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Abstract. We consider the modelling of abandonment from a queueing system by impatient customers.
Within the proposed model, customers act rationally to maximise a utility function that weights service
utility against expected waiting cost. Customers are heterogeneous, in the sense that their utility function
parameters may vary across the customer population. The queue is assumed invisible to waiting customers,
who do not obtain any information regarding their standing in the queue during their waiting period. Such
circumstances apply, for example, in telephone centers or other remote service facilities, to which we refer
as tele-queues. We analyse this decision model within a multi-server queue with impatient customers,
and seek to characterise the Nash equilibria of this system. These equilibria may be viewed as stable
operating points of the system, and determine the customer abandonment profile along with other system-
wide performance measures. We provide conditions for the existence and uniqueness of the equilibrium,
and suggest procedures for its computation. We also suggest a notion of an equilibrium based on sub-
optimal decisions, the myopic equilibrium, which enjoys favourable analytical properties. Some concrete
examples are provided to illustrate the modelling approach and analysis. The present paper supplements
previous ones which were restricted to linear waiting costs or homogeneous customer population.
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1. Introduction

A rich interplay exists between the performance of a service system and its customer
characteristics. Performance is obviously affected by customer characteristics such as
arrival rate and service requirements; but this dependence goes both ways, as customer
characteristics may be affected by the perceived performance measures, such as the an-
ticipated delay. One obvious relation is the effect that “quality of service” may have
on the arrival rate, through the fraction of returning customers and reputation effects.
Indeed, a number of studies on queueing systems (e.g., [4,11,14,15]) have incorporated
a “demand curve” approach, whereby arrival rate depends on congestion (and possibly
also on external pricing). The system operating point must then be determined through
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an equilibrium analysis, which takes into account the variability of customer character-
istics.

Similar observations hold with respect to the abandonment characteristics of impa-
tient customers. We shall focus on the modelling of the customer abandonment profile,
or patience, and its dependence on system performance. The relevant aspects of the sys-
tem performance are captured here by the queueing delay, namely the distribution of the
waiting time before admitted to service. The queue is assumed invisible, in the sense that
waiting customers do not have any information regarding the queue condition, so that
their estimates of the remaining waiting time rely solely on prior beliefs and the elapsed
waiting time. To model the presumed dependence of patience on delay, we consider a
rational decision model in which each customer seeks to maximise an appropriate utility
function. Specifically, the abandonment time is chosen to maximise an individual util-
ity function which weights the utility of the required service with the expected waiting
cost. The system equilibrium now determines the abandonment profile. Our main inter-
est here here is in this equilibrium point and its properties – existence, uniqueness, and
computation.

The rational viewpoint for abandonment modelling has been considered in sev-
eral previous studies. The papers [5,7] consider the model with homogeneous prefer-
ences, so that the utility functions are identical for all customers. In [5], the authors
consider an M/M/1 queue with linear waiting costs and strict due times for service
commencement, and show that the induced equilibrium is a probabilistic split between
an immediate abandonment and none at all. In [7], the authors consider the multi-server
(M/M/m) queue with nonlinear waiting costs, and show that the equilibrium is given
by a randomised abandonment time, with identical distribution for all customers. The
generalisation to heterogeneous preferences is taken up in [10], also in the context of the
M/M/m queue but with linear waiting costs.

For the basic queue model and utility function, it is first shown in [10] that an
optimal decision for each customer, who encounters all servers busy upon arrival, will
always be to either abandon immediately or else wait until being served. In other words,
the option of abandonment during wait is never optimal. This follows after observing
that the hazard-rate function for the waiting time in such a queue is non-decreasing;
hence, with linear waiting cost, as time progresses it only becomes less worthwhile
to abandon. As this theoretical result does not conform with reality, the model was
modified by adding a fault state, real or subjective, so that with some probability an
arriving customer might never get served. This gives rise to a hazard rate function which
is eventually decreasing and thus facilitates a non-trivial abandonment profile, which
turns out unique under equilibrium conditions.

We revisit here the heterogeneous preferences model for the M/M/m queue [10],
this time allowing nonlinear waiting costs. Non-trivial abandonment times now arise
when the waiting costs are super-linear, without resort to the fault state. Obviously,
nonlinear costs allow greater flexibility in modelling different components of the waiting
cost function, both from the economic and psychological viewpoints. On the down side,
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nonlinear costs require more challenging analysis, and might possibly result in non-
uniqueness of the equilibrium point.

We mention that a simplified model for adaptive customer patience was considered
in [16]. This is a descriptive model which directly describes the aggregate population
behavior as a function of a single parameter, the expected waiting cost. That paper also
contains a brief discussion of waiting costs and their characteristics in the context of the
abandonment problem.

The analysis of the proposed model can be divided into two parts. In the first, we
consider the nonlinear-cost model with minor restrictions on the cost structure. In this
generality, little can be said about the equilibrium point; in particular, it need not be
unique, and a computation procedure is not available. These difficulties arise as the in-
dividual utility functions (as induced by the waiting time distribution, which itself needs
to be determined) need not be unimodal, and the possibility of local maxima renders the
equilibrium analysis intractable. In order to arrive at a tractable equilibrium concept, we
allow for suboptimal decisions of the customers, in the form of the myopic decision rule:
abandon at the first local maximum of the utility function, namely as soon as the utility
starts decreasing. The precise definition and a discussion of this sub-optimal decision
rule are presented in section 2.3. The equilibrium that is induced by the myopic deci-
sion rule is accordingly termed myopic equilibrium. We shall establish the uniqueness
of the myopic equilibrium under very weak assumptions, and provide computational
procedures for its calculation.

The second part of our analysis concerns conditions which guarantee uniqueness
for the global (as opposed to myopic) equilibrium. Essentially, the required conditions
are a complete ordering of the waiting cost functions of the different customer types,
and a concavity-like requirement (assumption B2 in section 6) on the marginal waiting
costs. Under these conditions it is shown that the global equilibrium exists, is unique,
and in fact coincides with the myopic equilibrium.

The paper is organised as follows. In section 2 we present our basic model, in-
cluding the queueing system, customer abandonment model, and system equilibria. Sec-
tion 3 presents some preliminary analysis, which includes the characterisation of extreme
points of individual utility functions in terms of the hazard rate function associated with
the waiting time distribution, and certain properties of this hazard rate which are central
in our analysis. Some ideas and difficulties related to equilibrium computation are out-
lined on this basis. The myopic equilibrium and its properties are explored in section 4.
The complementary notion of the farsighted equilibrium, which is mainly of interest
for computational purposes, is briefly considered in the subsequent section. Section 6
presents the results concerning the global equilibrium, focusing on sufficient conditions
for existence and uniqueness. In section 7 we illustrate, through some examples, the
computational and modelling scope of our framework. Section 8 discusses the applica-
tion of our results (which were obtained for a continuum of customer types) to models
with discrete types. We conclude, in section 9, with some suggestions for future research
directions.
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2. The model

We proceed to describe the queueing system, and characterise the abandonment time of
a waiting customer in terms of an appropriate utility function. The notions of global
equilibrium and myopic equilibrium are then introduced.

2.1. The queueing system

Consider an M/M/m queue, with m servers and Poisson arrivals at rate λ. Service times
are i.i.d. and exponentially distributed with mean 1/µ. The service discipline is first
come first served (FCFS), and the queue size is unlimited.

While waiting in queue, customers may decide to abandon the queue and give
up the demanded service. The decision whether to abandon the queue or not and the
precise instant of abandonment are determined individually by each customer, based on
a decision model which is described next.

2.2. Individual utility and rational decisions

After joining the queue, a customer may abandon at any time T � 0 before being
admitted to service (T = 0 is the arrival instant). It is assumed that no information is
conveyed to the customer during the waiting period regarding the status of the queue and
his or her position in it. Thus, an abandonment policy for each customer is simply the
time T he or she is willing to wait for service before abandoning the queue.

Observe that a decision to abandon at T = 0 differs from not approaching the
system at all, as in the former case the customer will not abandon if admitted to a free
server upon arrival.

We now define an individual utility function for each customer. Customers will be
categorised into different types according to their utility function parameters. Let z ∈ Z

denote the type, with Z the set of possible types. Further, a probability distribution PZ

is prescribed over the set of customer types, so that the type z of an arriving customer is
randomly and independently determined according to PZ.

