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MARKOV DECISION PROCESSES WITH SLOW SCALE
PERIODIC DECISIONS

M. JACOBSON, N. SHIMKIN, and A. SHWARTZ

We consider a class of discrete time, dynamic decision-making models which we refer to as
Periodically Time-Inhomogeneous Markov Decision Processes (PTMDPs). In these models, the
decision-making horizon can be partitioned into intervals, called slow scale cycles, of N +1 epochs.
The transition law and reward function are time-homogeneous over the first N epochs of each slow
scale cycle, but distinct at the final epoch. The motivation for such models is in applications where
decisions of different nature are taken at different time scales, i.e., many “low-level” decisions are
made between less frequent “high-level” ones.

For the PTMDP model, we consider the problem of optimizing the expected discounted reward
when rewards devalue by a discount factor � at the beginning of each slow scale cycle. When N

is large, initially stationary policies (i.s.p.’s) are natural candidates for optimal policies. Similar to
turnpike policies, an initially stationary policy uses the same decision rule for some large number
of epochs in each slow scale cycle, followed by a relatively short planning horizon of time-varying
decision rules. In this paper, we characterize the form of the optimal value as a function of N ,
establish conditions ensuring the existence of near-optimal i.s.p.’s, and characterize their structure.
Our analysis deals separately with the cases where the time-homogeneous part of the system has
state-dependent and state-independent optimal average reward. As we illustrate, the results in these
two distinct cases are qualitatively different.

1. Introduction. Certain stochastic control problems involve the control of fast pro-
cesses that are influenced by slower ones. The slow processes cause relatively infrequent
perturbations in the usual operation of the faster processes. Such multiple time scale phe-
nomena arise in a variety of ways in practice. The variety of models for such phenomena
that have received attention in the literature is correspondingly rich. A number of authors
(e.g., Davis 1993, Bäuerle 2001) have considered so-called Piecewise Deterministic Pro-
cesses (PDPs) in which a deterministically controlled system is periodically perturbed by
uncontrolled random events. Such models arise, for example, in manufacturing systems
where the usual flow of production, a deterministic process, is occasionally perturbed due
to random machine failure. Other authors have considered so-called hierarchical decision-
making models (e.g., Sethi and Zhang 1994) in which the control space consists of several
different types of decision variables used to control related processes. Typically, the differ-
ent processes are controlled by decisions made with different frequency, leading to multi-
ple time scales. These models suit, for example, manufacturing systems where the actual
production operations constitute a process run by frequent, short-run decisions while the
resources available for production (e.g., number of machines, workers, etc.) are in the con-
trol of less frequent, long-run decisions.
In some literature, multiple time scale phenomena have been treated in a Markov Decision

Process (MDP) framework. Singularly perturbed MDPs (e.g., Delebecque and Quadrat 1981,
Phillips and Kokotovic 1981) are perhaps the most prominent example, and have been
used to model applications such as the control of queuing systems and hydroelectric power
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generation operations. In these models, slow scale phenomena correspond to infrequent, but
time-homogeneous transitions made between certain disjoint subsets of the state space.
In this paper, we consider a discrete-time, two time scale MDP model in which slow

scale phenomena are modeled by time-inhomogeneity in the state transition and reward
data. Namely, the decision-making horizon can be partitioned into intervals of N +1 epochs
called slow scale cycles. Over the first N epochs of each slow scale cycle, decisions of a fast
scale type are made and their effect is described by time-homogeneous state transition and
reward functions. At the final epoch, decisions of a distinct, slow scale type are made and
described by different transition and reward functions. The process repeats in an �N +1�-
periodic fashion. We call these models Periodically Time-Inhomogeneous Markov Decision
Processes (PTMDPs), so as to reflect that the decision process is time-homogeneous except
for the periodic occurrence of the slow scale decision epochs. A PTMDP is essentially
a Markovian, two-level hierarchical decision-making model in discrete time. The model
assumes that the times between slow-scale epochs are all equal, although generalizations
are possible.
For the PTMDP model, we address the problem of optimizing the expected discounted

reward when rewards devalue by a discount factor � at the beginning of each slow scale
cycle. This criterion when the slow scale epochs demarcate time periods over which total
performance is of interest and when high performance in early periods is a priority. Between
slow epochs, rewards are time-homogeneous (with no discounting). We emphasize that,
although the length of the slow period may be regarded as a parameter, the discount factor is
held fixed throughout. A variation of this criterion is also briefly discussed (see Remark 5).
Our aim is to understand how the solutions of the problem behave for large, finite values of
N , i.e., when the interval of fast scale epochs in each slow scale cycle is long. We assume
finite state and action spaces throughout.
As a motivating example, we consider the application of this model to what we call

multiple project management problems. In these problems, the decision maker controls one
of m different projects for a period of N epochs, at the end of which (s)he may select a
different project. In this case, the slow scale decisions are the different project selections.
The fast scale decisions are the short-run decisions controlling the current project. Our
discounted optimality criterion is apt, for example, when the management team is subject to
an evaluation at the conclusion of each project. It is then natural to look at the net outcome
of the successive projects. This discounting reflects that a favorable evaluation depends
more critically on success in earlier projects than later ones.
As usual, we are interested both in the optimal value obtainable and the decision-making

policies that attain it. Due to the �N + 1�-periodic nature of the problem, one can expect,
at the outset, that �N +1�-periodic sequences of decision rules will be the simplest kind of
optimal policy in this model. On the other hand, a PTMDP is, crudely speaking, a sequence
of N -horizon time-homogeneous MDPs, terminated by an epoch with different reward and
transition data. Intuition therefore suggests that for large N , a policy of a simplified turnpike-
like form, which we call an initially stationary policy (i.s.p.), will result in near optimality
in the discounted PTMDP. By an i.s.p., we mean a policy which, in each slow scale cycle,
uses a time-independent decision rule for some large number of epochs followed by a
relatively short planning horizon of time-dependent decision rules.
The notion of turnpikes originates in the work of Shapiro (1968), and was subsequently

expanded by Hinderer and Hubner (1977). It is rooted in the intuition that, at the start of
a stationary MDP with a large, finite horizon, it appears to the decision maker that the
horizon before him is infinite. Initially, therefore, optimal decisions can be made using a
time-independent decision rule, as in an infinite-horizon version of the MDP. As the end
of the horizon approaches, however, the problem looks more and more like a finite horizon
problem and time-dependent decision rules may be required. This intuition was verified in
Hinderer and Hubner (1977) and Shapiro (1968) for discounted MDPs possessing a unique
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optimal decision rule. The time-independent decision rule is referred to as a “turnpike,”
while the interval of time-dependent decision rules is referred to as the planning horizon.
Analogous results hold for nondiscounted MDPs as well.
The same intuition leads us to conjecture that i.s.p.’s may be nearly optimal in PTMDPs

with large N . For in these models, the decision maker faces a long, time-homogeneous
horizon at the beginning of each slow scale cycle. In this paper, we investigate conditions
ensuring the existence of (approximately) optimal i.s.p.’s. One can anticipate that the exis-
tence of approximately optimal i.s.p.’s will bring all the usual advantages of a simplified
policy structure. Namely, the policy is easier to implement and simplified algorithms may
be used to compute it.
A history-dependent variant of the model of the present paper has been considered in

Jacobson (1998). In that model, the slow scale decisions take effect N epochs after they are
made. The main results for this model are similar to the present ones.
The rest of this paper is organized as follows. In §2, we present the PTMDP model and

describe a generic multiple project management problem to motivate it. Section 3 introduces
notation and conventions used throughout. Section 4 describes our discounted optimality
criterion and summarizes certain analogies between optimal solutions in PTMDPs and those
in standard discounted MDPs. Sections 5 and 6 contain our analysis, which is carried out
under certain conditions on � , the average reward MDP associated with the fast scale data.
No assumptions are made about the slow scale data. The analysis is divided into two cases.
The first case is when � has an optimal gain vector that is independent of the initial state.
The second case is when the optimal gain may be state-dependent.
Section 5 addresses the state-independent gain case. We begin by characterizing the form

of the optimal value as a function of N . This structure is used to establish the existence of
�-optimal initially stationary policies with a finite planning horizon which depends on � but
not on N . It is worth noting that these results hold under mild technical conditions on � ; in
particular, they require no conditions on the rate of convergence of value iteration in � in
order to bound the planning horizon. Existence of precisely optimal i.s.p.’s is examined next
and established under the additional requirement that the set of average optimal decision
rules that are maximizing in � ’s optimality equation is a singleton.
Section 6 addresses the state-dependent gain case. The analysis is carried out under less

general conditions than the state-independent case, however, these conditions are satisfied
by certain applications of interest such as multiple project management. We again analyze
the form of the optimal value as a function of N . In addition, we establish that there
exists a uniformly N�-optimal i.s.p. whose planning horizon, ��, is a function only of �.
Moreover, the turnpike decision rule may be derived from the fast scale MDP, � , alone. The
reader will note that the i.s.p. is only N�-optimal rather than �-optimal. However, this kind
of scaled �-optimal is still reasonable since the optimal value vector also scales with N .
In §7, we briefly discuss conditions for the existence of uniformly �-optimal initially

stationary policies. This subject has been more fully explored in Jacobson (1998). Section 8
examines the degree of suboptimality of a policy that uses the same decision rule at all
fast scale epochs. Such a policy is the closest analogue to a stationary policy from classical
MDP theory. It is therefore natural to wonder how suboptimal these policies might be in a
“nearly time-homogeneous” decision process like a PTMDP. Finally, in §9, we summarize
approaches to computing approximately optimal initially stationary policies.

