively, we
obtain the following constraints on the angular rates:

|γ̇ | < āv/V, |ψ̇ | < āh/V (5)

The minimal turn radius is next determined from V = ψ̇ R:

Rmin ≥ V/|ψ̇ |max = V 2
/

āh (6)

This minimal radius serves as a constraint imposed on aircraft tra-
jectories. Note that these bounds can depend on the aircraft con-
figuration X through the velocity V . It might be convenient to use
some nominal value V0 for V in these equations, although this is not
necessary.

The maximal climb angle, based on climb rate capability safety
requirements, gives rise the additional constraint

|γ | < γmax (7)

We note that different values can be assigned to the upper an lower
values of γ and γ̇ if so required. All of the preceding constraints
need to be accounted for in the trajectory planning algorithm.

C. Cost Function
We next specify the class of cost functions that we consider. Re-

ferring back to Eq. (1), the cost functional will be of the form

J =
∑
κ ∈ �

wκ Jκ (8)

where � = {time, altitude, riding qualities} is the set of criteria, pos-
sibly augmented by others as discussed next. The weights wκ control
the tradeoff between these sometimes conflicting criteria.

We first consider integral costs of the form

Jκ =
∫ t f

0

cκ (X(t)) dt (9)

where the running cost function cκ (X) is to be chosen appropri-
ately. We next indicate some possible choices of special interest.
Note that a general terminal cost of the form φ[X(t f), t f] can be
accommodated as well, but seems to be of limited use in the present
context.

804 RIPPEL, BAR-GILL, AND SHIMKIN

The flight duration t f is an obvious performance measure. It can
be expressed as a unit integral over the flight interval:

Jtime =
∫ t f

0

1 dt (10)

Next, the length of the trajectory is obtained by letting cκ (X) = V
(recall that V is a function of X in our model). More generally, the
fuel consumption rate can be approximated as a function cfuel(X) of
the the flight configuration X, leading to the cost component Jfuel,
which evaluates the total fuel consumption. In a typical application
the fuel consumption is approximately proportional to the flight
time, and in our experiments we only consider the latter.

Altitude cost components will be of the general form

Jaltitude =
∫ t f

0

F(z(t), DTM(t)) dt (11)

where z(t) is the aircraft altitude at time t , DTM(t) is the ground
height at the current (x, y) position, as can be read in the onboard
digital terrain map, and F is an appropriate function thereof. For
example, in terrain-following flight, we might require that the air-
craft maintains a fixed clearance H0 above the ground and penalize
for deviations by

Jaltitude =
∫ t f

0

|z(t) − DTM(t) − H0| dt (12)

Another interesting case is when the flight altitude is required to
remain below a certain level H , for example, to keep the aircraft
below a cloud layer. An appropriate cost function can take the form

Jaltitude =
∫ t f

0

I {z(t) > H} dt (13)

where I { } is the indicator function [which equals one if z(t) > H ,
and zero otherwise]. In either case it is natural to impose a hard
constraint of the form z(t) ≥ DTM(t) + h0, where h0 is a safety
clearance. This is easily incorporated in our graph model.

A second class of cost criteria that will be of interest to us concerns
the passenger comfort, as affected by the lateral accelerations. We
shall use the term riding qualities to refer to this criterion. Using
Eq. (4), the proposed measure of the riding qualities is

Jriding qualities =
∫ t f

0

(|γ̇ (t)| + α|ψ̇(t)|)V (t) dt (14)

This criterion quantifies the lateral acceleration components, its val-
ues being accumulated over the entire trajectory. These accelerations
influence both the pilot and the passengers. The parameter α allows
for relative weighting of the two component.

An additional concern for trajectory planning is the pilot work-
load. During the flight, the pilot is preoccupied with numerous tasks
on top of the need to follow the outlined trajectory. Having a rapidly
varying trajectory requires the pilot to constantly focus on the task
of following it, paying less attention to other instrument and visual
data. Furthermore, the accumulated workload can lead to excessive
stress and fatigue and should therefore be an important considera-
tion during the trajectory construction process, especially for low
flight over irregular terrain. To some extent, the riding qualities cost
as just defined accounts also for the pilot workload, as it quantifies
the total angular change that the trajectory requires. Other measures
of pilot workload can include the number of required maneuvers, the
total time that the flight is nonstraight or nonlevel, and other related
quantities. Obviously, the proper choice of cost here requires careful
consideration of the human engineering factors involved. We shall
therefore rely on the riding qualities cost to regulate the smoothness
of the planned trajectory.

III. Basic Graph-Search Solution
In this section we propose an approximate solution of the tra-

jectory optimization problem that was just presented. We begin by
discretizing the continuous model. We then translate the problem
into a weighted graph-search problem, which can be solved using
Dijkstra’s shortest-path algorithm.

A. Discretization
The proposed discretization scheme begins with a uniform dis-

cretization of the three-dimensional space of spatial positions. The
discretized trajectory is constrained to go through the grid points,
connected with straight line segments. The actual trajectory will of
course be a smoothed version of the discrete one. The smoothed
trajectory can be computed by a postprocessing method, or simply
left to be determined by the pilot and the guidance filter.

Consider the discrete grid {(ihx , jhy, khz)} ⊂ �3, where the
constants hx , hy , hz determine the grid spacing in the respective co-
ordinates, and i , j , k take integer values. A finite grid S0 is obtained
by intersecting this set with the set of feasible spatial points in con-
tinuous space. In particular, the definition of S0 should incorporate
all hard constraints concerning forbidden flight zones and altitudes.
The horizontal grid spacings hx and hy will usually be identical,
which we assume henceforth. The choice of these resolution pa-
rameters is discussed later.