A customer of type z is characterised by the pair (Rz, Cz), where

(i) Rz(t), the service utility function: Rz(t) is the utility (or reward) which the customer
expects to obtain by entering service, having waited t time units beyond arrival to the
queue. We assume that Rz(t) is strictly positive and continuous in t . One naturally
expects Rz to be non-increasing, but we do not need to impose that assumption.

(ii) Cz(t), the waiting cost function: Cz(t) is the disutility of a customer who waits in
queue for t time units. Let C ′

z(t) := dCz(t)/dt denote the marginal waiting cost
function. We assume that Cz(t) is positive and increasing in t , and that C ′

z(t) is
continuous in t .

Besides these cost parameters, a customer’s abandonment time will also depend on
a third quantity:
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(iii) Fz(·), a probability distribution on [0,∞), which reflects the customer’s belief
about the offered waiting time V , namely, the time he or she would have to wait
in queue (without abandoning) before being admitted to service.

Observe that Fz is in general a subjective quantity, conceived by each customer based
on prior experience, beliefs, and relevant information. In this paper we shall impose the
following assumption, that underlies the definition of system equilibrium.

Consistency assumption. For each customer type z ∈ Z, the subjective distribution Fz

coincides with the actual distribution of the offered waiting time, which we denote by F .

Since Fz ≡ F , and we omit the subscript z from Fz. Implicit in the above assump-
tion is the requirement that the virtual waiting time distribution for an arriving customer
will be well defined and stationary. Indeed, this will be a consequence of assumption A1
below, which implies that all customers have finite patience, hence that the system is
stable.

Define the cost-to-reward ratio, or simply the cost-ratio, as

γz(t) �
C ′

z(t)

Rz(t)
, t � 0.

The function γz will play a key role in our analysis. It is reasonable to expect that γz(t)

is non-decreasing in t , but this will not be imposed.
Consider a customer who decides to abandon the queue after T � 0 time units,

if not admitted to service by then. The actual waiting time will be W = min{V, T },
since abandonment occurs if T < V , and, otherwise, the customer enters service. The
expected utility for such a customer will be

Uz(T ) = E
(
Rz(T )1{T � V } − Cz

(
min{V, T }))

=
∫ T

0−
Rz(t) dF(t) −

∫ ∞

0−
Cz

(
min{t, T }) dF(t), (2.1)

where E stands for the expectation with respect to the distribution F of the offered
waiting time V . Note that F may include a point mass at the origin, thus representing
the probability of finding a free server immediately upon arrival. Therefore, Uz(0) =
Rz(0)F (0).

Denote by Tz the abandonment time of a type-z customer (we assume that all cus-
tomers of the same type chose the same T ). The rational choice of Tz is the value T

which maximises the utility function Uz(T ), over T � 0. If the maximiser is not unique,
a specific one may be assigned arbitrarily.

A note about randomised choices is in order here. In case the maximiser Tz in
not unique, then any probability distribution over the maximising set of Uz(T ) may in
fact be chosen; this corresponds to the game-theoretic concept of randomised (or mixed)
strategies, which are often required to ensure existence of the Nash equilibrium. In this
paper we shall not require randomised choices, as we assume a continuum of user types
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Figure 1. Global and local optima of the utility function.

(assumption A2 below). Existence of equilibrium in pure (non-randomised) choices is
thereby facilitated. This may be contrasted with the model of [7], where equilibrium
with a single customer type is inherently randomised.

2.3. Myopic decisions

So far, we have defined the optimal (or rational) choice for each customer as the aban-
donment time which globally maximises this customer’s utility function. In the follow-
ing we shall consider also locally optimal choices, namely the possibility of abandon-
ment at local maxima of the utility function. Of particular interest will be the notion of
myopic choices.

The myopic decision rule chooses the abandonment time as the first local maxi-
mum of the utility function. By convention, we refer to a weak local maximum in this
definition. Thus, the myopic decision is the smallest time T at which the utility function
Uz(T ) is not strictly increasing (see figure 1). The concept of myopic decisions, and the
induced myopic equilibrium, will prove most useful in the analysis to follow.

As a solution concept of independent interest, the myopic decision rule may be
advocated on the following grounds:

1. It is plausible that abandonment decisions are taken online (cf. [10]), based on the
customer’s assessment of the current situation and the utility of further wait. The
online choice at each point of time is then whether to wait “a little longer” or abandon
immediately. Such considerations would indeed lead to abandonment as soon as the
utility starts declining.

2. Customers may lack precise information regarding the waiting time distribution (or
its hazard rate) for long waits, especially if they are inclined to abandon earlier times.
They may therefore base their assessment of the utility of longer waits on their short
wait experience, and will tend to extrapolate a local utility decrease.
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2.4. System equilibria

Suppose we are given an abandonment profile T = {Tz: z ∈ Z}, which assigns an aban-
donment time Tz to each customer type z. Together with the type distribution PZ , this
determines the patience function, namely a probability distribution G on the abandon-
ment time T of an arriving customer. Specifically,

G(t) � Prob{T � t} = PZ{z: Tz � t}, t � 0. (2.2)

Equivalently, the survival function associated with G is G(t) � Prob{T > t} =
PZ{z: Tz > t}.

Assuming rational choices, we can now define a mapping from the set of abandon-
ment profiles into itself. We have just seen how T determines the patience function G.
Given G, the system is an M/M/m + G queue, in which one can calculate the distribu-
tion function F of its offered waiting time in steady state [2,6]. Invoking the consistency
assumption described above now yields the utility function (2.1) of each customer type.
The mapped-into profile is finally given as the collection of optimal points of the respec-
tive utilities.

A system equilibrium is a fixed point of this map. Under rational decisions this
coincides with the Nash equilibrium as each customer is maximising his or her utility
given the choices of all others. For concreteness we refer to this equilibrium as a global
equilibrium point. Note that one can use a similar procedure to that of the previous
paragraph to define a mapping from the set of offered waiting time distributions onto
itself, and the equilibrium point is then equivalently defined as a fixed point of this map.
This latter definition will be useful in the ensuing analysis.

A myopic equilibrium is defined similarly, except that the abandonment time of
each customer is determined according to the myopic decision rule.

2.5. Additional assumptions

In order to ensure that each customer eventually abandons, we shall make use
(in section 3.2) of the following assumption.

Assumption A1 (All-leave). For each z ∈ Z, the cost ratio γz satisfies lim inft→∞ γz(t)

> mµ.

Assumption A1 will be imposed throughout this paper, without further mention.
We note that much of the analysis below can be carried out under the weaker condition
of queue stability, namely λG(∞) < mµ [2]. From assumption A1 we will deduce that
G(∞) = 0, so that stability is trivially implied. However, the implication that all cus-
tomers eventually abandon is quite natural for reasonable customers, and, furthermore,
it simplifies some of our arguments and computational procedures.

To establish existence of a (myopic) equilibrium with a continuum of types, we
shall require certain continuity properties of optimal decisions. In particular, we need to
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prevent a small change in the waiting time distribution from resulting in a sharp change
in the customer abandonment profile (or patience distribution). For that purpose, we
shall require that the cost-ratio curves γz(·) will not be too concentrated around one
point or curve. This is made precise as follows.

Assumption A2 (Continuity). There exists a constant K > 0 such that the following
holds. For any continuous function h(t), t � 0, and any ε � 0,

PZ

{
z: sup

t�0

[
γz(t) − h(t)

] ∈ [−ε, ε]
}

� Kε. (2.3)

The functions h can be further restricted to be non-decreasing, with range in
(0,mµ], and with derivative bounded by ḣ � (mµ)2. Indeed, assumption A2 is used in
lemma 4.3, where h stand for the hazard rate function H(t) and may inherit its proper-
ties.

The following observations apply to assumption A2.

1. The probability in (2.3) is taken over those types z for which γz is upper-bounded by
h + ε, while γz(t) is ε-close to h(t) at some point t . That is, γz enters a sleeve of
size ε around h, but does not exceed it.

2. Assumption A2 implies, in particular, that the probability of any single type z is null.
This follows by taking h(t) = γz(t). Obviously, then, the set of types Z cannot be
discrete.