2. Model introduction. A Periodically Time-Inhomogeneous Markov Decision Process
(PTMDP) is a discrete time MDP whose evolution is described by an �N + 1�-periodic
sequence of transition probability and reward functions. Over the first N epochs (called
fast scale epochs) of each periodic interval, the probability and reward functions are time-
homogeneous. At the final epoch, however, they are distinct. We call these distinct epochs
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slow scale epochs. In addition, we refer to the �N + 1�-periodic intervals as slow scale
cycles.
Formally, the process is defined by a state space S, and for each s ∈ S a space of fast

scale actions As and slow scale actions A�
s . At time t and state st ∈ S, a fast scale action

at ∈ Ast
is selected if t is a fast scale epoch. The rewards and transition probabilities are

given by fast scale data r�st� at�� p�st+1�st� at�. Conversely, if t is a slow scale epoch, a
slow scale action a�

t ∈ A�
st
is selected and the rewards and transition probabilities are given

by slow scale data r��st� a
�
t �� p

��st+1�st� a�
t �. We shall assume throughout that all state and

action spaces are finite. Hence, the reward data has a bound, which we denote rmax. The
PTMDP timing framework is depicted for one slow scale cycle in Figure 1.
Example 1 (Multiple Project Management). As amotivating example of a PTMDP,

we describe what we call a multiple project management problem. In problems of this type,
work is done on one of m different projects for a duration of N decision epochs. At epoch
N +1, a transition to a different project may take place, and the process repeats.
Formally, each project is modeled by one of m MDPs, 	� i
mi=1. These MDPs have asso-

ciated state and action spaces 	Si� Ai
s


m
i=1 and associated reward and probability functions

	r i�s� a�� pi�j�s� a�
mi=1. The multiple project management problem can then be modeled as
a PTMDP in which the fast scale epochs are those at which work is done on one of the
projects, while the slow scale epochs are those at which transitions between projects may
occur. The state and fast scale action spaces are

S =
m⋃
i=1

Si

As = Ai
s� s ∈ Si

and the fast scale reward and probability functions are

r�s� a� = r i�s� a�� s ∈ Si

p�j�s� a� =
{
pi�j�s� a� s� j ∈ Si

0 s ∈ Si� j �∈ Si

We make no specific requirements on A� , r��s� a��, or p��j�s� a��. Typically, however,
p��j�s� a�� would allow transitions between different Si, corresponding to changes from
one project to another. The slow scale rewards r��s� a�� might specify startup costs for a
new project.

Figure 1. Time evolution of a PTMDP.
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3. Notation and preliminaries.

3.1. Norms and dynamic programming notation. We shall represent functions on
the state space S by column vectors in ��S�. Likewise, we shall define various dynamic
programming operators and think of them as mappings of vectors from ��S� to ��S�. For a
vector y ∈ ��S�, the max-norm and span semi-norm are

�y� �= max
s∈S

�y�s��

�y�sp �= max
s∈S

y�s�−min
s∈S

y�s��

The span semi-norm �y�sp measures the maximal variation between the elements of y. For
a scalar c ≥ 0, we use the notation �̄ �c� to denote an unspecified vector in ��S� whose
max-norm is at most c.
Let L denote the one-step dynamic programming operator for the fast scale data,

defined as

(3.1) Lx�s�
�=max

a∈As

{
r�s� a�+∑

j∈S
p�j�s� a�x�j�

}
� s ∈ S �

Some well known properties of the L operator are
(i) L�x+ c1� = Lx+ c1 where c is any scalar and 1 denotes a column vector whose

every element is 1.
(ii) �Lx−Ly� ≤ �x−y�� �Lx−Ly�sp ≤ �x−y�sp.

Property (ii) is sometimes referred to as the nonexpansive property of the L operator.
From this property, we deduce that for any vector y and any vector x with �x� ≤ c,
L�y+x�= Ly+ �̄ �c�.
For a given 0 ≤ � < 1, we define the discounted dynamic programming operator for the

slow scale data

(3.2) L�x�s�
�= max

a�∈A�
s

{
r��s� a��+�

∑
j∈S

p��j�s� a��x�j�

}
� s ∈ S �

Finally, we define the �N +1�-step PTMDP discounted operator �N ,

(3.3) �Nx
�= LNL�x�

It corresponds to backward induction over one slow scale cycle.

3.2. Policies and decision rules. A history-dependent, randomized policy shall be
defined, as usual, as a sequence of maps which specify, for each possible state-action his-
tory, a probability distribution over the relevant action set. This set is Ast

when t is a fast
scale epoch, and A�

st
otherwise. The space of history-dependent, randomized policies for a

PTMDP whose slow scale cycles are of length N +1 shall be denoted �HR
N .

A Markovian deterministic decision rule, d, is a mapping from states to actions and can
be thought of as a rule for selecting actions at some epoch based on the current state.
(Henceforth, the term decision rule shall implicitly refer to a Markovian deterministic one,
unless otherwise stated.) Let D denote the space of fast scale decision rules mapping each
s ∈ S to some a ∈ As . Similarly, let D� denote the space of slow scale decision rules
mapping s ∈ S to a� ∈ A�

s .
For a decision rule d ∈D, we define the restriction of L to d as

Ldx
�= rd +Pdx�
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where rd is a reward vector with components rd�s� = r�s�d�s�� and Pd is a transition
probability matrix with entries Pd�j� s� = p�j�s�d�s��. Restrictions of other operators are
similarly defined.
We shall sometimes represent L using the vector form,

Lx =max
d∈D

	rd +Pdx
�

where the maximization over D is a short-hand for (3.1). Similar notation will be used for
the other dynamic programming operators. Note that Lx ≥ Ldx with equality for at least
one d. A decision rule, d ∈ D, attaining this maximum shall be called an x-improving or
x-maximizing decision rule.
If  = 	dm�dm−1� � � � � d1
 represents a sequence of m decision rules, then for all 0 ≤

k ≤m,
Lk
x

�= rdk +Pdk
rdk−1

+Pdk
Pdk−1

rdk−2
+· · ·+ �Pdk

Pdk−1
· · ·Pd1

�x

In other words Lk
x denotes the k-th reward-to-go function of the m-horizon policy  when

the terminal reward is x.
For a PTMDP with slow scale cycle length N , we define a cyclo-stationary policy to be

a policy that uses a common �N + 1�-length decision rule sequence 	d0�d1� � � � � dN �d
�


in each slow scale cycle. The set of all cyclo-stationary policies shall be denoted �
cyc
N .

A cyclo-stationary policy shall be abbreviated as 	�d�
 where  = 	d0�d1� � � � � dN−1
,
di ∈ D are the decision rules used at the fast scale epochs while d� ∈ D∗ is the decision
rule used at the slow scale epoch.
A particular type of cyclo-stationary policy which will be of interest to us is an initially

stationary policy (i.s.p.) that has the form

	������ � � � � ��dN−�+1� � � � � dN �d
�
�

That is, the policy prescribes some time-invariant decision rule, �, for all but possibly the
final � fast scale epochs (� < N ) of the slow scale cycle. We refer to � as the i.s.p.’s
planning horizon. We shall sometimes use the term planning horizon loosely to mean also
the interval of � epochs in a renewal cycle where time-varying decision rules are used by
an i.s.p. (borrowing from turnpike terminology). Also, we refer to � as the turnpike decision
rule.