We now create a mesh over the spatial grid by defining a neigh-
borhood structure. The neighbors of a point P = (ihx , jhy, khz) are
those grid points that are accessible from it in one step. The simplest
definition that is useful for our purpose is given by

Neighb[(ihx , jhy, khz)] = {
[(i + m)hx , (j + n)hy, (k + �)hz]

: m, n ∈ {−1, 0, +1}, |�| ≤ �m,n
max

}
(15)

with n = m = 0 excluded. Thus, the horizontal plane neighbors are
the eight nearest points (Fig. 2a). Other possibilities will be dis-
cussed next then, �max is constrained by the allowed elevation angle
γmax [Eq. (7)] and should therefore obey the following bound:

hz�
m,n
max ≤ tan(γmax)

√
(mhx)2 + (nhy)2 (16)

For simplicity we assume next that �m,n
max = �max is independent of m

and n.
As the discrete path is restricted to neighboring mesh points,

the specified neighborhood structure determines the discrete val-
ues that the flight-path angles γ and ψ can assume. Given two
neighboring grid points P1 = (x1, y1, z1) and P2 = (x2, y2, z2), with
P2 − P1 = (mhx , nhy, �hz), their relative path angles are given by

ψ1 → 2 = tan−1

(
y2 − y1

x2 − x1

)
= tan−1

(
nhx

mhy

)
(17)

γ1 → 2 = tan−1

(
�z√

�x2 + �y2

)
= tan−1

(
�hz√

(mhx)2 + (nhy)2

)

(18)

a) Single-step neighborhood structure

b) Two-step neighborhood structure

Fig. 2 Horizontal-plane neighbors of a grid point.

RIPPEL, BAR-GILL, AND SHIMKIN 805

(where inverse tangent in the first equation should be interpreted
as the four-quadrant inverse tangent, according to the signs of the
nominator and denominator in its argument.)

Given the preceding neighborhood structure and hx = hy , the
heading angle ψ is constrained to multiples of π/4. A finer an-
gular resolution can be obtained by extending the definition of the
neighboring points beyond the nearest grid points, as illustrated in
Fig. 2b. Naturally, this extended definition will entail an increase in
search time.

We next consider a convenient representation for the discretized
state vector X = (x, y, z, γ, ψ). We shall use the representation
X = (P1, P2), where the grid point P1 = (x, y, z) provides the cur-
rent position, and P2 gives the path angles according to Eqs. (17)
and (18). In fact, we shall consider only such pairs (P1, P2), where
P2 is a neighbor of P1, namely, P2 ∈ Neighb(P1), so that γ and ψ are
restricted to those values that point directly to neighboring points.
This leads to the graph structure that we define later.

The choice of the grid resolution is a decisive factor in the com-
plexity and accuracy of the resultant algorithm. We outline briefly
some general guidelines for choosing the grid separation parameters.
A specific example can be found in Sec. V. Starting with the hori-
zontal parameters hx = hy , their choice should be directly dictated
by the required trajectory resolution. In particular, if we require the
trajectory to be specified to within an accuracy d0 in the horizontal
plane, we need to choose

√
2hx ≤ d0. Moreover, to accommodate

the allowed turning radius Rmin, and assuming that we do not allow
discrete heading angle changes of more than 90 deg, hx should not
be larger than Rmin. When the accuracy requirement is the dominant
one, as can be expected, we will have hx � Rmin. In that case special
care is required to enforce the turn radius constraint within the al-
gorithm, as discussed in Sec. III.D. Finally, the resulting resolution
parameter hx will typically be larger than the available DTM grid
separation, and for convenience can be chosen as a multiple thereof.

The vertical spacing hz is chosen to satisfy several requirements.
The obvious one is the required resolution in the flight elevation.
Next is the required resolution in the vertical flight-path angle (or
climb angle). The largest separation between two discrete angles can
be seen to equal �γ0 = tan−1(hz/hx) (this is just the first possible
angle above zero when flying along horizontal grid lines), and so hz

should be chosen so that this value is small enough. Furthermore,
hz must be small enough so that a change in the (discrete) climb
angles between adjacent grid points can be done within the allowed
range of vertical acceleration. Specifically, suppose that the maximal
vertical acceleration a = āv is applied to the aircraft over a distance
hx , which is traversed in time T = hx/V . Then the vertical increment
(over a zero acceleration or straight line path) equals aT 2/2, so that
we must have hz not more than that:

hz ≤ 1
2 āv(hx/V)2 (19)

Typically this bound should be fairly large, so that hz can be chosen
based on the required vertical and angular resolutions.

B. Graph Structure and Costs
We next define a graph structure for the discrete problem. This

includes a finite set of vertices V , a set of edges E connecting pairs
of vertices, and a cost for each edge. We shall also refer to V as the
(discrete) state space of the problem. Two vertices that are connected
by an edge are said to be neighboring vertices. Note the distinction
that is made here between neighboring vertices and neighboring
points, as defined in the preceding subsection.

A vertex v corresponds to a discretized state X as just de-
fined, namely, a pair of neighboring points in the cartesian three-
dimensional grid S0:

v = (P1, P2) ∈ S0 × S0 with P2 ∈ Neighb(P1) (20)

Here P1 = (x1, y1, z1) is the current location of the aircraft, and
P2 − P1 defines the direction of its velocity vector. Because
the aircraft necessarily follows its specified velocity vector, P2

must be the aircraft’s next location on the grid. A neighbor-
ing vertex u of a vertex v = (P1, P2) is therefore of the form

Fig. 3 Vertex and its feasible neighbors.

u = (P2, P3) = [(x2, y2, z2), (x3, y3, z3)], with P3 a neighbor of P2

as defined by Eq. (15). An edge in this graph is therefore of
the form [(P1, P2), (P2, P3)], with P1 ∈S0, P2 ∈ Neighb(P1), and
P3 ∈ Neighb(P2).

An example of a vertex (P1, P2) and some of its neighbors (P2, P3)
is depicted in Fig. 3. Note that not all neighboring vertices will be
feasible because of turn radius constraints, and indeed the figure
does not depict neighboring vertices that require a turn of 180 deg
or more. We will consider this constraint separately in Sec. III.D
and use it to further restrict the set of edges of the searched graph.