3. Moreover, with ε = 0, we obtain that

PZ

{
z: sup

t�0

[
γz(t) − h(t)

] = 0
}

= 0.

The last set consists of those functions that touch h from below. Refer to a set of
functions that satisfies this condition (with some h) as an exposed set. Any exposed
set must have zero probability: that is the essence of assumption A2.
An intrinsic characterisation of an exposed set can be simply given by taking h as the
upper envelope (the supremum at each t) of the functions in that set. Put another way,
any function in an exposed set must be larger than all others at some point t .
To illustrate, the set {γz(t) = 1 − (t − z)2: z ∈ X} is exposed (for any X ⊂ R),
since each γz is undominated from above at t = z. An appropriate “test function”
here is h(t) = 1. On the other hand, a set which consists of mutually dominated
functions cannot be exposed, unless it is a singleton. Thus, if {γz} consists of mutually
dominated functions, as assumed in section 6, then the requirement is simply that any
single function (or type) will have zero probability. This also holds when {γz} consists
of a finite union of sets of mutually dominant function; see example 3 in section 7.
In the special case where the functions γz(t) are all linear in t , a subset {γz} is exposed
if and only if all lines γz(t) in it are tangent to a single convex function h(t). Indeed,
the upper envelope (or supremum) of a set of linear functions is convex, and any line
that touches it from below is tangential to it.
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4. As noted, the set of types Z cannot be discrete (hence finite) under assumption A2.
However, any finite set of types can be slightly perturbed so as to satisfy this conti-
nuity assumption. This will be further discussed in section 8.

3. Preliminary analysis

We collect in this section a few properties that will be used in the subsequent analysis.
First we show (following [10]) that the extremal points of the utility function occur at
those points in time when the hazard-rate of the offered waiting-time equals the cost
ratio. We follow with some basic queueing relations for the M/M/m + G queue that
lead to a key differential relation for the hazard rate function. We then provide a brief
preview of equilibrium computation.

3.1. Extremal points of the utility function

Recall that F is the distribution of the offered waiting-time, as perceived by all cus-
tomers. Suppose that F(t) is continuously differentiable for t > 0 (that is, it has a
continuous density F ′, except possibly for a point mass at t = 0), that F ′ has a right-
limit at 0, and that F(t) < 1 for all t < ∞. (These properties indeed follow from the
expression (3.3) for F ′ that holds in our queue.) Differentiating the utility function (2.1)
with respect to T > 0 gives

U ′
z(T ) = Rz(T )F ′(T ) − C ′

z(T )F (T ) = Rz(T )F (T )
[
H(T ) − γz(T )

]
, (3.1)

where γz = C ′
z/Rz is the cost-ratio defined previously, F = 1 − F denotes the survival

function of F , and H is the hazard rate function associated with the offered waiting time
distribution F , namely

H(t) := F ′(t)
F (t)

, t > 0.

We define H(0) = H(0+). The first order condition for a local extremum of Uz(T ) at
T > 0 is U ′

z(T ) = 0, which is is equivalent to

H(T ) = γz(T ). (3.2)

For a (strict) local maximum, H − γz should change sign from positive to negative
at T . In general there may be several local extrema of the utility function. Hence,
a local characterisation is not sufficient to establish the global maximum. This accounts
for much of the difficulty in the analysis of the (Nash, or global) equilibrium and its
properties in this model. As we shall see, the notion of the myopic equilibrium works
around these difficulties.
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3.2. Basic queueing relations

Consider the M/M/m queue with a given patience distribution G(t). Under the stability
condition λG(∞) < µ, the probability density function of the offered waiting time at
t > 0 is given by [2,6]:

F ′(t) = λπm−1 exp

(
−

∫ t

0
I (s)ds

)
, t > 0 (3.3)

where πm−1 is a normalisation constant, and

I (t) = mµ − λG(t). (3.4)

By differentiating H = F ′/F , we obtain

d

dt
H (t) = H(t)

[
H(t) − I (t)

]
, t > 0. (3.5)

The following properties of the hazard rate function H(t) will prove to be useful.

Lemma 3.1.

(i) H(t) is non-decreasing in t . Furthermore, it is strictly increasing up to the point
t0 ∈ [0,∞], where G(t0) = G(∞), and constant thereafter: H(t0) = H(∞).

(ii) H(∞) = I (∞) � mµ. If all customers have finite patience, namely G(∞) = 0,
then

H(∞) = I (∞) = mµ.

Proof. Part (i) is from [10], proposition 3.2. As for (ii), note that by its definition
in (3.4), I (t) is non-decreasing and upper bounded by mµ, hence converges to some
limit I (∞). It is easily verified (either analytically from (3.3), or simply by noting that
H(t) cannot be larger than the service completion rate mµ) that H(t) is upper bounded
by mµ, hence converges to a finite limit H(∞). Invoking (3.5) again it follows that
H(∞) = I (∞). It is further seen from (3.4) that I (∞) = mµ when G(∞) = 0. �

Note that H(∞) = mµ provides a terminal condition for the differential rela-
tion (3.5). The finite patience condition which is required for this equality is enforced in
our decision model through assumption A1 above. Indeed, since H(t) � mµ, it follows
from (3.1) and A1 that the utility function Uz(t) is strictly decreasing for t large enough,
hence the optimal decision (and, similarly, the myopic and far-sighted ones) is always to
abandon at some finite time: Tz < ∞, for every type z.

3.3. Preview of equilibrium computation

Our plan is to use the differential relation in (3.5) as a starting point to establish key prop-
erties of the equilibrium such as existence and uniqueness, and as a means to compute the
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equilibrium point. Referring to the equilibrium problem introduced in the previous sec-
tion, the patience function G is not a-priori given but rather determined by the customer
decision profile. Hence I (·) is unknown, and must be determined together with H(·). In
fact, at each point t , I (t) may in general depend on the entire function H(·), so that (3.5)
is a functional differential equation which may be quite intractable.

In order to be able to directly integrate (3.5) to compute both H(·) and I (·), one of
the following properties would be required:

(F) I (t) is a function of {H(s), s � t}. In that case we could integrate (3.5) forward
in t .

(B) I (t) is a function of {H(s), s � t}. In that case we could integrate (3.5) back-
ward in t .

Unfortunately, for the optimal decision rule neither one of these needs to hold. We will,
however, show that under the myopic decision rule, property (F) does hold. This will
provide the key to the analysis of the myopic equilibrium in section 4. Later we shall also
consider the complementary concept of farsighted equilibrium, for which property (B)
is applicable. A somewhat more intricate argument will be required for the analysis of
the global equilibrium.

4. Myopic equilibrium analysis

We consider here the system equilibrium under the assumption that all customers follow
the myopic decision rule. Our main result concerning the related equilibrium point is the
following. Recall that assumption A1 is imposed throughout.

Theorem 4.1.
(i) A myopic equilibrium is unique.

(ii) Assume A2. Then the myopic equilibrium exists.

To formulate the proof, let us first collect the basic relations that apply to our model
under myopic decisions. Assume that the system is in myopic equilibrium. Recall that
a myopic customer abandons at the first local maximum of the utility function. Equiva-
lently, a customer abandons as soon as the marginal utility function U ′

z(t) becomes non-
positive. Recall further that the utility function of a type-z customer is given by (2.1).
Since the sign of U ′

z(t) is the same as that of H(t) − γz(t), as seen in (3.1), then the
myopic decision rule can be expressed as follows: abandon as soon as H(t) � γz(t).
Equivalently, Tz is the smallest t for which H(t) � γz(t). Since H is continuous, this
means:

• If H(0) < γz(0), abandon immediately at t = 0.

• Otherwise, abandon as soon as H(t) = γz(t).
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A critical observation is that the question of whether or not a customer abandons by
time t depends only on {H(s), s � t}. Specifically,

G(t) = PZ{z: Tz � t} = PZ

{
z: H(s) � γz(s)for some s � t

}
. (4.1)

This expression may be substituted in (3.4) to give

I (t) = (mµ − λ) + λPZ

{
z: H(s) � γz(s) for some s � t

}
. (4.2)

Observe further that H(∞) = I (∞) = mµ (see lemma 3.1 and the subsequent discus-
sion). Combined with (3.5), we obtain the following characterisation for H(t):

d

dt
H (t) = H(t)

[
H(t) − I (t)

]
, t > 0, (4.3)

H(∞) = mµ, (4.4)

with I (t) given by (4.2). For future reference we note that I (t) is non-decreasing
(by its definition). Recall also that H(t) is monotonically non-decreasing and bounded
in 0 � H � mµ (lemma 3.1).