3.3. The fast scale MDP. The fast scale data, r�st� at�� p�st+1�st� at�, in a PTMDP can
be associated with an average reward MDP, denoted as � , with decision rule space D. We
shall refer to � as the fast scale MDP of the PTMDP.
The gain vector gd of a decision rule d ∈ D is defined as gd

�= P ∗
d rd where P ∗

d =
limn→
�1/n�

∑n
k=0 P

k
d is the limiting matrix of Pd. Obviously, gd�s� is the average reward

from initial state s. Since the action and state spaces are finite, it is well known that g∗,
the optimal gain vector of � , satisfies g∗ ≥ gd with equality for some decision rule d. We
define D∗ �= 	d ∈D � g∗ = gd
 as the set of optimal decision rules in � .
The optimal gain vector, g∗, is characterized by the optimality equations

g∗ = Ug∗
�=max

d∈D
	Pdg

∗
(3.4)

g∗ +v = Tv
�=max

d∈E
	rd +Pdv
(3.5)

Here, E
�= 	d ∈D � Pdg

∗ = g∗
 and the operators U and T are defined as indicated. The set

V
�= {

v ∈ ��S� � g∗ +v = Tv
}
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of solutions to (3.5) is a closed, unbounded Schweitzer and Federgruen (1978) set. For a
given v ∈ V , we denote

E�v�
�= 	d ∈ E � g∗ +v = Tdv
 �

It is a standard result that D∗ ⊂ E and also that E�v�⊂D∗ for any such v ∈ V . Hence, any
maximizing decision rule in (3.5) is average optimal.
Define

R∗ �= 	s ∈ S � s is recurrent for some average optimal decision rule
 �

In Schweitzer and Federgruen (1978), it is shown that R∗ has a unique decomposition,

R∗ =
n∗⋃
�=1

R∗����

The sets R∗����� = 1� � � � � n∗ which, for convenience, we refer to as the Schweitzer-
Federgruen classes, are mutually disjoint with the following properties, (see Theorem 3.2
in Schweitzer and Federgruen 1978):
1. Any irreducible subchain of any optimal randomized decision rule is contained in one

of the sets R∗���.
2. For each � = 1� � � � � n∗, a randomized optimal decision rule exists which has R∗���

as an irreducible subchain, i.e., R∗��� is a communicating set.
Finite algorithms are known for identifying the Schweitzer-Federgruen classes (see, for

example, the discussion in [Schweitzer and Federgruen 1978, p. 314]). Based on that paper,
it is also known that, for any given v1� v2 ∈ V , the difference v1�s�− v2�s� is constant
as a function of s over any fixed Schweitzer-Federgruen class, R∗���. Furthermore, if
there is only a single Schweitzer-Federgruen class (i.e., n∗ = 1), then given any v0 ∈ V ,
V = 	v ∈ ��S� � v = v0+ c1� c ∈ �
. The converse is also true, namely, V is one-dimensional
only if n∗ = 1.

3.4. Zero-reward analogues. When we consider a version, � 0, of � in which all
rewards are set to zero, we obtain useful analogues to the properties cited in Section 3.3.
Firstly, equations (3.4) and (3.5) reduce to

(3.6) w =max
d∈D

	Pdw
= Uw

where w has replaced v. The set W
�= 	w ∈ R�S� � w = Uw
 is the analogue of V . Observe

that 1 ∈ W . Also, from to (3.4), one can see that g∗ ∈ W . (Note that g∗ still refers to the
optimal gain of � , not � 0.)
Since U is positive homogeneous, i.e., Ucx = cUx for any nonnegative scalar c, it follows

that W is a cone. For any w ∈W , define

K�w�
�= 	d ∈D � Pdw = Uw = w


as the set of decision rules attaining the maximum in (3.6).
Since all decision rules are optimal in � 0, we have the following analogue of the set R∗,

�R �= 	s ∈ S � s is recurrent for some decision rule
 �

Likewise, we have the following analogous decomposition, sometimes referred to as the
Bather decomposition [1],

�R=
�∗⋃
�=1

�R����
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This decomposition has the following properties:
1. Any irreducible subchain of any randomized decision rule is contained in one of the

sets �R���.
2. For each �= 1� � � � ��∗, a randomized decision rule exists that has �R��� as a subchain,

i.e., �R��� is a communicating set.
We will refer to the sets �R��� as the Bather classes. Finite algorithms are known for

identifying the Bather classes (see, for example, Schweitzer 1984).
By analogy with V , the difference w1�s�−w2�s� for any w1�w2 ∈W is independent of s

over each fixed Bather class, �R���. Since 1 ∈ W , it follows that if w ∈ W then w�s� is
constant as a function of s on each �R���. Furthermore, when there is only a single Bather
class (i.e., �∗ = 1) then W = 	w ∈��S� � w= c1� c ∈�
. A stationary MDP for which �∗ = 1
is called weakly communicating.
Remark 1. From property (1), it follows that given any �0 ∈ 	1� � � � � n∗
, then

R∗��0�⊂ �R��� for some � ∈ 	1� � � � ��∗
.

3.5. Assumptions. We shall work with combinations of the following conditions on
the fast scale MDP, � . See §§3.3 and 3.4 for relevant notation and concepts.

Condition 1. The optimal gain vector g∗ has the form g01, i.e., it is state-independent.

Condition 2. V is one dimensional, i.e., for some v0, V = 	v ∈ ��S� � v = v0 + c1�
c ∈ �
.

Condition 3. The sequence Lkx−kg∗ converges, as k tends to infinity, for all vectors x.

Condition 4. The sequence Ukx converges, as k tends to infinity, for all vectors x.

Condition 5. There exists an average optimal decision rule, � ∈D∗, satisfying, for all
w ∈W ,

(3.7) P�w = w = Uw�

Hence, � ∈ K�w� for all w ∈W .

Perhaps the most general, commonly considered class of models in which Condition 1
holds is the class of weakly communicating models (see Puterman 1994, pp. 348–352). The
MDP � is weakly communicating if it has a single Bather class (i.e., �∗ = 1).

Condition 2 is also sufficient for Condition 1. As mentioned in §3.3, Condition 2 holds
if and only if there is a single Schweitzer-Federgruen class (i.e., n∗ = 1). If n∗ = 1, then a
randomized, unichain gain optimal decision rule exists, implying Condition 1. A commonly
considered condition which implies Condition 2 is when � is a unichain model, meaning
that Pd has a single recurrent class for all d ∈D.
Conditions 3 and 4 are equivalent to nonperiodicity requirements on the chain struc-

ture of � . Condition 3 is equivalent [10] to the condition that a randomized, aperiodic,
gain optimal decision rule exists whose recurrent chains are the Schweitzer-Federgruen
classes R∗���� �= 1� � � � � n∗. By analogy with an MDP with zero rewards, Condition 4 is
equivalent to the condition that a randomized, aperiodic decision rule (not necessarily gain
optimal) exists whose subchains are �R���� � = 1� � � � ��∗. A simple condition for which
Conditions 3 and 4 will hold is if Pd is aperiodic for all d ∈D.
Condition 5 is one which, to our knowledge, has not been considered before. The fol-

lowing two hypotheses together imply Condition 5.

Hypothesis 1. All states are recurrent for at least one decision rule, i.e., S = �R.
Hypothesis 2. There is a Schweitzer-Federgruen class in each Bather class, i.e., �R���∩

R∗ �= 	�
� for every �= 1� � � � ��∗.
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When Hypothesis 1 holds, the Bather classes completely partition the state space, S. When
Hypothesis 2 holds, an average optimal decision rule exists under which all the Bather
classes are closed. Denoting this decision rule �, it follows from the fact that all vectors,
w ∈W , are constant over the Bather classes, that

P�w = w = Uw�

which is (3.7).
Remark 2. Hypothesis 2 holds trivially when � is weakly communicating. It is also

valid when there are two Bather classes and the values of g∗ corresponding to each Bather
class are distinct. In this case, all average optimal decision rules have a recurrent class in
each Bather class. To see this, suppose, by way of contradiction that, for some d ∈ D∗,
all states in Bather class 1 are transient. Then via P ∗

d , only Bather class 2 is reached with
positive probability. This implies that P ∗

d g
∗ = g∗21 �= g∗ where g∗2 is the value of g∗ on Bather

class 2. However, this is a contradiction, because all d ∈D∗ must satisfy P ∗
d g

∗ = g∗.
Another hypothesis that implies Condition 5 is

Hypothesis 3. The state space has a partition into m subchains, 	Si
mi=1, each of which
contains a single Bather class and is globally closed, i.e., the Si do not communicate with
one another under any decision rule.