Having defined the neighbors of a vertex, the cost C(v, u) for each
edge can now be specified. In accordance with Eq. (8), this cost will
be in the form C(v, u) = ∑

κ
wκCκ (v, u). We start with the cost

components of the form [Eq. (9)]. Recall that each vertex v defines
a configuration vector Xv of the form Xv = (xv, yv, zv, γv, ψv). The
flight time between vertices v and u can be approximated as the
distance divided by the average velocity, namely,

�tvu =
√

(xu − xv)2 + (yu − yv)2 + (zu − zv)2
/

V̄vu (21)

where V̄vu = [V (Xv) + V (Xu)]/2. Consequently, for a running cost
function cκ (X) we let

Cκ (v, u) = {[c(Xv) + c(Xu)]/2}�tvu (22)

In particular, for the time component from Eq. (10) we obtain

Ctime(v, u) = �tvu (23)

and for the altitude component from Eq. (11):

Caltitude(v, u) = {[F(zv, DTMv) + F(zv, DTMu)]/2}�tvu (24)

where DTMv = DTM(xv, yv).
Next, using the notation of Eqs. (17) and (18) applied to the

vertices v = (P1, P2) and u = (P2, P3), define

�γ = γ2 → 3 − γ1 → 2 (25)

�ψ = ψ2 → 3 − ψ1 → 2 (26)

The riding qualities cost component [Eq. (14)] is then given by

Criding qualities(v, u) = (|�γ | + α|�ψ |)V̄vu (27)

We have thus defined the graph G = (V, E) with nonnegative edge
costs, C(u, v) ≥ 0. The required solution is the shortest path on this
graph, which can be found using standard graph-search algorithms.
We next describe the basic Dijkstra algorithm as applies to this

806 RIPPEL, BAR-GILL, AND SHIMKIN

problem and then consider certain modifications that are required
in order to account for the turn radius constraints.

C. Dijkstra’s Algorithm
Dijkstra’s algorithm27 provides an efficient solution to the

minimal-path graph-search problem. Essentially, the algorithm re-
cursively evolves the front of vertices that are closest to the source,
until a target vertex is reached. Convergence is therefore guaranteed.

A pseudocode implementation of the Dijkstra algorithm is shown
here:

Dijkstra (G = (V, E), C, s, d)

S = {s}
PriorityQueue = {s}
g(s) = 0
for all v ∈V\S,

g(v) = ∞
predecessor (v) = none
PriorityQueue.insert(v)

while D ∩ S = ∅,
v = PriorityQueue.extract minimum()
retire v to S
for u ∈ neighbors(v),

if (g(u) > g(v) + C(v, u)) then
Priority Queue.decrease key (u, g(v) + C(v, u))

Priority Queue.predecessor (u) = v

Backtrack from D to s
G = (V, E) denotes the graph and C is the cost function over the
edges E . The algorithm stores for each vertex v an estimate g(v)
of the cost so far, namely, the cost of the shortest path from the
source, and g(v) is initialized to +∞, except for the source where
it is initialized to 0.

The algorithm also maintains a set S ⊂ V of vertices whose
final shortest-path values have already been determined. This set is
initialized with the source vertex {s} and g(s) = 0. The algorithm
then repeatedly selects (or retires) the vertex v in the complement
of S, which is closest to the source. Whenever a vertex v is retired to
S, we examine each of its neighbors that have not yet been retired.
For each such neighbor u, we evaluate C(u, v) + g(v), which is u’s
distance to the destination if proceeding through v. If this is smaller
than the current estimate g(u) of u’s distance, we replace the latter
by the former. After performing this update for all neighbors of v,
the next vertex to be retired is the one with the smallest estimate g(u)
out of all unretired vertices. This selection is effectively handled by
managing a priority queue, which maintains the best cost estimates
so far for all neighbors of S. For any vertex u retired to S, we also
save its predecessor v, so that the optimal path can be traced back.

It is readily verified that Dijkstra’s algorithm does compute
the shortest path, under the condition that the link costs are
nonnegative.28 The time complexity of the algorithm isO(N log N),
where N is the number of vertices in V , provided that the degree
of the graph (number of neighbors for each node) is bounded, and
the queue is implemented with an efficient data structure. To realize
that, note that the algorithm performs a single pass over the state
space, with each vertex requiring at most one priority queue extrac-
tion and a number of priority queue updates bounded by the number
of its neighbors. An efficient priority queue data structure, such as
the binary heap, can handle extraction of a minimal element or value
update in a list of N elements at O(log N) each.

Returning to the flight trajectory optimization, Dijkstra’a algo-
rithm can be directly applied to solve this problem, provided that
we ignore for the moment possible turn radius constraints. To esti-
mate the time complexity of the algorithm, assume that the three-
dimensional mesh has n points. Let m be the maximal number of
neighbors for each point. For the neighborhood structure of Eq. (15),
we have that m ≤ 8(2�max +1). As a vertex in a pair of two neighbor-
ing points, the number of vertices is N ≤ mn, and the basic Dijkstra
algorithm runs at O(N log N).

D. Constrained Dijkstra
An important factor that has been left out of the preceding algo-

rithm is the turn radius constraint. In a typical situation, the minimal
turn radius in the horizontal plane [as per Eq. (6)] can be significantly
larger than the horizontal resolution hx . In that case, in order to al-

low large single-step heading changes as required in our scheme the
turn radius constraint should be enforced by considering a span of
several consecutive vertices. For example, following a 90-deg turn
the prescribed trajectory should not have another heading change (in
the same direction) for a certain stretch of flight, so that the aircraft
can complete the first maneuver.

An optimal solution to such multistep constraints would require
to expand the state space into sequences of points of required length.
This would easily lead to an increase of the state space by orders of
magnitude, with a corresponding increase in the computation times.
To avoid this problem, we propose a suboptimal modification of the
basic Dijkstra algorithm, which retains the original state space.