As I (t) depends only on H(s) for s � t , we can in principle forward integrate the
differential relation (4.3) to obtain H . This proceeds as follows:

1. Choose a candidate H(0).

2. Compute I (0) = (mµ − λ) + λPZ{z: H(0) � γz(0)}.
3. Use the differential equation (4.3) and the expression (4.2) for I (t) to compute H(t)

from t = 0 to ∞.

4. Now check H(∞). If it equals mµ then this is an equilibrium solution, otherwise
“try” another H(0).

We can obviously restrict attention to those solutions H(t) that satisfy the above-
noted properties of the hazard rate function, namely: non-decreasing in t , and bounded
in 0 � H � mµ. The questions of existence and uniqueness of the equilibrium now
reduce to the following:

• Existence: does there exist H(0) so that the procedure above yields H(∞) = mµ?

• Uniqueness: can there be more than a single such H(0)?

The key to uniqueness is in the following monotonicity property.

Lemma 4.2. Let H(t,H0) be a solution of (4.2)–(4.3) with initial conditions
H(0) = H0. Restrict attention to those values of H0 > 0 for which H(·) is non-
decreasing and bounded. Then, for each t > 0, the difference H(t,H0)−H0 is monotone
increasing in H0.

Proof. Denote Ḣ = dH/dt . As we restrict attention to non-decreasing H , the right-
hand side of (4.3) is non-negative; thus Ḣ (t) is increasing in H(t) and decreasing in I (t).
Starting at t = 0, observe that I (0) depends on H(0) alone and is non-decreasing in it.
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Thus, (4.3) implies that Ḣ (0) increases in H(0). It can further be seen that, for any t ,
if H increases over an entire interval [0, t] then I (t) decreases, hence Ḣ (t) increases.
From that we can conclude that if H(0) increases then so does Ḣ on any interval [0, t],
hence H(t) − H(0) increases. �

Taking the limit in t , it follows that H(∞) − H(0) is increasing in H(0), hence
H(∞) is strictly increasing in H(0). This immediately implies that there exists at most
one function H of the required form that satisfies H(∞) = mµ. This established the
uniqueness of the myopic equilibrium.

We turn next to the proof of existence of a myopic equilibrium, under the continuity
assumption A2.

Lemma 4.3. Assume A2. Then

(i) For any H(0) ∈ (0,mµ), the differential equation (4.2)–(4.3) has a unique solution
H(t), which extends at least up to the point where H(t) = 0 or H(t) = mµ.

(ii) For each t > 0, H(t) is continuous in H(0).

Proof. Both properties follow by standard results on differential equation, by showing
that I (t) satisfies an appropriate Lipschitz condition. Observe, from (4.2), that I (t) =
I (H(s), s � t). We start by showing that I (t) is Lipschitz continuous in its argument
(H(s), s � t), with respect to the sup-norm. Fix t and H , and let Hε be an ε-perturbation
of H on [0, t], namely, ∣∣Hε(s) − H(s)

∣∣ � ε, s � t.

Define Iε(t) similarly to I (t), but with respect to Hε . Then∣∣Iε(t) − I (t)
∣∣

= λ
∣∣PZ

{
z: Hε(s) � γz(s), some s � t

} − PZ

{
z: H(s) � γz(s), some s � t

}∣∣
� λPZ

{
z: γz(t) � H(s) + ε for all s � t, γz(t) > H(s) − ε for some s � t

}
� λKε,

where the last inequality follows directly by assumption A2, with h(t) = H(t).
Using this functional bound in the differential equation (4.3), the stated proper-

ties follow as in standard results for ordinary differential equations under a uniform
Lipschitz condition. See, e.g., [8], theorem 2.2.1 (Lipschitz uniqueness theorem) and
theorem 3.1.1 (continuity in initial conditions). �

While H(t) is continuous in H(0) for any finite t , this property fails to hold for the
limiting value H(∞). Still, using the limiting properties of I (t) we show next that the
required final value of mµ is obtained for some initial conditions.

Lemma 4.4. Assume A2. Then there exists a solution H0(t) to (4.2)–(4.3) which is
positive non-decreasing and with H0(∞) = mµ.
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Proof. Observe first that the solutions H(t) of (4.2)–(4.3) (with any initial condition
H(0) > 0) have the following properties:

(a) Once Ḣ becomes strictly negative, equivalently H − I < 0, it remains that way
(since then H is decreasing while I non-decreasing, hence H −I remains negative),
and eventually decreases to Ḣ (∞)=0.

(b) Once H(t) becomes larger than I (∞) = mµ, it increases to ∞. This actually
happens in finite time (since ẋ = x2 blows up in finite time).

(c) The only remaining option is H(∞) = I (∞).

Hence, we have that:

• For H(0) small, H(∞) = 0.

• For H(0) large, H(t) → ∞ (in finite time).

• In between, we may have a single point H(0) so that H(∞) = ∞. Uniqueness of
such H(0) follows from the monotonicity property in lemma 4.2.

We can now establish the existence of the required solution. Let H(t;h) denote the
solution that corresponds to initial conditions H(0) = h. Let K be the set of initial
conditions for which the solution blows up: K = {h: limt→∞ H(t;h) = ∞}. Let k

be then infimum of this set; note that k > 0. We first claim that k �∈ K. Indeed, by
monotonicity (cf. lemma 4.2) we know that the solution H(t; k) is a lower bound on any
other solution that blows up. If H(t; k) blows up (namely k ∈ K), then at some time s

we have H(s; k) = mµ + 2. We also know that for H(0) = h small enough we have
H(s;h) < mµ. Hence, by the continuity property of the last lemma there exists some
h0 < k for which H(s;h0) = mµ+1. But this solution must also blow up (as it is above
the threshold mµ as discussed above), so that k is not the infimum of K.

It follows then that H(t; k) does not blow up. On the other hand, we know that any
solution H(t;h) with h ∈ K is monotone increasing, hence H(t;h) � k for all t and
h ∈ K. Invoking again the continuity property of lemma 4.3, if follows that H(t; k) �
k > 0 for all t . As noted before this implies that H(∞; k) = I (∞) = mµ, and the
claim is satisfied with H0(·) := H(·; k). �

We can now conclude the existence proof. Given the function H0(t) of the last
lemma, define the abandonment time for type z customers according to the myopic rule,
Tz = min{t : H0(t) � γz(t)}. To show that this is an equilibrium profile, we need to
show that this leads to a hazard rate function H(t) which coincides with H0(t) from
which we started. Indeed, the above decision profile induces the patience function G(t)

as per (4.1) (with H(t) := H0(t)). The waiting time distribution in now given by (3.4)
and (3.3). Using the fact that H0(t) by its definition satisfies (3.5) and H0(∞) > 0,
it may be verified by substitution and integration that

F(t) :=
∫ ∞

t

F ′(s) ds = H0(t)
−1F ′(t)

hence H(t) := F ′(t)/F (t) = H0(t), as required. �
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We finally summarise the computational procedure for the myopic equilibrium that
falls off the previous analysis. This computation involves the forward integration of the
differential equation (4.2)–(4.3), and a search procedure on H(0) so that H(∞) = mµ.
Specifically:

• Starting with some arbitrary H(0), calculate H(t).

• If H(t) becomes larger than mµ, then stop; H(0) should be increased.

• If Ḣ (t) becomes non-positive, then stop; H(0) should be decreased.

• Otherwise, H(t) → mµ and this is the correct H(0).

5. The farsighted equilibrium

We shall consider briefly an additional notion of a local equilibrium, the farsighted equi-
librium, which is complementary to the myopic one. While this equilibrium can hardly
be justified as a reasonable solution concept, it will turn out to be useful computationally.