When Hypothesis 3 holds, � can be viewed as a disjoint collection of weakly communi-
cating sub-MDPs, �i, with state spaces Si. As mentioned in §3.4, the set W in a weakly
communicating MDP is identically the set of state-independent vectors in ��S�. For MDPs
satisfying Hypothesis 3, this property has the following obvious generalization,

W = {
w ∈ ��S� � ∃ ci ∈ �� i = 1� � � � �m s.t. w�s�= ci if s ∈ Si

}
Therefore, for any w ∈ W , all � ∈ D (and not just optimal ones) satisfy (3.7), so that
Condition 5 follows.
In a multiple project management problem (see Example 1), Hypothesis 3 is satisfied

if the MDPs �i are weakly communicating. In this case, the sets Si are the project state
spaces.

4. Optimality criteria. In this section, we describe a discounted optimality criterion
for the PTMDP model. Propositions are presented that follow by analogy with standard
discounted MDP theory, and therefore we omit proofs.
Consider a PTMDP and let 0 ≤ � < 1 be a discount factor. For every history-dependent,

randomized policy � ∈�HR
N , we define the following value function

(4.1) v�N �s�
�= E�

s

( 
∑
t=0

��t/�N+1��rt

)
� s ∈ S �

where E�
s is the expectation operator induced by � starting in state s, and rt is the associated

stochastic process of rewards.
We address the optimization problem of finding, for all s ∈ S, the optimal value

(4.2) v∗N �s�
�= sup

�∈�HR
N

v�N �s�

as well as a policy, �∗
� ∈�HR

N , satisfying

(4.3) v∗N �s�−v�∗
�
�s�≤ �

for a given � ≥ 0. Policies �∗
� satisfying (4.3) are said to be �-optimal. A 0-optimal policy

is said to be optimal.
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Equations (4.1), (4.2), and (4.3) define a discounted reward optimality criterion in which
the rewards devalue by � at the start of each slow scale cycle. This criterion is appropriate
when the slow scale epochs demarcate time periods over which total performance is of
interest, and when high performance in early periods is a priority. As an example application,
one may consider a multiple project management problem (see Example 1) in which projects
are run for a year (a period subdivided into N fast scale decision epochs) and subject
to annual evaluation. The criterion reflects that a high total performance from projects in
earlier years, rather than later ones, leads to a more favorable evaluation.
The following proposition characterizes solutions of the optimality problem.

Proposition 4.1 (PTMDP Optimality Equation).

(a) The operator �N is a contraction operator with respect to the max norm �·�, with
contraction factor � and fixed point v∗N (the optimal value defined in (4.2)). Hence,

(4.4) v∗N =�N v
∗
N = LNL�v∗N �

(b) A cyclo-stationary policy 	�d�
 is optimal if and only if

(4.5) v∗N = LN
L

�
d� v∗N �

That is, 	�d�
 is conserving.

Clearly, the maximizations implicit in the right hand equality of (4.4) are attained by
some cyclo-stationary policy 	�d�
, due to the finiteness of the state and action spaces.
Hence, by part (b) of the Proposition, it follows that at least one optimal cyclo-stationary
policy always exists.
Remark 3. In classical discounted MDP theory, algorithms for computing the opti-

mal value and policy are driven by iterative operations involving the model’s discounted
dynamic programming operator. Analogous algorithms are available for solving PTMDPs
that manipulate �N in parallel ways. For example, the analogue of value iteration would be
to compute the sequence �n

N x0 for some initial vector x0. The sequence converges to v∗N as
n goes to infinity.
A cyclo-stationary policy 	�d�
 shall be called uniformly �-optimal if it is �-optimal

starting from any time epoch (and not just the initial one). This is the case when (4.3) holds,
namely �v∗N −v

�∗
�

N � ≤ �, and further

(4.6)
∥∥LkL�v∗N −Lk

L
�
d� v

�∗
�

N

∥∥≤ �

for all 0 ≤ k < N .
The following proposition provides sufficient conditions, in terms of v∗N , for cyclo-

stationary policies to be �-optimal and uniformly �-optimal.

Proposition 4.2 (Criteria for �-Optimality).
(a) Suppose that a cyclo-stationary policy 	�d�
 satisfies

�v∗N −LN
L

�
d� v∗N� ≤ �1−����

Then the cyclo-stationary policy is �-optimal.
(b) Suppose, in addition, that

�LkL�v∗N −Lk
L

�
d� v∗N� ≤ �1−���

for all 0 ≤ k < N . Then the cyclo-stationary policy is uniformly �-optimal.
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Remark 4. Proposition 4.2(b) indicates that, when v∗N is known, uniformly �-optimal
policies can be obtained by carrying out the maximizations implicit in the expression
LkL�v∗N up to an accuracy of �1−���. This means that value iteration strategies—in which
one first finds an approximation to v∗N and then extracts from it a policy via dynamic
programming—will generally produce uniformly �-optimal policies.
Such a strategy can fail to find �-optimal policies having a particularly simple form,

but which are not uniformly optimal (see, for example, Jacobson 1998, Example 8.18).
However, policies of this latter type are of questionable usefulness, because they do not
prescribe optimal decisions from every starting state and time. In practice, one would need
to discard them if certain unlikely state transitions are made.
Remark 5. A variant of (4.1) that may be natural to consider is

(4.7) v�N �s�
�= E�

s


∑
t=0

�t/�N+1�rt� s ∈ S �

In this case, the discount factor applied at the end of each slow scale cycle is still �,
irrespective of N . However, the discounting now occurs gradually over all fast scale epochs
at rate �N = �1/�N+1�.
For this variant, the optimality equation still has the form v∗N = LNL�v∗N , but with the

revised definitions

Lx�s�
�=max

a∈As

{
r�s� a�+�N

∑
j∈S

p�j�s� a�x�j�
}

(4.8)

L�x�s�
�= max

a�∈A�
s

{
r��s� a��+�N

∑
j∈S

p��j�s� a��x�j�

}
�(4.9)

These operators are more complicated than those defined in (3.1) and (3.2) in that they now
depend on N through the discount factor �N . Since �N → 1 as N →
, this does not fall
into the standard discounted MDP formulation. In particular, the convenient “tail effect” of
standard discounted costs is not present on the fast time scale (within a single slow scale
cycle). The analysis of the modified criterion is therefore not simpler than that of criterion
(4.1) (to follow in §§5 and 6), but rather requires additional consideration for the variation
in �N . On heuristic grounds, we conjecture that similar results hold regarding the existence
of i.s.p.’s.
In the context of specific applications, the specific choice of discounting within a slow-

scale cycle may often be a modeling choice rather than a dictate of the application.

5. Analysis of the state-independent gain case. In this section, we address PTMDPs
for which the optimal gain of the fast scale MDP is state-independent, i.e., for which
Condition 1 holds. In addition, we shall also assume Condition 3 throughout. However,
Condition 3 is largely a technical condition that removes periodicity effects from consid-
eration. When Condition 3 does not hold, generalizations to account for periodicity are
possible, although trite.
Since Condition 1 holds, then the set E in (3.5) coincides with D, so that (3.4) and (3.5)

reduce to
g∗ +v = Lv�

Hence, E�v� reduces to the set of decision rules which are v-improving with respect to the
L operator. For any v ∈ V , we shall define

(5.1) ��v�
�= 1
2

(
min

d∈D\E�v�
�Lv−Ldv�

)
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with ��v�=
 if E�v�=D. Observe that

(5.2) argmax
d∈D

	rd +Pdv+ �̄ ���v��
⊂ E�v��

Equations like (5.2) are key to many turnpike results in the literature. We shall use it in a
similar way to establish Theorem 5.3.
Since Condition 3 holds, the operator

�L
x
�= lim

k
�Lkx−kg∗�

is defined on all ��S�. As established in Schweitzer and Federgruen (1979), convergence
to �L
x is geometric with a rate that depends on x. Furthermore, it is known (cf. Lemma
2.2(g) in Schweitzer and Federgruen 1979) that �L
x is a mapping from ��S� to V and (cf.
Lemma 2.1 in Schweitzer and Federgruen 1979) that �L
 has the same properties as L (in
particular, properties (i) and (ii) in §3.1).
We now define y
 as the unique vector satisfying the fixed point equations

(5.3) y
 = �L
L�y
 �

The uniqueness of y
 follows by noting that the operator �L
L� is a contraction operator
with respect to �·� with contraction factor �. It is clear from (5.3) that y
 ∈ V since,
as mentioned above, �L
 maps into V . We also define

My
���
�= min

{
k � �LkL�y
−kg∗ − �L
L�y
� ≤ �

}
= min

{
k � �LkL�y
−kg∗ −y
� ≤ �

}
�

By Lemma 2.2(e) in Schweitzer and Federgruen (1979), if Condition 1 holds, the sequence
�Lkx−kg∗ − �L
x� decreases monotonically in k. Hence, My
��� is the smallest k for which
LkL�y
−kg∗ has converged within �.
The following theorem describes the asymptotic behavior of the optimal value vector v∗N .