The constrained Dijkstra algorithm utilizes the basic Dijkstra data
structure, which allows tracing back the optimal path (to a required
number of steps) for each retired vertex. Recall that whenever a state
is retired (to the set S), it causes an update in the estimated cost so
far of its (nonretired) neighbors. In the proposed modification, when
a vertex is retired, it traces back the recorded path to the required
number of steps, and then determines the set of its feasible neigh-
bors in light of the added multistep constraints. Thus, the trajectory
cannot proceed to vertices that violate these constraints. Other than
that, the algorithm proceeds exactly as before. It is evident that the
complexity of the algorithm remains the same, namely,O(N log N).

To handle the turn radius constraint, it remains to specify the se-
quences of vertices that obey or violate this constraint. This can be
done in different ways, and we specify next a simple heuristic crite-
rion that will also be used in our experiments. With each (discrete)
change in the heading angle of magnitude α, we associate a distance
d before and after the turn point, where d designates the travel dis-
tance required to complete the turn under the turn radius constraint
Rmin. Using the geometry in Fig. 4, we obtain d = Rmin tan(θ/2).
This rule can be easily converted into a “dictionary” of allowed turn
sequences over the discrete grid.

As an illustration for the effect of the turn radius constraint, we
depict in Fig. 5 two trajectories. One is created by the basic Dijkstra

Fig. 4 Trajectory segment.

Fig. 5 Basic vs constrained Dijkstra trajectories: top view. Darker
parts of the map indicate lower ground levels.

RIPPEL, BAR-GILL, AND SHIMKIN 807

algorithm, while the other imposes turn radius constraints via the
constrained Dijkstra algorithm. The general conditions of the sim-
ulation are as detailed in Sec. V. In this example, an altitude cost
component penalized the aircraft for an altitude of more than 100 m
above the ground, and the lateral acceleration cost components were
removed in order to highlight the influence of the turn radius con-
straint. The smoothing affect of this constraint is apparent in the
form of the resulting trajectory.

IV. Accelerating the Algorithm
The preceding section described a Dijkstra-based solution to our

trajectory optimization problem. Despite the efficient search proce-
dure, running times are still excessive because of the large cardi-
nality of the disceretized state space. For quantification metrics, see
Sec. V.

In this section we present several approaches for accelerating the
Dijkstra search. We begin by describing an A∗ enhanced version,
and explain why the acceleration we obtain is only minor.

We focus therefore on two additional Dijkstra-based algorithms
that trade off accuracy for speed. The reduced-state Dijkstra algo-
rithm cuts down the number of vertices in the search graph, by re-
defining a vertex as a spatial point without the angular (or next-point)
components. Consideration of the angular components is retained
through the backtracking property of the Dijkstra search. The hier-
archical Dijkstra algorithm conducts an initial search at a coarser
spatial resolution, which constrains the finer search to a smaller area
of the map. Each algorithm by itself achieves a significant speedup
compared to the basic Dijkstra algorithms of the preceding section.
Combined, the two modified algorithms offer an onboard solution to
the trajectory generation problem. As we demonstrate empirically
in Sec. V, the performance degradation caused by these suboptimal
modifications is minor.

A. Reduced-State Dijkstra
The major factor that slows down the Dijkstra algorithm is the

large state space that needs to be explored. As was discussed before,
our Dijkstra algorithm employs a state (or vertex) that comprises two
neighboring spatial points, resulting in a state-space cardinality of
mn, where n is the size of the spatial grid and m is the average
number of neighbors to each point in that grid (see Sec. III). This
two-point state decodes the flight velocity vector so that we can de-
duce the angular acceleration (and its associated costs) between two
neighboring vertices. The underlying idea behind the reduced-state
Dijkstra is to settle for a single-point vertex, while still accounting
for all cost components, albeit in a suboptimal way. To take ac-
count of acceleration cost components, we shall use the trace-back
feature that is inherent in the Dijkstra algorithm. The basic idea is
very similar to the one used in Sec. III.D to enforce the turn radius
constraints.

The reduced-state Dijkstra algorithm thus reduces the state space
to n vertices. Its running time is therefore O(n log n). A vertex
is defined to be a single point in the three-dimensional mesh, that
is, v = X = (x1, y1, z1) ∈S0. A neighbor of vertex v is defined by
Eq. (15).

Computation of the angular acceleration (and the associated rid-
ing qualities cost) requires three consecutive spatial points. Refer-
ring back to Dijkstra’s algorithm, recall that for each retired vertex v
(now a single spatial point) the algorithm stores its predecessor ver-
tex in order to trace back the optimal path. Now, whenever a vertex
is retired the algorithm is required to update the cost-to-go estimates
for its neighbors. For such a vertex v we use the following notation:
pre(v) = (x1, y1, z1) is its predecessor vertex; v = (x2, y2, z2) is the
current vertex; and u = (x3, y3, z3) is the neighboring vertex. With
these definitions, the edge cost C(v, u) can be computed by using
exactly the same equations (23–27) that were used before. Turn ra-
dius constraints can be incorporated into this algorithm exactly as
described in Sec. III.D.

It should be apparent that the search algorithm proposed here is
suboptimal when all components of the cost function are present.
Specifically, it cannot fully account for the riding-quality cost that
makes the optimal value function depend also on the directional

components of the full state. Instead of exploring all possible veloc-
ity vectors (or predecessor points) in a given spatial point, we freeze
the velocity vector that leads to it the first time that it is reached. Other
options (which could eventually turn up to be the optimal ones) are
suppressed and excluded from further consideration. Nonetheless,
the cost discrepancies between the results obtained by the full state
Dijkstra solution and those obtained via the reduced-state Dijkstra
solution turn out to be minor in all of our experiments. One way to
explain this in the context of our problem is by noting that (small)
deviations from the optimal velocity can usually be corrected later
on with little penalty. The speedup achieved by the state reduction
is, however, most substantial.