The farsighted decision rule selects the abandonment time as the last (largest) local
maximum of the utility function. More precisely, if Uz(t) is the utility function, then the
farsighted decision is the largest time t at which U ′

z(t) � 0 (and Tz = 0 if such t does not
exist). Since assumption A1 is in effect, so that U ′

z(t) < 0 for t large enough (as indicated
at the end of section 3.2), it follows that Tz is the largest time at which U ′

z(t) = 0. The
farsighted equilibrium is the system equilibrium induced by the farsighted decision rule.

As in the case of the myopic equilibrium, we can formulate this decision rule in
terms of the hazard rate function. Indeed, Tz is the largest time t for which

H(t) = γz(t)

(and Tz = 0 if this inequality is nowhere satisfied).
It follows that the question of whether a customer abandons at time t according to

the farsighted decision rule depends only on the future values of the hazard rate function,
namely on {H(s), s � t}. That will allow us to integrate the differential equation for
H(t) backwards in time. To that end, note that,

G(t) = PZ{z: Tz > t} = PZ

{
z: H(s) = γz(s) for some s > t

}
(5.1)

and

I (t) = mµ − PZ

{
z: H(s) = γz(s) for some s > t

}
. (5.2)

This expression for I (t) may be combined with the differential equation (4.3) and ter-
minal condition (4.4) to compute the farsighted equilibrium, using backward integration
from t = ∞. In contrast to the myopic equilibrium, no search procedure is required
here, as the terminal conditions actually serve as explicit initial conditions for backward
integration.

Note that if T0 is an upper-bound on the abandonment times of all customer types,
then backward integration may start from T0 with terminal condition H(T0) = I (T0) =
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mµ (see lemma 3.1). Such an upper bound is given for instance by the minimal time T

for which γz(T ) � mµ for all z.
Existence and uniqueness of the farsighted equilibrium may be established simi-

larly to the myopic equilibrium. In fact, uniqueness is easier to establish here since the
search procedure for H(0) is not required. We shall therefore not dwell on the details of
these proofs.

We close this section by pointing to some useful relations between the two types
of “local” equilibria – the myopic and the farsighted – and the global equilibrium. First
note that either one of the local equilibria may turn out to be a global one. In the myopic
equilibrium, for example, this would be the case if for each customer type the myopic
decision rule is in fact the optimal one, namely if the first local maximum of the equilib-
rium utility function turns out to be the global maximum. As this may not be simple to
verify directly, the following observation may be useful.

Recall that the myopic decision rule selects the first local maximum of the utility
function, and the farsighted rule selects the last local maximum. Obviously, if the two
coincide for a given utility function, then this function is unimodal and both are, in fact,
a global maximum. This leads to the following straightforward but potentially useful
result.

Proposition 5.1. Suppose the myopic and farsighted equilibria coincide. Then they con-
stitute a global equilibrium as well.

Indeed, recall that the myopic decision rule selects the first local maximum of
the utility function, and the farsighted rule selects the last local maximum. Obviously,
if the two coincide for a given utility function, then this function is unimodal (it has
exactly one local maximum) and this local maximum is in fact a global maximum. The
converse is also trivially true: if in a global equilibrium the utility function of each
customer is unimodal, then this equilibrium coincides with both the myopic and the
farsighted equilibria. Since each of the latter is unique, there may exist at most one
global equilibrium with the property that the utility function for each customer type is
unimodal.

An interesting conjecture is that the condition of the last proposition also leads to
the uniqueness of the global equilibrium. This is yet to be verified or disproved. In
the forthcoming section we shall formulate explicit conditions on the problem data that
guarantee the uniqueness of the global equilibrium.

6. Global equilibrium

For the general model discussed so far, uniqueness of the global equilibrium is not guar-
anteed. In the present section, we shall impose additional conditions that guarantee the
uniqueness of the global equilibrium. Further, as this unique global equilibrium co-
incides with the myopic and farsighted ones, it can be computed using the procedures
outlined above for these equilibria. The imposed conditions are essentially that customer
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types will be strictly ordered in terms of their cost functions, and the marginal waiting
cost will satisfy certain concavity properties.

Our first assumption concerns the complete ordering of customer types according
to their cost functions.

Assumption B1 (Ordering). There exists a (complete) order on the set Z of customer
types, so that for any y, z ∈ Z with y < z, at least one of the following holds:

(i) Ry(t) � Rz(t) and C ′
y(t) < C ′

z(t), for all t � 0.

(ii) Ry(t) = Rz(t) and γy(t) < γz(t), for all t � 0.

The following three remarks concern this last assumption.

1. Assumption B1, together with (3.1), implies that U ′
y(t) > U ′

z(t) (for any F ).

2. Since γz = C ′
z/Rz, either condition in B1 implies that γy(t) < γz(t).

3. The equality Ry(t) = Rz(t) in the second condition is actually required to hold up
to a constant scaling factor. (Indeed, the utility function Uz may be rescaled without
affecting the optimal decision, and such rescaling is obtained by scaling both the
service reward Rz and the waiting cost function Cz by the same factor. Note that this
does not affect the cost-ratio γz.) For example, it holds if each Rz is constant in time.

In addition, we shall impose the following requirement on the cost-ratio functions.

Assumption B2 (Concavity). γ̈z(t) � γ̇z(t)γz(t) for any z and t such that γ̇z(t) � 0.

An obvious sufficient condition for B2 is that γz(t) is (weakly) concave in t , namely
γ̈z(t) � 0. We note that this condition is slightly stronger than the one that appears
in [7] (in relation to the homogeneous customer problem). Indeed, the latter requires
the function γ (t) − γ̇ (t)/γ (t) to be monotone increasing, which can be differentiated
to give γ̈ � γ̇ γ + (γ̇ )2/γ . We conjecture that the same condition would suffice here,
however, the details of the proof would be more involved.

The continuity condition A2 will be also used here. Under the order condition B1,
the functions h in A2 can be restricted to the set {γz}. The requirement is, essentially,
that the set of functions {γz} will be sufficiently “spaced apart” under Pz.

The following theorem summarises the main results of the present section.

Theorem 6.1. Assume A2 (continuity), B1 (ordering) and B2 (concavity). Then the
global equilibrium is unique, and coincides with both the myopic and farsighted equilib-
rium points.

The proof is presented in the remainder of this section. Let us first sketch the main
ideas in the proof of uniqueness. Our goal is to show that, at any global equilibrium,
each utility function Uz(t) is unimodal; hence a global equilibrium coincides with the
myopic equilibrium (and also with the farsighted one), whose uniqueness has already
been established. To show unimodality, we note that at any (local) maximum t of Uz

we have U ′
z(t) = 0, with U ′

z increasing; since U ′
z is sign-equivalent to H − γz, these
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properties are shared by the latter. To show that there exists at most one point with these
properties, it would suffice that γz is concave in t (by assumption), while H is convex,
so that the difference H − γz is convex. Unfortunately, H is not a convex function;
indeed, it is increasing and upper bounded, hence must be concave on some part of its
domain. More refined analysis is therefore required. A basic observation will be that H

does in fact exhibit convex-like properties on those parts of the time axis at which no
abandonment occurs, namely that contain no points from the decision profile {Tz} (see
lemmas 6.3 and 6.4 below). Together with some monotonicity properties, this will lead
to uniqueness of the maximum point for each Uz, and hence to the uniqueness of the
global equilibrium.

For the rest of this section we impose, without further note, the conditions of the
last theorem.

Lemma 6.2. Let {Tz} be an equilibrium profile corresponding to a global equilibrium.
Then for any y, z ∈ Z, y < z implies that Ty � Tz. Furthermore, if Tz > 0 then Ty < Tz.

Proof. As noted, assumption B1 together with (3.1) imply that U ′
y(t) > U ′

z(t). Re-
calling that Tz is a global maximum of Uz over t � 0, this implies the assertion of the
lemma. Indeed, for any t < Ty we have Uz(t) − Uz(Ty) < Uy(t) − Uy(Ty) � 0, im-
plying that such t cannot be a maximum of Uz, hence Tz � Ty . Finally, if Tz > 0 then
0 = U ′

z(Tz) < U ′
y(Tz), hence Tz is not a maximum of Uz, namely Ty �= Tz. �

Lemma 6.3. Let γ (t) > 0 satisfy the requirement of assumption B2, namely γ̈ (t) �
γ̇ (t)γ (t) whenever γ̇ (t) � 0. Let H(t) be a positive and strictly increasing function
that satisfies Ḣ = H(H − I0) on some interval (t0, t1) and for some constant I0. Then
the difference f := H − γ satisfies the following property: if f (t0) = f (t1) = 0 then
f (t) < 0 for t ∈ (t0, t1).