It establishes that v∗N −Ng∗/�1−�� converges to y
 geometrically.

Theorem 5.1 (Asymptotic Behavior of v∗N , State-Dependent Gain). Assume Con-
ditions 1 and 3 hold, fix � > 0, and suppose that N ≥My
���. Then

(5.4) v∗N = Ng∗

1−�
+y
+ �̄

( �

1−�

)
�

Proof. Let z0 = Ng∗/�1−��+y
. Hence,

�N z0 = LNL�z0

= LNL�y
+ �Ng∗

1−�
(5.5)

= �L
L�y
+Ng∗ + �̄ ���+ �Ng∗

1−�
(5.6)

= z0+ �̄ ��� �(5.7)

In the above, (5.5) followed from Condition 1, (5.6) followed from our assumption that
N ≥My
���, and (5.7) followed from (5.3) and rearranging terms. By Proposition 4.1, the
Banach theorem then implies,

�v∗N − z0� ≤
��N z0− z0�

1−�
≤ �

1−�

from which (5.4) follows. �
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Remark 6. The Theorem implies that for any � > 0
∥∥∥∥v∗N − Ng∗

1−�
−y


∥∥∥∥≤ �

for N ≥My
��1−����. This means that the convergence of this sequence is as fast as some
nondiscounted value iteration sequence Lkx−kg∗, i.e., it is geometric.

Our next result, Theorem 5.2, indicates that an �-optimal i.s.p. exists whose planning
horizon �� is bounded independently of N . In addition, the turnpike decision rules are gain
optimal for � .
When Condition 3 holds, the right hand side of (4.4) gives us some reason to anticipate

such a result mathematically. If the sequence LkL�v∗N − kg∗ has nearly converged after
� < N steps, then L�L�v∗N approximates an element of V , and a � ∈D∗ exists satisfying

(5.8) L
N−�
� L�L�v∗N ≈ LNL�v∗N �

Hence, decision sequences corresponding to an i.s.p. with planning horizon � are approxi-
mately maximizing in the PTMDP optimality equation.
For (5.8) to be satisfied, we might initially expect to require some condition which bounds

the rate of convergence of the sequence LkL�v∗N − kg∗. Otherwise, since v∗N is a priori
unknown, we cannot be sure that convergence will take place in � < N steps. A virtue of
the analysis that follows is that it does not require any such conditions. Apart from the
state-independence of g∗, Theorem 5.2 requires only Condition 3, the existence of the limit.

Theorem 5.2 (Existence of �-Optimal i.s.p.’s). Assume that Conditions 1 and 3 hold.
Fix � > 0, � ∈ E�y
�, and let �� =My
��1−��2�/2�. Then if N >��, a uniformly �-optimal
i.s.p. exists with planning horizon �� and turnpike decision rule �.

Proof. Fix any � ∈E�y
� and let d� ∈D� satisfy L�y
 = L�
d� y
. Let  be a sequence

of N decision rules whose first N −�� terms are �, and which satisfies LkL�y
 = Lk
L

�
d� y


for 0 ≤ k ≤ ��. Since N > �� =My
��1−��2�/2�, we have from Theorem 5.1 that

v∗N = Ng∗

1−�
+y
+ �̄ ��1−���/2� �

In light of Condition 1, the last equation implies,

(5.9) �LkL�v∗N −Lk
L

�
d� v∗N� ≤ �LkL�y
−Lk

L
�
d� y
�+��1−����

for all 0 ≤ k ≤ N .
For 0 ≤ k ≤ ��, the definition of  implies that the first term on the right-hand side of

(5.9) is zero. Therefore, we deduce that

�LkL�v∗N −Lk
L

�
d� v∗N� ≤ �1−����(5.10)

Furthermore, by our definitions of �� and y
, we have that, for k ≥ ��,

LkL�y
 = �L
L�y
+kg∗ + �̄
(
�1−��2�/2

)
(5.11)

= y
+kg∗ + �̄
(
�1−��2�/2

)

In the particular case where k = ��,

(5.12) L��L�y
 = y
+��g
∗ + �̄

(
�1−��2�/2

)
�
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Hence, for k > ��,

Lk
L

�
d� y
 = L

k−��

� �L��L�y
�(5.13)

= y
+kg∗ + �̄
(
�1−��2�/2

)
�

where the last inequality combines (5.12) with the fact that � ∈ E�y
�. Combining (5.11)
and (5.13), we deduce that

�LkL�y
−Lk
L

�
d� y
� ≤ �1−��2�

for �� < k ≤ N and so (5.9) becomes

�LkL�v∗N −Lk
L

�
d� v∗N� ≤ �1−��2�+��1−���(5.14)

= �1−���

for �� < k ≤ N .
Finally, (5.10) and (5.14) together imply that

(5.15) �LkL�v∗N −Lk
L

�
d� v∗N� ≤ �1−���

for 0 ≤ k ≤ N . By Proposition 4.2, it follows that 	�d�
 is uniformly �-optimal, proving
the theorem. �

The next theorem examines the structure of precisely optimal policies for large N .

Theorem 5.3 (Structure of Optimal Policies). Assume that Conditions 1 and 3
hold. Let �= ��y
�, (with ��·� as defined in (5.1)) and let �0 =My
��1−����. Then if
N > �0, all uniformly optimal cyclo-stationary policies use decision rules in E�y
� on the
first N −�0 fast scale epochs of each slow scale cycle.

Proof. Consider an arbitrary uniformly optimal cyclo-stationary policy 	�d�
. Since
N > �0, then by Theorem 5.1,

(5.16) v∗N = Ng∗

1−�
+y
+ �̄ ��� �

Also, by our definitions of �0 and y
, we have,

LkL�y
 = �L
L�y
+kg∗ + �̄ ��1−����(5.17)

= y
+kg∗ + �̄ ��1−����

for all k ≥ �0. Noting that g∗ is state-independent, (5.16) and (5.17) may be combined to
obtain

LkL�v∗N = LkL�y
+ �Ng∗

1−�
+��̄ ���(5.18)

= y
+
(
k+ �N

1−�

)
g∗ + �̄ ���

for all k ≥ �0. Since
(
k+�N/�1−��

)
g∗ is state-independent, then noting (5.2),

argmax
d∈D

{
rd +Pd�L

kL�v∗N �
}= argmax

d∈D
	rd +Pdy
+ �̄ ���
⊂ E�y
�

for all k ≥ �0. This completes the proof. �
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Theorem 5.3 has the following Corollary:

Corollary 5.4 (Existence of Optimal I.S.P.’s). Assume that Conditions 1 and 3
hold and that E�y
�= 	�
 is a singleton. Let �= ��y
� and let �0 =My
��1−����. Then
if N > �0, a uniformly optimal i.s.p. exists with planning horizon �0 and turnpike decision
rule �.