B. A∗ Algorithm
The A∗ algorithm, introduced by Nilsson,29 accelerates graph-

searching procedures by adding a heuristic cost component to direct
the search towards an optimal route. Essentially, the heuristic cost
function is an a priori estimate of the cost-to-go function from each
vertex. In our problem, the search procedures used so far did not
make use of any information concerning the location of the target
state. It seems reasonable, for example, to give some priority to those
vertices that point in the direction of the goal, rather than those that
point in the opposite direction.

Recall that the Dijkstra algorithm used the cost-so-far function
g(v) to direct the search. This function is used to choose the vertex
that is explored and retired at every step (by determining the order
of vertices in the priority queue). The A∗ algorithm uses for that
purpose a modified cost g̃(v), where g̃(v) = g(v) + h(v) and h(v)
is a prespecified heuristic. The algorithm, as used here, is otherwise
identical to the Dijkstra algorithm just described. Nilsson29 proved
that when h(v) is an underestimate of the minimal cost to go between
the current vertex v and the destination vertex, then A∗ produces an
optimal solution. In the ideal case that h(v) equals the optimal cost to
go, the algorithm directly finds the optimal path. Setting to h(v) = 0
recovers the basic Dijkstra algorithm.

The challenge in designing the A∗ algorithm is in finding a good
underestimating heuristic. We approach this task by examining sep-
arately each component of our cost function.

An underestimating time heuristic should be smaller than the (op-
timal trajectory) flight time from any given vertex v to the destination
vertex d. A simple time heuristic is therefore the Euclidean distance
from our current position to the destination, divided by the speed.
The accuracy of this estimate depends of course on the deviation of
the optimal trajectory from the straight line, which depends mainly
on the other cost components.

On the other hand, finding a reasonable underestimate for the
altitude cost or the riding-qualities cost is more challenging. If we
look at each of these cost components separately while completely
disregarding the others, we obtain an underestimate that tends to
zero, which is obviously not helpful. For example, the altitude cost
is an indication of how high above the terrain the aircraft is flying:
the aircraft can simply fly at the zero-cost height all of the way
to nullify that cost component. When only the riding qualities are
considered, the best path is a direct course toward the destination,
also resulting in near-zero cost.

So far, we have not been able to come up with an easily com-
putable heuristic that adequately approximates these cost compo-
nents in the “interesting” cases (namely, where the optimal flight
path is not a straight line). Some initial attempts at analyzing the
spatial regularity of the terrain (using Fourier transforms and wavelet
methods) have not led to noticeable improvement in the algorithm.
We therefore restrict further consideration to the just-mentioned
straight line heuristics for the flight time, which will be examined
in the experimental section.

C. Hierarchical Dijkstra
Although the reduced-state Dijkstra algorithm decreases the total

number of vertices in the graph, the hierarchical Dijkstra restricts
the detailed search to a specific segment in the overall graph. Hi-
erarchical and multigrid schemes are of course widely used tools
in numerical analysis and optimization, and we describe here a

808 RIPPEL, BAR-GILL, AND SHIMKIN

Fig. 6 Illustration of the hierarchical scheme.

simple coarse-fine scheme that is convenient for our application.
The search problem is first solved at a coarser level, which is ob-
tained by some downsampling of the original spatial grid.

The implementation considered here uses a downsampling by a
factor of k along each axis, leading to a k3 reduction in the spatial
grid. The DTM was correspondingly downsampled. Because safety
is a major concern, the ground elevation at each sampled point was
taken as the maximal elevation over the map points it covers.

The algorithm calculates an optimal path at the coarse level, us-
ing the downsampled DTM. The resulting coarse-level trajectory
defines a search corridor over the original (fine) spatial grid. The
points in this corridor are simply those that are within a specified
distance from the coarse trajectory. The fine-level search is then
conducted inside this corridor (Fig. 6). The same algorithm can be
used for both the coarse- and fine-level searches.

V. Experimental Results
This section describes some simulation experiments that demon-

strate and compare the performance of the proposed algorithms. We
consider the following issues: 1) performance of the reduced-state
Dijkstra algorithm, as compared to the standard (full-state) algo-
rithm; 2) effect of the cost parameters on the obtained trajectory;
and 3) the A∗ and Hierarchical enhancements to the reduced-state
Dijkstra algorithm.

The DTM that was used is a 100×100 km digital map with a 50-m
resolution grid. The map coordinates are as follows; bottom left
(origin) is N32◦10′, E34◦50′ and top right (destination) is N33◦10′,
E35◦50′.

The state at the origin point is specified by ψ0 = 45 deg (heading
toward the destination), γ0 = 0. These variables are left free at the
destination points. The initial and final heights are set to ground
level. We assume a constant flight velocity of V = 100 m/s and a
required bound of 5 m/s2 (g/2) on the two lateral acceleration com-
ponents. The cost function was taken according to Eqs. (8), (10),
(12), and (14). The following weights were used, unless otherwise
stated:wtime = 0.2, waltitude = 1, andwriding qualities = 1. These weights
were selected after some empirical experimentation that found them
to give a good tradeoff between the various cost criteria.

The basic horizontal resolutions (hx and hy) were set to 800 m.
This presents a reasonable trajectory resolution for general avia-
tion. The DTM was accordingly downsampled. The minimal turn
radius constraint from Eq. (6) computes as Rmin = 2000 m. As
this is larger than hx , the turn radius constraint will be enforced
throughout by using the constrained Dijkstra method of Sec. III.D.
The vertical resolution parameter hz was set to 30 m (100 ft),
with �max = 2 [see Eq. (15)]. This gives an angular resolution of
tan−1(hz/hx) = 2.15 deg in the vertical flight-path angle γ , with
γmax = 4.3 deg. The acceleration constraint from Eq. (19) requires
hz ≤ 160 m, which is well satisfied.

The range of flight elevations considered was 1500 m, yielding
50 points in the vertical axis, and total number of states in the spatial
grid is n = 1252 × 50 = 625,000. The number of neighbor points

in m = 8× (2�max +1) = 40, which brings the number of vertices in
the full-state formulation to N = mn = 25 × 106. Simulations were
conducted on an Intel® Pentium® 3,866 MHz with 0.75 GB RAM
CPU. The algorithmic engine is a Microsoft® Visual C++ program,
and the graphics engine is MathWorks MATLAB®.