Proof. Note first that

Ḧ = Ḣ (H − I0) + HḢ > HḢ. (6.1)

Strict inequality follows since for H to be strictly increasing on (t0, t1) we must have
Ḣ = H(H − I0) > 0 there, while H > 0 by assumption.

Suppose f (t) > 0 for some t ∈ (t0, t1). Then f (t) has a maximum point t∗ in
(t0, t1), and at that point we have:

f
(
t∗

)
� 0, f ′(t∗) = 0, f ′′(t∗) � 0.

Since f = H − γ , this gives

H
(
t∗

)
� γ

(
t∗

)
, Ḣ

(
t∗

) = γ̇
(
t∗

)
, Ḧ

(
t∗

)
� γ̈

(
t∗

)
.

Using these relations together with (6.1), we obtain at t = t∗ that

γ̈ � Ḧ > HḢ � γ γ̇

while γ̇ (t∗) = Ḣ (t∗) > 0, which contradicts the assumed property of γ . �
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Lemma 6.4. Let {Tz} be an equilibrium profile corresponding to a global equilibrium.
Let I (t) be given by (3.4) and (2.2), and let İ denote its time derivative (whenever it
exists). Then, for any t > 0, one of the following holds:

(a) t is interior to an interval over which İ = 0.

(b) There exists a sequence (Tzi
) which converges to t . Consequently, H(t)−γy(t) < 0

for any y ∈ Z such that t > Ty , and H(t) − γy(t) > 0 for any y such that t < Ty .

Proof. It is evident from (2.2) that I is constant over each open interval which does not
contain points from {Tz}. Thus, if t is interior to such an interval then (a) follows. Oth-
erwise, there must exist a sequence (Tzi

) which converges to t . Consider first the special
case where t = Tz, for some z. Take y ∈ Z for which Ty < t = Tz. From lemma 6.2 it
follows (using the contrapositive implication) that y < z, and assumption B1 now yields
γz < γy . Therefore,

H(t) − γy(t) = H(Tz) − γy(Tz) < H(Tz) − γz(Tz) = 0,

where the equality follows since Tz > 0 maximises Uz, cf. (3.1). The proof for
Ty > t = Tz is identical. Finally, if Tz = t does not exist but a sequence Tzi

→ t

is available, a simple limit argument based on the continuity of H and γz establishes the
same relations. �

Lemma 6.5. Assume that the system is in global equilibrium. For any z ∈ Z, suppose
Tz is a maximum point of the utility function Uz. Then

(i) U ′
z > 0 for t < Tz.

(ii) U ′
z < 0 for t > Tz.

Consequently, Uz is strictly unimodal, in the sense that it has a single local maximum.

Proof. The outline of the proof is as follows. From (3.1) we know that U ′
z is sign equiv-

alent to H − γz, so that the two assertions of the lemma can be equivalently stated in
terms of the latter. Next, we consider separately the two cases in lemma 6.4, which es-
sentially correspond to time instances where İ = 0 and İ �= 0, respectively. In case (b),
the required claim regarding the sign of H − γz follows directly from that lemma. In
case (a), where t is internal to an interval where İ (t) = 0, we will show that the convex-
like properties of H − γz on an interval where İ = 0 (lemma 6.3) prevent H − γz from
changing sign, hence it retains the same sign as in case (b). We now proceed with the
detailed argument.

Let {Tz, z ∈ Z} be an equilibrium profile corresponding to a global equilibrium.
Recall from (3.1) that H(Tz) = γz(Tz) if Tz > 0, while H(Tz) � γz(Tz) if Tz = 0.
Assumption A1 implies that Tz < ∞ for every z. We will often make use of the fact that
U ′

z(t) is sign equivalent to H(t) − γz(t) for any t and z.
Fix z ∈ Z. We first establish part (ii) of the lemma, namely that U ′

z < 0 (equiva-
lently, H − γz < 0) for t > Tz. Fixing t and referring to lemma 6.4, either case (a) or
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case (b) of that lemma must hold. If (b) holds, then indeed H − γz < 0 is implied by
that lemma. Consider next the case that (a) holds, namely t is interior to an interval over
which İ = 0. Extend that interval (t0, t1) as much as possible, while keeping t0 � Tz.
Let f (t) := H(t)− γz(t), as in lemma 6.3. Note that f (t) is continuously differentiable
on that interval, as H(t) is given by (3.5) with I constant. In order to apply lemma 6.3
we again consider two possibilities:

(i) t0 = Tz. First we have f (t0) ≡ H(Tz) − γz(Tz) = 0. Turning to the end point t1,
if t1 < ∞ then case (b) of lemma 6.4 holds (by definition of t1), and as t1 > Tz we
have f (t1) < 0. If t1 = ∞, then since H(t) → mµ while assumption A1 holds,
then f (t ′1) < 0 for t ′1 large enough. In either case it follows from lemma 6.3 that
f ≡ H − γz < 0 on (t0, t1), and in particular at t as required.

(ii) t0 > Tz. Here again case (b) of lemma 6.4 holds (by definition of t0), so that
f (t0) < 0. As before we have that f (t1) < 0. Then again from lemma 6.3 it
follows that f = H − γz < 0 at t ∈ (t0, t1).

We have thus shown in either case that U ′
z < 0 for t > Tz.

We next establish part (i), namely that U ′
z > 0 (equivalently, H − γz > 0) for

t < Tz. Some extra care is required here to prepare the conditions for application of
lemma 6.3. As Tz is a maximum of Uz, then U ′

z(t) to the left of Tz should be initially
negative. More precisely, there exists an interval (t2, Tz) such that either (i) U ′

z(t) = 0
on that interval, or (ii) U ′

z(t) < 0 on that interval. We first show that (i) is impossible.
We claim in that case that there are no points from {Ty}y∈Z in (t2, Tz). Indeed, if y > z

then Ty > Tz (by lemma 6.2); if y < z then γy < γz implies that H(t) − γy(t) <

H(t) − γz(t) = 0, hence U ′
y(t) < 0 on (t2, Tz). It follows that Uy cannot have a

maximum point Ty on that interval. As there are no points from {Ty}y∈Z in (t2, Tz), it
follows by lemma 6.4 that İ (t) = 0 there. Recalling that U ′

z = 0 implies that Hz−γz = 0
on that interval, this contradicts lemma 6.3.

We are thus left with option (ii): U ′
z(t) < 0 on the non-empty interval (t2, Tz).

Extend t2 as much as possible to the left. If t2 = 0 and Uz(0) < 0 then Uz(t) < 0 on
[0, Tz) and we are done; otherwise, Uz(t2) = 0. Assuming that the latter holds, we will
show that it leads to a contradiction. (Unfortunately, a direct application of lemma 6.3 to
obtain a contradiction is impossible since İ = 0 need not hold on that interval. However,
we will be able to apply the lemma to another type x � z on a sub-interval where İ = 0
does hold.)

Let t3 = inf{t ∈ (t2, Tz]: t ∈ {Ty}y∈Z}. Note that İ = 0 on (t2, t3). Assume first
that t3 ∈ {Ty}, namely t3 = Tx for some x ∈ Z. We will next show the existence of a
sub-interval (t0, t1) ⊂ (t2, t3) on which H − γx > 0, while H − γx = 0 at t0 and t1. But
this contradicts lemma 6.3.

We thus proceed to establish the existence of such (t0, t1). Note that Tx � Tz, so
that x � z. We first claim that Tx �= t2, so that the interval (t2, t3) is nonempty. Indeed,
if x = z then Tx = Tz > t2, while if x < z then H(t2) − γx(t2) < H(t2) − γz(t2) = 0,
while H − γx = 0 must hold at Tx which maximises Ux . Next, as shown above with
respect to Tz, there exists an interval (t0, Tx) to the left of Tx on which H − γx > 0,
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while H − γx = 0 at t = Tx and at t = t0 (note that t0 � t2: if x = z then t0 = t2, while
if x < z then t0 > t2 since H(t2) − γx(t2) < 0 as just shown). Recalling that İ = 0
on (t2, t3), hence on its sub-interval (t0, Tx), we can apply lemma 6.3 with t1 = Tx to
obtain that H − γx < 0 on (t0, Tx), which yields the required contradiction. We have
thus completed the argument under the assumption that t3 ∈ {Ty}y∈Z.