Proof. Immediate from Theorem 5.3. �

6. Analysis of the state-dependent gain case. In this section, we allow g∗ to be state-
dependent. This case is of interest in applications such as multiple project management
(see Example 1). In these applications, the projects 	� i
mi=1 have optimal gain vectors
	g∗i 


m
i=1. Even when the g∗i are state-independent over Si, the g∗i may be different from one

another, in which case the overall gain g∗ of � will be state-dependent over S.
In the state-independent gain case, we found, in fairly wide generality, that �-optimal

i.s.p.’s exist with gain optimal turnpike decision rules. This lays a foundation for solving
the PTMDP (see §9), with effort comparable to that of solving the fast scale average reward
MDP. The potential behavior of i.s.p.’s in the state-dependent gain case is quite a bit more
varied than the state-independent case. Even in the simplest models, i.s.p.’s with bounded
planning horizons may not be �-optimal. Also, i.s.p.’s may require nonaverage optimal
turnpike decision rules. These phenomena are illustrated in the following examples.
Example 2 (Bounded Planning Horizons Imply N�-Optimality). Consider a

PTMDP with

S = 	1�2
� A1 = 	1�2
� A2 = 	1
� D� = 	d�
� �= 0�8�

fast scale data,

s a r�s� a� p�1�s� a� p�2�s� a�

1
1
2






1
2
1






1
0
0







1
0�5
0

0
0�5
1




and slow scale data

r�d� =
[
0
0

]
� P�

d� =
[

0 1
0�75 0�25

]
�

We shall let � ∈ D denote the decision rule which chooses action 1 in state 1 while � ∈D
will denote the decision rule which chooses action 2. Also, we shall use the notation
seg2�d1�d2���� 0 ≤ � ≤ N to denote the “two-segment” i.s.p. which uses d1 ∈ D for the
first N −� epochs of each slow scale cycle and d2 ∈D for the remaining ones. It is imme-
diate to verify that � is the only gain optimal decision rule and that g∗ = �1 0�T . Hence
Condition 1 does not hold. Since all decision rules are aperiodic Condition 3 does hold.
The optimality equation is v∗N = LNL�

d� v∗N . Since state 2 is absorbing with reward zero
on the fast scale epochs, the optimality equation for state 2 is

v∗N �2�= 0�6v∗N �1�+0�2v∗N �2��

Hence v∗N has the form �c∗N 0�75c∗N �
T . Since all rewards are non-negative, c∗N > 0. Optimal

policies are obtained via the backward induction sequence,
[

c∗N
0�75c∗N

]
= LN

[
0�6c∗N
0�75c∗N

]
�

Initially, � is a maximizing decision rule in this sequence. If at some stage � is maximizing,
it remains maximizing. Therefore, a policy of the form seg2��� ���� is optimal.
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Imitating the above, the value of seg2��� ���� can be expressed as �c
�
N 0�75c�N �

T and
satisfies the fixed point equation,

[
c
�
N

0�75c�N

]
= L

N−�
� L

�
� L

�

[
c
�
N

0�75c�N

]
�

Solving the component equation for state 1, we obtain

(6.1) c
�
N = N −�

0�25+0�15�2−��
�

The optimality problem therefore reduces to finding �∗�N �, which maximizes c
�
N . Opti-

mizing the right-hand side of (6.1) over �, we obtain that �∗�N � is of order log2N and
limN→
 c∗N /N = 4.
We now compare the value of the optimal policy seg2��� ���

∗�N �� with that of an initially
stationary policy seg2��� ���0� having a fixed planning horizon �0. It is sufficient to examine
c∗N − c

�0
N , for which

lim
N→


c∗N − c
�0
N

N
= 4− 1

0�25+0�15�2−�0�
> 0�

Thus, we see that the discrepancy between the optimal value and the value of the i.s.p. with
a bounded planning horizon diverges at a linear rate as N tends to infinity. It is obvious that
the same conclusion holds for seg2������0� since such a policy can only accrue non-zero
rewards on the planning horizon. We conclude, therefore, that an i.s.p. will be N�-optimal,
not �-optimal, if its planning horizon �0 is bounded independently of N .
Remark 7. It can be shown (see Theorem 6.8(b) in Jacobson 1998) that when Condi-

tion 1 does not hold,

lim
N→


∥∥∥∥v
∗
N

N

∥∥∥∥
sp

> 0�

Hence, in the state-dependent gain case, v∗N is asymptotically proportional to N . This means
that, while N�-optimality is inferior to �-optimality, it is still a reasonable approximation
of optimality in a proportional sense.
Example 3 (Turnpike Decision Rules That Are Not Gain Optimal). Consider a

PTMDP with

S= 	1�2�3
� A1 = 	1�2
� A2 = 	1
� A3 = 	1�2
� D� = 	d�
� �= 0�8�

fast scale data,

s a r�s� a� p�1�s� a� p�2�s� a� p�3�s� a�


1
1
2
3
3







1
2
1
1
2







1
0
0
0
−r







1
0�5
0
0
0

0
0�5
1
1
0

0
0
0
0
1




where the parameter r > 0, and slow scale data

r�d� =


0
0
0


 � P�

d� =



0 1 0
0�75 0�25 0
1−� 0 �


 �
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Here 0 < � < 1. We will show that, for N sufficiently large and for certain choices of �
and r , the only (�-)optimal cyclo-stationary policy is an i.s.p. whose turnpike decision rule
is not average optimal. In particular, the turnpike decision rule chooses action 2 in state 3.
Since state 3 cannot be reached when starting in states 1 or 2, the system reduces to that

in Example 2 for these starting states. Consequently, v∗N �1� = c∗N � v
∗
N �2� = 0�75c∗N and the

optimal decisions in states 1 and 2 at all epochs are given by the i.s.p. seg2��� ���
∗� from

Example 2. As for state 3, the optimality equation implies

v∗N = LN � 0�6c∗N 0�75c∗N 0�8c∗N �1−��+0�8�v∗N �3� �
T �

When N > 1, it is clear that there are only two sequences of actions which can attain the
maxima on the right hand side of the last equation for initial state 3. One possible sequence
is to remain in state 3 for all N fast scale epochs and thereby obtain terminal reward
0�8c∗N �1−��+0�8�v∗N �3� at cost rN . The second is to absorb immediately into state 2 and
collect a terminal reward of 0�75c∗N . The only alternative to these two sequences is to absorb
into state 2 after k fast scale epochs where 0 < k < N . Doing so yields the same terminal
reward 0�75c∗N as in the previous case but at cost kr . Hence, it cannot be a maximizing
sequence. The optimality equation for state 3 therefore reduces to

(6.2) v∗N �3�=max	0�75c∗N �0�8c
∗
N �1−��+0�8�v∗N �3�− rN
�

We are interested in the case where only the second argument on the right hand side attains
the maximum. When this is so, staying in state 3 throughout the slow scale cycle is the
only possibility in an optimal cyclo-stationary policy and

(6.3) v∗N �3�=
4�1−��c∗N −5rN

5−4�
�

From (6.2) and (6.3), this will be the case when

v∗N �3�−0�75c∗N = �0�25−��c∗N −5rN
5−4�

> 0�

In our analysis of Example 2, we saw that c∗N is of the order 4N . Hence, upon normalizing
by N and taking N sufficiently large, the last equality becomes,

(6.4) lim
N→


v∗N �3�−0�75c∗N
N

= 1−4�−5r
5−4�

�= ���� r��

For sufficiently small r and �, we have ���� r� > 0. In this case, action 2 is the only
optimal decision in state 3, for N sufficiently large. Also, N���� r� > 0 is approximately
the minimum amount by which non-optimal cyclo-stationary policies are suboptimal. Hence
�-optimality (or even N�-optimality) is possible for arbitrary � ≥ 0 only via an i.s.p. with
a non-average optimal turnpike decision rule. Conversely, when ���� r� < 0, action 1 is
always chosen, implying that a uniform optimal i.s.p. exists with a gain optimal turnpike
decision rule.
Example 2 provides a clue about what can be salvaged from the state-independent gain

case. It shows that i.s.p.’s whose turnpike decision rule is gain optimal and whose planning
horizon is bounded independently of N may still be N�-optimal. Example 3 is a simple
counter-example to this, so it is clear that some specific conditions must hold for this to
be true. We shall see that Conditions 4 and 5 are sufficient conditions. Note that these
conditions depend on the fast scale data only.
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For the remainder of this section, we shall assume that Conditions 4 and 5 hold. Since
Condition 4 holds, the operator

(6.5) �U
x
�= lim

k→

Ukx

is defined for all x ∈ ��S�. By analogy with �L
, convergence of �Ukx− �U
x� to zero is
monotonic and geometric with a rate which depends on x. Also, the range of �U
 is W
and �U
 has all the same properties as the operator U . Accordingly, for every vector x and
every � > 0, we can define

MU�x� ��
�=min

{
k � �Ukx− �U
x� ≤ �

}
�

Since �Ukx− �U
x� converges monotonically, MU�x� �� is the point at which Ukx has
converged within �.
We now introduce the operator Q,

Qx
�= g∗ +� �U
U�x�

which is a contraction mapping on ��S� with respect to �·� with contraction factor �. We
denote its fixed point by x
 and define

Mx
���
�=MU�U

��x
� ��

which will play the same kind of role as My
 in the preceding section.
Our analysis will be aided by the following two propositions.