The first experiment compares the full-state Dijkstra solution with
the reduced-state Dijkstra algorithm. The results are shown in Fig. 7.
The full-state Dijkstra algorithm takes some 2 h to complete, as
opposed to 126 s for the reduced-state Dijkstra. The cost degradation
of the latter is less than 3%. This gives close to 60-fold speedup, with
a minor loss in performance. Recall that the reduced-state algorithms
reduce the state-space cardinality by a nominal factor of m = 40, the
number of neighbors of each point as just computed. This is directly
reflected in the reduction in computation time. The two algorithms
were further compared for various problem parameters, with similar
conclusions. In view of its efficiency, the reduced-state Dijkstra is
used as the underlying algorithm in the remainder of our simulation
experiments.

We next examine briefly the effect of varying the weights of the
cost function components. Fig. 8 depicts the results for different

Fig. 7 Full vs reduced-state Dijkstra.

Fig. 8 Cost function criteria: trajectory smoothness tuning.

RIPPEL, BAR-GILL, AND SHIMKIN 809

weights of the altitude cost as compared to the riding-qualities cost.
The first run is conducted with unit weights to both cost criteria, re-
sulting in the reference trajectory. The second run is conducted with
the altitude weight waltitude increased fourfold. Finally, the third run
is conducted with the riding-qualities weight wriding qualities increased
fourfold.

Plotted in Fig. 9 are the unfolded sidewise projections (altitude
vs flight distance) of the obtained trajectories. We can see that the
riding-qualities-aware trajectory offers a smooth ride and does not
follow closely the finer features of the terrain contour. The reference
trajectory descends into such “valleys” to a certain degree, whereas
the altitude-aware trajectory dives deep into them. We note that
every trajectory passes through a slightly different area of the map;
hence, the terrain under each trajectory is not the same. Overall,
we achieve a smoothing effect, where the weights of the different
cost criteria enable us to tune the degree of trajectory smoothness.
Regarding the difference in run time, the altitude-aware trajectory
barely probes into the vertical degree of freedom, thus concluding
the search more rapidly.

Next, we consider the A∗ variant of the algorithm with the time-
to-go heuristic. Figure 9 shows the effect of different time-heuristic
factors. The heuristic is taken to be h(X) = wTg(X), where Tg is
the straight line underestimate of the remaining time to the goal
position. The algorithm was tested with weights w = 0.3, 1, 2, 4,
to which we refer as the slow, medium, fast, and faster heuristics. All
runs were conducted with the reduced-state A∗ algorithm. Figure 9
depicts the obtained trajectories, and Table 1 summarizes the run
times and cost degradation (compared to the reduced-state Dijkstra
reference) for these runs.

The two smaller weights (slow and medium) give rise to an un-
derestimating heuristic and should not affect the optimal solution.
However, they can affect the results of the (suboptimal) reduced-
state Dijkstra. It is indeed seen that the slow heuristic did not modify
the quality of the obtained solution, while the medium heuristic led
to a slight degradation of the cost, and the computation time was
about halved. The two more aggressive heuristics, on the other hand,
led the trajectory to a different area of the map, with a considerable

Table 1 A∗ heuristics comparison

Algorithm Cost degradation Run time, s

Reduced-state Dijkstra Reference 126
Reduced-state A∗ (slow) 0.0% 71
Reduced-state A∗ (medium) 0.8% 56
Reduced-state A∗ (fast) 22.1% 47
Reduced-state A∗ (faster) 48.5% 14

Fig. 9 A∗ time heuristic within the reduced-state Dijkstra.

Table 2 Hierarchical Dijkstra: performance for different
corridor parameters

Algorithm Cost degradation Run time, s

Reduced-state Dijkstra Reference 126
Hierarchical reduced-state Dijkstra (20) 0.0% 83
Hierarchical reduced-state Dijkstra (10) 0.9% 63
Hierarchical reduced-state Dijkstra (7) 9.1% 57
Hierarchical reduced-state Dijkstra (3) 20.7% 40

Fig. 10 Hierarchical algorithm: illustration of the corridor concept.

cost degradation. Thus, despite some added speedup, we consider
them to be unacceptable.

The hierarchical variant of the Dijkstra algorithm is considered
next. The hierarchical algorithm has two important parameters: the
degree of downsampling of the original grid and the width of the cor-
ridor to explore around the top-level trajectory. The corridor concept
is illustrated in Fig. 10. In Fig. 10 we use a downsampling of k = 2
in each axis. The algorithm first performs a search in the coarser
(60×60×20) map. It then returns to the original map, opens a cor-
ridor seven vertices wide on each side of the coarse-level trajectory,
and performs a detailed search in that corridor. The detailed search
was not similarly constrained in the vertical axis. It is important
to emphasize that the same basic algorithm is used for both hier-
archical levels, namely, the reduced-state Dijkstra is used at both
hierarchical levels.

The total run time of the hierarchical reduced-state Dijkstra algo-
rithm (downsample, 2; corridor; 7) is 57 s, and the cost degradation
is 9.1%. The top-level trajectory (diagonals) is found in just a few
seconds, and the remaining time is used to find the detailed trajec-
tory. It can be seen that the corridor around the coarse-level solution
is not wide enough to encompass the optimal solution, so that the
latter is not found by the finer search.

We next consider the effect of the two parameters of the hier-
archical approach. First, we hold the downsampling of the map at
a fixed value of two, and consider several corridor widths. This is
shown in Fig. 11. As expected, increasing the width of the corridor
improves the accuracy of the hierarchical algorithm and vice versa.
In particular, a corridor of 10 vertices gives a close-to-optimal per-
formance. Table 2 summarizes the run times and cost degradation
(compared to the reduced-state Dijkstra reference) of different cor-
ridor parameters presented in Fig. 11.