Assume next that t3 �∈ {Ty}y∈Z. By definition of t3, there exists a decreasing se-
quence (Txi

) that converges to t3. We may now apply a continuity argument to ob-
tain the same result as before. Define a new customer type x with cost-ratio function
γx(t) := supxi

γxi
(t). Note that the functions γxi

are increasing in i, so that the last supre-
mum can be replaced by a limit. If we assign a PZ-measure zero to the new type then
the system equilibrium is not modified. It may be verified by continuity that Tx := t3 is
a global maximum of the corresponding utility function Ux(t). It may be further shown
that the conclusion of lemma 6.3 continues to hold for the new type (even though the
derivatives of γx may not be everywhere well defined). The argument above can there-
fore be repeated to obtain a contradiction with the assumption that Uz(t2) = 0. This
establishes part (i), and completed the proof of lemma 6.5. �

Proof of theorem 6.1. Lemma 6.5 immediately implies that any global equilibrium
is also a myopic (and farsighted) one. But uniqueness of the latter was established is
theorem 4.1, so that the global equilibrium is unique. Existence of the global equilib-
rium will also be inferred from that of the myopic one. First, repeating the argument
of lemma 6.5 for the myopic equilibrium, it follows similarly that the utility functions
of all customers are unimodal at the myopic equilibrium as well. Hence the myopic
equilibrium is, in fact, a global one, and existence of the former has been established is
theorem 4.1 under assumption A2. �

Theorem 6.1 thus established the uniqueness of the global equilibrium under the
stated assumptions, and enables its computation as either the myopic or the farsighted
equilibrium. We mention again that even if the conditions of this theorem are not satis-
fied then either one of these “local” equilibria may still present a a global equilibrium, as
may be verified after the explicit computation of the local equilibria; see also the discus-
sion at the end of the previous section and proposition 5.1 there. However, no guarantee
of uniqueness is available in that case.

7. Illustrative examples

In this section we present several examples that illustrate the computational process and
the modelling flexibility offered by our proposed model. We should point out, however,
that these examples are strictly meant to illustrate the mathematical framework, and do
not attempt to capture parameters of a realistic scenario.

In all the examples below, the cost-ratio γz is taken for convenience to be linear. We
shall further assume that the service utilities Rz(t) are all constant, so that γz ≡ C ′

z/Rz

completely describes the cost structure. The queue parameters are fixed at λ = mµ = 2.
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Figure 2. The hazard rate and the patience probability density function for example 1, computed with the
farsighted procedure. The cost-ratio functions γz(t) = z + t are also illustrated for z ∈ [0, 1], with their

density corresponding to that of the type z.

The first two examples illustrate the computational procedures and results for two
different types of linear costs. The third example considers a mixture of two customer
classes that violates the assumptions of theorem 6.1. The last example addresses the
issue of inverse modelling, namely of determining a cost or population structure that
gives rise to an a-priori given patience distribution.

7.1. Example 1: uniformly spaced costs with equal slopes

Let the cost-ratio function for type z customers be

γz(t) = z + t, t � 0,

with z uniformly distributed in [0, 1]. This z represents the initial cost-ratio for a type
z customer, and these costs increase at a uniform rate of 1 for all customers. The as-
sumptions of theorem 6.1 are satisfied, hence the equilibrium point is unique and can
be computed as either the farsighted or myopic equilibrium. We start by computing the
hazard rate function H(t) at equilibrium using the farsighted procedure. Here we back-
ward integrate the differential equation (4.3) with the expression (5.2) for I (t), starting
with the boundary condition H(∞) = mµ = 2. In fact, it is easily verified that all aban-
donment times are bounded by T0 = 2, since γz(2) ≡ 2 + z � mµ for all z ∈ [0, 1]. We
can therefore take the terminal condition as H(2) = 2 (as per the remark in section 5).
In the numeric computation, H(2.5) = 2 was used.

Numeric integration was carried out using simple Euler approximations, with a
resolution of N = 100 points per unit time. The computed function H(t) is shown
in figure 2, alongside with an illustration of the functions γz(t) that were used in this
example. The patience distribution function G(t), and the corresponding density G′(t),
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Figure 3. The hazard rate function H(t) for example 1, computed with the myopic equilibrium procedure,
for different initial conditions H(0).

may be directly obtained using (5.1). More simply, it may be calculated from (3.4),
namely,

G(t) = mµ − I (t)

λ
,

where I (t) is obtained during the computation of H(t). G′(t) is depicted in figure 2(b).
As expected, T is bounded in [0, 2]. Its distribution is close to uniform, with some
increase near the higher end.

For comparison, we compute H(t) for this example also using the myopic equi-
librium procedure. Recall that this is based on forward-integrating (4.3) with I (t) from
(4.2), and employing a scalar search procedure on H(0) so that H(∞) = mµ = 2. The
results for different initial conditions are shown in figure 3, where the integration was
carried out up to T = 2.5 with the same resolution N = 100 as before. Note the high
sensitivity of the final value to H(0). The required terminal condition was obtained for
H(0) = 0.87974, while the farsighted computation above yielded H(0) = 0.87958.
Evidently, the results of these two computations coincide.

7.2. Example 2: uniformly distributed slopes

For the second example we take a family of cost-ratio functions with variable slope:

γz(t) = zt.

Obviously the type parameter z coincides with the slope. We choose its distribution so
that the angular density is uniform in the first quadrant: z = tan(θ), with θ uniformly
distributed in [ε, π/2]. The offset ε is introduced for numerical convenience, and taken
here as ε = 0.01. Again, the assumptions of theorem 6.1 are satisfied. The hazard rate
function at equilibrium (computed with the farsighted procedure) is shown in figure 4,
along with the patience density.

The abandonment profile in this example is of course quite different than in the
previous one, and can be related to the density of the cost functions that intersect the
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Figure 4. H(t) and G′(t) for example 2. The cost-ratio functions are γz(t) = zt , with uniform angular
density (note the different axis scales).

hazard rate function at a given time. Similar changes may be induced by modifying the
type density.

7.3. Example 3: unordered cost ratios

Assume next that the customer type is obtained as a mixture of two customer classes.
The first class is the same as in example 1:

γz1(t) = z1 + t, z1 ∼ U [0, 1].
The second class is given by

γz2(t) = −2z2 + 2t, z2 ∼ U [0, 1].
Customers in this class are seen to have a lower initial cost, but it increases more rapidly
in time. The customer type z is then the class designator (1 or 2, with equal probabilities),
and the corresponding parameter z1 or z2. The situation is illustrated by the dotted lines
in figure 5. Obviously, the cost-ratio functions are not ordered, as required in theorem 6.1
so that existence of a unique global equilibrium is not assured. Still, a unique myopic
equilibrium does exist by theorem 4.1.

The myopic equilibrium was calculated and is depicted in figure 5. The jump in
the patience density corresponds to the point where the second class start abandoning.
It is easily seen that each cost-ratio function intersects the hazard rate at most once, so
that this equilibrium is also a global one; this was indeed verified by computing the
farsighted equilibrium that coincided with the above (proposition 5.1).

7.4. Example 4: inverse modelling

In our modelling framework, the problem of inverse modelling concerns the the con-
struction of an appropriate customer cost structure to fit a given abandonment profile
G(t). Obviously, this is a basic step in fitting our model to empirical data. We shall
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Figure 5. H(t) and G′(t) for example 3. The cost-ratio functions are a mixture of two classes with different
slopes.

illustrate here the following variant of this problem. Suppose that the cost-ratio func-
tions γz(t) are given. Find a probability distribution PZ on the type parameter z so that
the induced equilibrium point gives rise to a-priori given abandonment profile (patience
distribution).

The queueing system is the same as above, and the cost functions are as in
example 1:

γz(t) = z + t.

Here the distribution of z (on the real line) is not given, and needs to be determined.
Let the required patience distribution be exponential with unit parameter:

G(t) = e−t , t � 0.