Proposition 6.1 (Dynamic Programming on Scaled Vectors). Assume that Condi-
tions 4 and 5 hold. Let y0 be a terminal reward vector of the form y0 = Nx0 and fix any
� > 0. Then, the representation,

Lky0 = kg∗ +N� �U
x0+ �̄ ����+ �̄ �c1MU�x0� ���+ �̄ �c2�

holds for all k ≥MU�x0� ��, where c1� c2 are positive constants.

Proof. For brevity, let M =MU�x0� ��. We denote a generic M-horizon policy as  =
	d1�d2� � � � � dM
 and the M-step transition matrix it induces as PM

 . Then,

LMy0 = max


	rd1 +Pd1
rd2 +· · ·+PM

 �Nx0�
(6.6)

= N max


	PM
 x0
+ �̄ �rmaxM�

= NUMx0+ �̄ �rmaxM� �

Recall that rmax is a global bound on the rewards. By the definition of M , we have
UMx0 = �U
x0+ �̄ ���, so that (6.6) becomes

(6.7) LMy0 = N� �U
x0+ �̄ ����+ �̄ �rmaxM� �

Now from the proof in Theorem 9.4.1 in [8] of the boundedness of Lnx−ng∗ we know
that for a certain vector h,

Lnx = rd1 +Pd1
rd2 +· · ·+Pn

x(6.8)

≤ ng∗ +h+Pn
�x−h�
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for any given n and terminal reward vector x. In addition, if we consider the ‘MDP’
consisting of a single average optimal decision rule � ∈ D∗, we may also derive from the
proof the lower bound,

Lnx ≥ Ln
�x(6.9)

= ng∗ +h�+Pn
� �x−h��

where h� is the bias vector of �.
Now, take any k >M and let x = LMy0 and n= k−M . Then (6.8) becomes

Lk−MLMy0 = Lky0

≤ �k−M�g∗ +h+Pn
L

My0−Pn
h�

Upon substituting (6.7), rearranging, and noting that �U
x0 ∈W ,

Lky0 ≤ kg∗ +N�Pn

�U
x0+ �̄ ����+ �̄ �2�h��+ �̄ �2rmaxM�(6.10)

≤ kg∗ +N� �U
x0+ �̄ ����+ �̄ �2�h��+ �̄ �2rmaxM� �

Similarly, (6.9) becomes, once we let �= �, where � is as in Condition 5

Lky0 ≥ kg∗ +N�Pn
�
�U
x0+ �̄ ����+ �̄

(
2�h��

)+ �̄ �2rmaxM�(6.11)

= kg∗ +N� �U
x0+ �̄ ����+ �̄
(
2�h��

)+ �̄ �2rmaxM� �

From (6.10) and (6.11), we deduce that

Lky0− �kg∗ +N �U
x0�= N �̄ ���+ �̄ �c1M�+ �̄ �c2� �

Here, we have taken c2 as a bound on the terms �̄ �2�h�� � �̄ (2�h��
)
and also replaced

2rmax by c1. The conclusions of the theorem are therefore proven. �

The following proposition relates �N �Nx0� to Q.

Proposition 6.2 (PTMDP Dynamic Programming on Scaled Vectors). Assume that
Conditions 4 and 5 hold. Let z0 be a terminal reward vector of the form z0 = Nx0 and fix
any � > 0. Then, if N ≥MU�U

��x0� ��, the representation

(6.12) �N z0 = N�Qx0+ �̄ ����+ �̄ �c1MU�U
��x0� ���+ �̄ �c2�

holds for positive constants c1� c2.

Proof. Observe that

L�z0 = max
d�∈D�

	r�d� +�P�
d� �Nx0�


= N max
d�∈D�

	P�
d� �x0
+ �̄ �rmax�

= NU��x0+ �̄ �rmax� �

By the nonexpansive property of LN , therefore,

�N z0 = LNL�z0(6.13)

= LN �NU��x0�+ �̄ �rmax� �

Invoking Proposition 6.1 on the first term in (6.13), this becomes

�N z0 = Ng∗ +N� �U
U��x0+ �̄ ����+ �̄ �c1MU�U
��x0� ���+ �̄ �c̃2� �

from which (6.12) follows. �
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The next theorem examines the N -dependence of v∗N . It shows that the optimal value v∗N
can be decomposed into an explicit term which is linear in N and a term which is O�logN�.
In contrast to Theorem 5.1, we find that in the state-dependent gain case, the linear term
may depend on both the stationary and slow scale data.

Theorem 6.3 (Asymptotic Behavior of v∗N , State-Dependent Gain). Assume that
Conditions 4 and 5 hold. Then

(6.14) v∗N = Nx
+O�logN��

Proof. Let z0 = Nx
 and �N = 1/N . Since value iteration converges geometrically,
Mx
��N �=Mx
�1/N� is O�logN� and there exists an N0 such that N ≥Mx
��N � for all
N > N0. For all N > N0, the hypotheses of Proposition 6.2 are satisfied and,

�N z0 = N�Qx
+ �̄ ��N ��+ �̄
(
c1Mx
��N �

)+ �̄ �c2�

= Nx
+O�logN��

Now, from Theorem 3.2(a) and the Banach Theorem,

�v∗N − z0� ≤ ��N z0− z0�
1−�

= O�logN�

concluding the proof. �

The following theorem is the main result of this section. It establishes that N�-optimal
i.s.p.’s exist whenever Conditions 4 and 5 hold. Moreover, the turnpike decision rule can be
any � satisfying (3.7) and so can be derived directly from � .

Theorem 6.4 (Existence of N�-Optimal i.s.p.’s). Assume that Conditions 4 and 5
hold. Let � > 0, let �� =Mx
��1−���/4� and let � ∈D∗ satisfy (3.7). Then for all N suf-
ficiently large, a uniform N�-optimal i.s.p. exists with planning horizon �� and turnpike
decision rule �.

Proof. Let N > ��, let �
′ = �1−���/4, and let d� ∈ D� be a decision rule satisfying

U��x
 = U�
d� �x
. Let  denote a sequence of N decision rules whose first N −�� terms

are � and whose remaining terms satisfy Uk
U

�
d� �x
 = UkU��x
 for 0 ≤ k ≤ ��.

By Theorem 6.3,

L�v∗N = max
d�∈D�

	r�d +�P�
d� �Nx
+O�logN��
(6.15)

= N max
d�∈D�

	P�
d� �x

+O�logN�

= NU��x
+O�logN��

Similarly, by the definition of d� ,

(6.16) L�
d� v∗N = NU��x
+O�logN��

From (6.15),

(6.17) LkL�v∗N = Lk�NU��x
�+O�logN��
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Applying Theorem (6.3) yet again gives, for 0≤ k ≤ �� and N sufficiently large,

�LkL�v∗N −Lk
L

�
d� v∗N� ≤ N�UkU��x
−Uk

U
�
d� �x
�(6.18)

+2rmax���+1�+O�logN�

= N�UkU��x
−Uk
U

�
d� �x
�+O�logN�

= 0+ �1−��N��

We have changed the L and L� operators in the first inequality into U and U� operators at
the expense of the term 2rmax���+1�. This term bounds the rewards obtainable in k≤��+1
fast scale epochs. The third equality follows from the definition of .
When k > ��, Proposition 6.1 applies to the first term on the right hand side of (6.17)

which then becomes,

LkL�v∗N = kg∗ +N� �U
U��x
+ �̄ ��′��+ �̄ �c1���+ �̄ �c2�+O�logN�(6.19)

= kg∗ +N �U
U��x
+N �̄ ��′�+O�logN��

Applying L��
 to both sides of (6.16), we have

L��
 L�

d� v∗N = rmax�̄ ����+U��
 �NU��x
�+O�logN�(6.20)