Next, we consider different downsampling values while holding
the corridor parameter constant at 10 vertices to each side. The
results are shown in Fig. 12; the time improvement caused by in-
creased downsampling is marginal, as most of the times is spent on
the detailed find-level search. However, downsampling by four or
more moves the search to a different area of the map altogether, and
the solution deviates to an unacceptable degree from the optimal.

810 RIPPEL, BAR-GILL, AND SHIMKIN

Table 3 Hierarchical Dijkstra: performance for different
downsampling factors

Algorithm Cost degradation Run time, s

Hierarchical reduced-state Dijkstra (2) Reference 63
Hierarchical reduced-state Dijkstra (3) 1.4% 55
Hierarchical reduced-state Dijkstra (4) 21.9% 67

Fig. 11 Hierarchical reduced-state Dijkstra: different corridor
widths.

Fig. 12 Hierarchical reduced-state Dijkstra: different down-
sampling factors.

Table 3 summarizes the run times and cost degradation (compared to
the hierarchical reduced-state Dijkstra with downsampling of two)
of the different downsampling parameters presented in Fig. 12.

The main results obtained in the just-described experiments are
summarized in Table 4, to give a more complete perspective of the
tradeoff of run-time speedup vs cost degradation. According to our
previous findings, the A∗ scheme utilizes the medium-time heuristic,
and the hierarchical algorithm uses a corridor parameter of 10 ver-
tices to each side and a downsampling factor of three. The last entry
refers to a combined use of the A∗ and hierarchical variants, yielding
the fastest run time of 29 s, with mild performance degradation.

Table 4 Run time vs cost degradation comparison of main algorithms

Algorithm Cost degradation Run time, s

Full-state Dijkstra Reference 7595
Reduced-state Dijkstra 2.9% 126
Reduced-state A∗ 3.7% 56
Hierarchical reduced-state Dijkstra 4.3% 55
Hierarchical reduced-state A∗ 4.4% 29

Obviously, the use of a more powerful computer and judicious
programming will further improve the run time. These results clearly
indicate the potential for real-time, onboard applicability.

VI. Conclusions
This paper examines the applicability of global graph-search

techniques to realistic trajectory optimization problems for general-
aviation applications. A central element of our model is the inclusion
of acceleration-dependent cost, which accounts for passenger com-
fort (or riding qualities) and pilot workload. The complexity of the
suggested algorithms was examined with respect to the goal of ob-
taining computation times that allow the use of the algorithm for
onboard trajectory planning, namely, in the subminute area. Our
results indicate that this goal is indeed feasible, by combining the
computational acceleration methods that were considered.

Global-search techniques enjoy some distinct advantages. The ba-
sic Dijkstra algorithm indeed performs an exhaustive search over all
possible paths and consequently obtains the globally optimal solu-
tion (up to the discretization error introduced in the discrete model
setup). Even the reduced-state and other suboptimal acceleration
schemes that were proposed perform an exhaustive search in Carte-
sian space, although with some restrictions on angular configura-
tions. As a consequence, these algorithms do not need initialization
with a candidate path or multiple runs with different initial condi-
tion, but rather obtain their best estimate for the global solution after
a single run. Unstructured hard constraints that can induce multiple
local optima, such as forbidden flight zones, are easily accommo-
dated and merely reduce the search space. Moreover, the suggested
algorithms are finite in nature, namely, they terminate with their
solution after a finite number of steps. Thus, the computation time
can be strictly bounded, and the question of convergence does not
arise at all.

The reduction to a graph-search problem is obtained by discretiz-
ing the state space at some finite resolution. The selected resolution
will obviously have a major impact on the accuracy of the obtained
solution, as well as on computation time. We have outlined here
some basic considerations that can lead to an appropriate choice
of resolution for the intended application, so that the quantitative
qualities of the continuous model are retained.

Many issues remain for further research. It would obviously be
useful to obtain a theoretical handle on the approximation errors of
the proposed algorithms, both those introduced as a result of the
finite grid discretization and those that are caused by the subopti-
mality of the accelerated search algorithms. These should be ac-
companied by additional numerical experimentation. It would also
be interesting to compare the results obtained here with standard
solvers based on nonlinear programming, using direct or indirect
methods. It should be appreciated, however, that these algorithms
are essentially local in nature, so that they might not be suitable for
problems with multiple local minima. The combination of global-
search methods with local refinement using other (local) algorithms
poses another potentially interesting topic that requires further
inquiry.

The graph-search algorithms themselves can obviously be fur-
ther enhanced. For example, the search can proceed simultaneously
from both ends of the trajectory and terminate when these two parts
meet. The effect of this and other possible enhancements should be
evaluated empirically.

The discretization scheme that was used in this paper considers
only trajectories that pass through the discrete grid points. As we
mentioned in the Introduction, some recent Dijkstra-like algorithms

RIPPEL, BAR-GILL, AND SHIMKIN 811

for the continuous shortest-path problems rely on more elaborate
discretization schemes that allow paths that proceed in-between
grid points25,26 and therefore have the potential for better accu-
racy for a given grid resolution. It would be therefore interesting
to extend these methods to include the dynamic aspects of our prob-
lem, namely, the acceleration-related costs and constraints. From the
end-user viewpoint, further work is required concerning the proper
choice of cost function. This includes also the quantification of the
pilot workload cost that was not elaborated in the present paper.

Acknowledgments
This research was supported by the Fund for the Promotion of

Research at the Technion. We appreciate the valuable comments
provided by J. L. Speyer and his research team and by M. Feron and
his seminar group during informal presentations of this research
at the University of California, Los Angeles, and Massachusetts
Institute of Technology, respectively. We would like to thank the
Associate Editor and the three referees for their helpful comments.

References
1Hewitt, C., Henley, A. J., and Boyes, J. D., “A Ground and Obstacle

Collision Avoidance Technique (GOCAT),” IEEE Aerospace and Electronic
Systems Magazine, Vol. 6, No. 8, 1991, pp. 13–20.