To outline the computation procedure, we first note the G uniquely determines the
(required) hazard rate function H(t), through (3.3), (3.4) and H = F ′/F . Next, we
compute the distribution PZ on z that gives equality in (4.1). This density need not exist
in general (see the comments below). However, if it does, it leads to a myopic equilib-
rium with the required patience profile. In general, it needs to be verified whether this
equilibrium is a global one. This is assured, however, if the cost structure satisfies the
ordering assumption of theorem 6.1.

Furthermore, if the cost-ratio functions are ordered, say increasing in z, then equa-
tion (4.1) reduces to

G(t) = PZ

{
z: z � z0(t)

} ≡ 1 − FZ

(
z0(t)

)
, (7.1)

where z0(t) is the minimal z which satisfies the inequality in (4.1). The function z0(t)

is increasing in t by its definition, and is easy to calculate once H(t) is given. Thus, the
distributions G(t) and FZ(z) are related through the “scale change” z0(t).

The resulting hazard rate H(t) and type probability density fZ(z) are shown in
figure 6. The support of fZ corresponds to the first γz that does not intersect H . At the
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Figure 6. The probability density function of z for example 4 (“inverse modelling”).

other end, when H becomes constant the above-mentioned scale change z0(t) becomes
linear, so that the lower end of fz becomes exponential (as G′).

A few additional comments are in order, in light of the last example. Recall that
an abandonment (with T > 0) occurs at an intersection of the cost and the hazard rate
functions. Thus, the required hazard rate function determines only the values of the cost
function at these intersection points. The form of the cost functions away from these
intersection points is therefore arbitrary. At the intersection point, however, the slope
of the cost must be larger than that of H(t) (for otherwise we would have a maximum
rather than a minimum of the utility function). This sets a limitation on the hazard rate
functions that are feasible with a given family of costs: for example, the above choice
of unity-slope γz cannot give rise to H(t) with slope larger than 1. In that case, cost
functions with larger slopes must be introduced.

A more general modelling problem is that of inferring the shape of the cost func-
tions in additions to their distribution. A detailed discussion of this problem is outside
the scope of the present paper.

8. A finite number of customer types

Our analysis so far was mainly carried out under assumption A2, which requires the set
of types to be non-discrete. From a descriptive viewpoint this seems reasonable, since it
is hardly likely that different customers, or even the same customer on subsequent visits
to a queue, will have exactly the same cost parameters. However, in modelling practice
it may be convenient to divide the customer population into a finite number of types (in
terms of their cost functions). We briefly address this model here.

An important characteristic of the discrete case is the essential role of randomized
decisions. In equilibrium, customers of the same type will typically be required to
choose different abandonment times according to some probability distribution (which
is computed in [7] for the single-type model). Consequently, a direct analysis of the
discrete case would require a somewhat different framework than the one used above. In
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place of repeating the lengthy analysis, we indicate below how the discrete-type model
can be embedded within the continuous model, and demonstrate how this embedding
allows computation of the equilibrium profile to required precision.

Consider a finite set I = {1, 2, . . . , n} of types, specified by the cost parameters
(C̃i(t), R̃i(t)), with corresponding probabilities pi , i ∈ I . Thus, an arriving customer
will be of type i with probability pi . As a first step, we embed this model within a
continuous-parameter one. Let z (the type of an arriving customer) be a uniform random
variable on Z = [0, 1]. Partition the set [0, 1] into consecutive intervals of length pi ,
and identify z with i if it falls in the corresponding interval; that is, define

(Cz, Rz) = (
C̃i, R̃i

)
if ρi−1 � z < ρ,

where ρi = ∑i
j=1 pi , and ρ0 = 0. It is obvious that the two models are equivalent.

Still, the new model does not obey the continuity requirement in assumption A2.
We therefore introduce a small perturbation in the cost parameters. For concreteness,
define the following positively perturbed model:

Cε
z = C̃i + ε(z − ρi) if ρi−1 � z < ρ,

where ε is a small positive number (and Rz as before). The corresponding cost-ratio is
then γz(t) = (Cε

z )
′(t)/Rz(t). We similarly define the negatively perturbed model, with ε

replaced by −ε.
The perturbed model “smears” the waiting cost function C̃i over a small vertical

band (of size εpi). It may be easily verified that now this model does satisfy assump-
tion A2. Moreover, if the discrete model satisfies the ordering and concavity properties
from section 6, then so does the perturbed model (for ε small enough). We can apply
our previous results to the perturbed model in order to compute the equilibrium point,
which gives an approximation to the equilibrium of the discrete model. Moreover, by
using both positive and negative perturbations we can contain the perturbation error.

A formal line of analysis would proceed by establishing the following properties:

(i) Monotonicity: The abandonment profile {Tz} is monotone decreasing in the pertur-
bation parameter ε. (Note that increasing ε increases the waiting cost of all cus-
tomers.)

(ii) Continuity of the abandonment profile in ε.

Together these properties allow computation of the equilibrium to required precision,
and also a proof of uniqueness under the assumptions of section 6. We do not pursue
the analysis here, but merely provide an example to demonstrate the application of this
framework.

8.1. Example 5: a two-type model

We consider the same queueing model as in the previous section, with cost-ratio func-
tions

γ1(t) = t, γ2(t) = t + 0.5
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Figure 7. Equilibrium profiles for the perturbed models in example 5, with ε = 0.3. The positively
perturbed model is in solid line, the negatively perturbed one is dotted. The two straight lines are the

cost-ratio functions of the two customer types.

Figure 8. The same perturbed models with ε = 0.01.

corresponding to customers of types 1 and 2. The two types are equally probable: p1 =
p2 = 0.5. Figure 7 depicts the hazard rate and equilibrium profiles corresponding to
both the positively and negatively perturbed models, with ε = 0.3. A relatively large
value of ε was chosen in order to demonstrate the monotonic relation between the two
profiles (the cumulative distribution of G is depicted here rather than its density, to make
this relation more apparent). Figure 8 shows the same quantities for ε = 0.01. Here the
results for the two perturbed models practically coincide, and give the equilibrium of the
discrete model.

It is interesting to note in the last figure that the equilibrium hazard-rate func-
tion H(t) follows along one of the cost-ratio functions in the two time intervals where
abandonments occur (namely, when G(t) is strictly increasing). This follows from the
necessary condition (3.2), which implies that H(t) = γi(t) whenever customers of type
i abandon. In-between those intervals, the hazard rate function evolves according to
equation (3.5), with I (t) a constant.
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9. Concluding remarks

We have considered in this paper a decision-theoretic model for customer abandonments
in invisible queues. The model is inherently adaptive, in the sense that the optimal de-
cisions of the customers depend on the waiting time distribution offered by the system.
This decision model was incorporated and analysed within a basic (M/M/m) queueing
system. We have demonstrated the existence and uniqueness of the system equilibrium
point under certain conditions on the waiting cost functions. Similar properties were
established, under much broader conditions, for the modified concept of the myopic
equilibrium. It was further demonstrated how these equilibria may be calculated and
related to observed system characteristics. These results extend previous ones by incor-
porating nonlinear waiting costs and heterogeneous customer population, which may be
essential for realistic modelling.

It should be emphasised that the present paper merely provides a mathematical
framework for the proposed approach, while leaving a great deal of modelling flexi-
bility in specifying the shape of the waiting cost functions and their distribution. The
usefulness of such a model for queueing practice should be measured in its ability to
provide reliable predictions for system characteristics under varying system conditions.
To obtain that goal, the present work should be complemented with a methodology for
determining the model parameters. This entails both empirical methods for estimat-
ing these parameters from measurements of a specific system, and the development of
general guidelines regarding the shape of the waiting cost functions in typical waiting
scenarios. To the best of our knowledge, these issues have not yet been addressed sys-
tematically. Some related quantitative work on the affective response to waiting may be
found in [3,12,13]; see also [16] for further references and discussion.

Several key issues remain for further study. In modern call centers, selective in-
formation regarding the queue status is supplied to waiting customers. It should be of
major interest to incorporate such information into our model, and investigate its conse-
quences. As mentioned, the calibration and validation of the proposed model is essential
for its application. More broadly, further study of the abandonment phenomena and its
interaction with queueing performance is required, based on empirical data and human
decision modelling.
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