= ��g
∗ +N �U
U��x
+N �̄ ��′�+O�logN��

Reinvoking (6.9) with �= � and incorporating (6.20),

Lk
L

�
d� v∗N = L

k−��
� L��L�v∗N

≥ �k−���g
∗ +h� +Pk−��

� ���g
∗ +N �U
U��x
�

+N �̄ ��′�+O�logN��

Noting Condition 5, this becomes

Lk
L

�
d� v∗N ≥ �k−���g

∗ +h� +��g
∗ +N �U
U��x
+N �̄ ��′�+O�logN�

= kg∗ +N �U
U��x
+N �̄ ��′�+O�logN��

Subtracting this from (6.19) yields

LkL�v∗N −Lk
L

�
d� v∗N ≤ N �̄ ��1−���/2�+O�logN��

and, hence,

(6.21) �LkL�v∗N −Lk
L

�
d� v∗N� ≤ N�1−���

for �� < k ≤ N .
Taking (6.18) and (6.21) together, it is clear from Proposition 4.2 that the i.s.p. 	�d�


is uniformly N�-optimal. This completes the proof. �

Remark 8. Example 2 is an illustration of Theorem 6.4. Since all decision rules are
aperiodic, Condition 4 holds. Furthermore, each state is itself both a Bather class and a
Schweitzer-Federgruen class. Consequently Hypotheses 1 and 2 and, hence, also Condi-
tion 5, hold. The example therefore satisfies the hypotheses of the theorem and not surpris-
ingly an N�-optimal i.s.p. was observed with � = �.
Example 3, meanwhile, is a counter-illustration showing what can happen when Con-

dition 5 does not hold. The reader will observe that, in this example, the vector
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w = �1 1 0�T ∈W . However, there is no gain optimal � satisfying (3.7) for this w. Hence,
in contrast to Theorem 6.4, an i.s.p. with a gain optimal turnpike decision rule, may or may
not exist, depending on the slow scale data.
Remark 9. Theorem 6.4 is also applicable to any multiple project management problem

(see Example 1) for which the MDPs 	� i
mi=1 are all weakly communicating and aperiodic.
Here again, aperiodicity implies Condition 4. Since the �i are weakly communicating,
Hypothesis 3, and hence Condition 5, holds as discussed in §3.5. The hypotheses of the
theorem are therefore satisfied. The existence of an approximately optimal i.s.p. shows
that decisions may be made in a routine, stationary manner for the first part of each slow
scale cycle. Toward the end, a planning horizon would be reached during which alternative
decision rules would be used, perhaps to close the current project and prepare for a new one.

7. �-Optimality in the state-dependent gain case. In Example 2, we observed that the
i.s.p. seg2��� ���

∗�N �� is uniformly optimal and �∗�N � is of order log2N . This suggests
that one might still be able to obtain �-optimal i.s.p.’s in the state-dependent gain case when
the planning horizon is an increasing, unbounded function of N . In addition, one might
hope that, as in the example,

(7.1) lim
N→


�∗�N �

N
= 0�

If so, the planning horizon would be a very small fraction of the slow scale cycle length
for sufficiently large N . Initially stationary policies would then have the same benefits as
in the constant gain case.
Conditions for the existence of �-optimal i.s.p.’s in the state-dependent gain case were

established in Theorem B.5 in Jacobson (1998) for a history-dependent variant of the
PTMDP model considered here. The analysis easily generalizes to PTMDPs. In particular,
when Hypothesis 3 holds (or alternatively Hypotheses 1 and 2) and the PTMDP is ape-
riodic, �-optimal i.s.p.’s do exist with planning horizons satisfying (7.1). Multiple project
management problems with aperiodic, weakly communicating MDPs �i therefore satisfy
the appropriate conditions (see also Remark 9). At this time, we believe the results can be
obtained under still weaker conditions and will consider this topic further in future work.

8. Fully stationary fast scale decision-making. It is natural to wonder what would
occur if a single decision rule, �, were used at all fast scale epochs. This is perhaps the clos-
est analogue to a stationary policy from the standard theory of time-homogeneous MDPs.
Since the PTMDP has a nearly time-homogeneous structure when N is large (perturbed
only by infrequently occurring slow scale decision epochs), one might wish to know how
sub-optimal such decision-making would be in a “nearly time-homogeneous” decision pro-
cess such as a PTMDP.
Basic bounds on the degree of sub-optimality can of course be obtained from

Proposition 4.2. Certain insights can also be made by applying Theorem 5.1 in the state-
independent gain case and Theorem 6.3 in the state-dependent gain case. Theorem 5.1 says
that the optimal value is asymptotically like Ng∗/�1−��+ y
. If one restricts the policy
space to those that use a gain optimal � at all fast scale epochs, then the corresponding opti-
mal value has the asymptotic form Ng∗/�1−��+y�, where y� is a modification of y
. The
asymptotic difference is y
−y�. Using Theorem 6.3 in a similar way in the state-dependent
case, one finds that the asymptotic degree of sub-optimality is N�x
−x��+O�logN�.

9. Approaches to policy computation. In Jacobson (1998), generic procedures are
suggested for solving the discounted optimality problem for a very similar model to that
dealt with here. In this section, we summarize the main points for the model presently
considered, and refer the reader to Jacobson (1998) for a more detailed discussion of the
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practical issues. In addition, we wish to emphasize that specific insights into the structure
of the problem at hand often lead to more efficient solutions than generic procedures.
For the state-independent gain case, observe that, if y
 is known up to an additive state-

independent vector c1, then My
�·�,��y
� and E�y
�, which appear throughout the analysis
of §5, can all be explicitly computed. Accordingly, the i.s.p.’s described in Theorem 5.2
and Corollary 5.4 can be explicitly computed. One situation where it is possible to know
y
 up to a state-independent vector is when Condition 2 holds. One can then determine
a solution v0 ∈ V to the average optimality equations using, say, policy iteration. Since
y
 ∈ V , it follows from Condition 2 that v0 and y
 will differ by some c1. In this case,
one can therefore solve the discounted PTMDP optimality problem with the same order of
computational effort as when solving the fast scale average reward MDP.
When y
 is not known up to an additive state-independent vector, one may try to

approximate it by computing the sequence 	v∗n−ng∗/�1−��

n=1. Recall from Theorem 5.1
and Remark 6, that this sequence converges to y
 at a geometric rate. To compute the
sequence, one can obtain approximations to each v∗n by iterating the corresponding con-
traction operator �n, while g∗ can be obtained in a pre-analysis of the fast scale MDP. If
v∗n0 −n0g

∗/�1−�� yields a sufficiently accurate approximation of y
 (stopping criteria are
suggested in Section 7.5 of Jacobson 1998) and N � n0, then this approach is more efficient
than the brute force approach of computing v∗N −Ng∗/�1−��.
For the state-dependent gain case, the i.s.p. of Theorem 6.4 can be explicitly computed

if x
 is known a priori (by analogy with y
). Otherwise, one can again try to iteratively
approximate x
. An approach to approximating x
 suggested in Jacobson (1998) makes
use of the operators

Qjx
�= g∗ +�U jU�x� j = 1�2� � � �

which are contraction mappings, similar to the Q operator. It can be established
(see Theorem 8.21 in Jacobson 1998) that the sequence of fixed points xj of Qj converges
to x
 at a geometric rate. Approximates to each xj can be obtained by iterating the corre-
sponding Qj operator.

10. Conclusions. We have introduced a time-inhomogeneous Markov Decision Process
model, called a PTMDP, for which we have formulated a discounted optimality problem.
Under assumptions on the PTMDP’s time-homogeneous, fast scale data alone, we have
found that approximately optimal policies exist that exhibit turnpike-like behavior. These
so-called initially stationary policies have turnpike decision rules that are gain optimal.
Furthermore, the size of their planning horizon is independent of N . For large N , this
constitutes a substantial simplification in structure as compared to more general policies.
In the course of our analysis, we also characterized the form of the optimal value vector
(see Theorems 5.1 and 6.3).
In the case where the fast scale MDP had state-independent gain, �-optimal i.s.p.’s exist

under fairly weak assumptions. Beyond the assumption of state-independent gain itself, we
have applied Condition 3. However, this mainly simplifies the presentation of our analysis.
When Condition 3 does not hold, generalizations of our analysis that account for periodicity
effects are possible, although trite. When Condition 2, a condition of common interest in
the literature, is applied, an �-optimal i.s.p. can be explicitly computed with minimal effort.
More complicated procedures are necessary when Condition 2 does not hold.
In the case where the fast scale MDP had state-dependent gain, we imposed Conditions 4

and 5. The latter condition is not a general one, however, it does hold in certain applications
of interest, such as multiple project management problems. Under these conditions, i.s.p.’s
with the same structural properties as in the state-independent gain case were shown to exist.
However, these i.s.p.’s were N�-optimal rather than �-optimal. This scaled �-optimality is
reasonable, however, since the optimal value also scales with N .
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It has been shown in related work that �-optimal i.s.p.’s are possible in the state-dependent
gain case by letting the planning horizon grow as a function of N . Sufficient conditions for
this are satisfied by certain multiple project management problems whose projects can be
modeled by aperiodic, weakly communicating MDPs. In future work, we will attempt to
find still weaker sufficient conditions.
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