2Tymczyszyn, B., and Wilson, G., “Development and Flight Testing of a
General/Corporate Aviation Terrain Awareness and Warning System,” 2002
Report to the Aerospace Profession: Proceedings of the 46th Society of
Experimental Test Pilots (SETP) Symposium, Society of Experimental Test
Pilots, Lancaster, CA, 2002, pp. 94–107.

3Clarke, K. C., Getting Started with Geographic Information Systems,
Prentice–Hall, 1990, pp. 34–137.

4Fountain, J. R., “Digital Terrain Systems,” IEE Colloquium on Airborne
Navigation Systems Workshop, Digest No. 1997/169, Inst. of Electrical En-
gineers, London, 1997, pp. 4/1–4/6.

5Bryson, A. E., Dynamic Optimization, Addison Wesley Longman, Read-
ing, MA, 1999.

6Bryson, A. E., and Ho, Y. C., Applied Optimal Control, Wiley, New York,
1975, pp. 1–127.

7Bertsekas, D. P., Dynamic Programming and Optimal Control, 2nd ed.,
Athena Scientific, Belmont, MA, 2000.

8Betts, J. T., “Survey of Numerical Methods for Trajectory Optimiza-
tion,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, 1998,
pp. 193–207.

9Kushner, H. J., and Dupuis, P. G., Numerical Methods for Stochastic
Control Problems in Continuous Time, Springer-Verlag, New York, 1992.

10Funk, J. E., “Optimal-Path Precision Terrain-Following System,” Jour-
nal of Aircraft, Vol. 14, No. 2, 1977, pp. 128–134.

11Hargraves, C. R., and Paris, S. W., “Direct Trajectory Optimization Us-
ing Nonlinear Programming and Collocation,” Journal of Guidance, Control,
and Dynamics, Vol. 10, No. 4, 1998, pp. 338–342.

12Asseo, S. J., “Terrain Following/Terrain Avoidance Path Optimization
Using the Method of Steepest Descent,” Proceedings of the IEEE National
Aerospace and Electronics Conference, Vol. 3, Inst. of Electrical and Elec-
tronics Engineers, New York, 1988, pp. 1128–1136.

13Menon, P. K. A., Kim, E., and Cheng, V. H. L., “Optimal Trajectory
Synthesis for Terrain-Following Flight,” Journal of Guidance, Control, and
Dynamics, Vol. 14, No. 4, 1991, pp. 807–813.

14Lu, P., and Pierson, B. L., “Optimal Aircraft Terrain-Following Analysis
and Trajectory Generation,” Journal of Guidance, Control, and Dynamics,
Vol. 18, No. 3, 1995, pp. 555–560.

15Lu, P., “Inverse Dynamics Approach to Trajectory Optimization for an
Aerospace Plane,” Journal of Guidance, Control, and Dynamics, Vol. 16,
No. 4, 1993, pp. 726–732.

16Spong, M. W., Thorp, J. S., and Kleinwaks, J. M. M., “The Control of
Robot Manipulators with Bounded Input,” IEEE Transactions on Automatic
Control, Vol. AC-31, No. 6, 1986, pp. 483–490.

17Lee, S. M., Bien, Z., and Park, S. O., “On-Line Optimal Terrain-
Tracking System,” Optimal Control Applications and Methods, Vol. 11,
No. 4, 1989, pp. 289–306.

18Rehbock, V., Teo, K. L., and Jennings, L. S., “A Linear Programing
Approach to On-Line Constrained Optimal Terrain-Tracking Systems,” Op-
timal Control Applications and Methods, Vol. 14, No. 4, 1993, pp. 229–241.

19Barnard, R., “Terrain Tracking Based on Optimal Aim Strategies,” Op-
timal Control Applications and Methods, Vol. 15, No. 2, 1994, pp. 145–150.

20Hess, R. A., and Jung, Y. C., “Generalized Predictive Control of Dy-
namic Systems,” Proceedings of the 1988 IEEE International Conference
on Systems, Man and Cybernetics, edited by J. Xinsong, Vol. 2, Elsevier,
San Diego, CA, 1988, pp. 844–849.

21Jung, Y. C., and Hess, R. A., “Precise Flight-Path Control Using a
Predictive Algorithm,” Journal of Guidance, Control, and Dynamics, Vol. 14,
No. 5, 1991, pp. 936–942.

22Lu, P., “Nonlinear Predictive Controllers for Continuous Systems,”
Journal of Guidance, Control, and Dynamics, Vol. 17, No. 3, 1994,
pp. 553–560.

23Lu, P., and Pierson, B. L., “Aircraft Terrain-Following Based on a Non-
linear Continuous Predictive Control Approach,” Journal of Guidance, Con-
trol, and Dynamics, Vol. 18, No. 4, 1995, pp. 817–823.

24Mitchell, J. S. B., and Keirsey, D. M., “Planning Strategic Paths Through
Variable Terrain Data,” Applications of Artifical Intelligence, Proceedings of
SPIE—International Society of Optical Engineering, Vol. 456, Bellingham,
WA, 1984, pp. 172–179.

25Tsitsiklis, J. N., “Efficient Algorithms for Globally Optimal Trajec-
tories,” IEEE Transactions on Automatic Control, Vol. 40, No. 9, 1995,
pp. 1528–1538.

26Sethian, J. A., Level Set Methods and Fast Marching Methods, 2nd ed.,
Cambridge Univ. Press, Cambridge, England, U.K., 1999, Chap. 8.

27Dijkstra, E. W., “A Note on Two Problems in Connection with Graphs,”
Numerische Mathematik, Vol. 1, 1959, pp. 269–271.

28Cormen, T. H., Leiserson, C. E., and Rivest, R. L., Introduction to
Algorithms, 2nd ed., MIT Press, Cambridge, MA, 2001, pp. 527–531.

29Nilsson, N. J., Principles of Artificial Intelligence, Tioga Publishing
Co., Palo Alto, CA, 1980, pp. 72–88.

