
International Journal of Computer Vision 51(3), 219–238, 2003
c© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Velocity-Guided Tracking of Deformable Contours
in Three Dimensional Space

REUVEN ZARITSKY
Department of Electrical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel

NATAN PETERFREUND
Harmonic Inc., and Center for Engineering Science Advanced Research, Oak Ridge National Laboratory,

Oak Ridge, TN 37831-6355, USA
v4p@ornl.gov

NAHUM SHIMKIN
Department of Electrical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel

shimkin@ee.technion.ac.il

Received February 14, 2000; Revised January 10, 2002; Accepted September 20, 2002

Abstract. This paper presents a 3D active contour model for boundary detection and tracking of non-rigid objects,
which applies stereo vision and motion analysis to the class of energy-minimizing deformable contour models,
known as snakes. The proposed contour evolves in three-dimensional space in reaction to a 3D potential function,
which is derived by projecting the contour onto the 2D stereo images. The potential function is augmented by a
kinetic term, which is related to the velocity field along the contour. This term is used to guide the inter-image
contour displacement. The incorporation of inter-frame velocity estimates in the tracking algorithm is especially
important for contours which evolve in 3D space, where the added freedom of motion can easily result in loss of
tracking. The proposed scheme incorporates local velocity information seamlessly in the snake model, with little
computational overhead, and does not require exogenous computation of the optical flow or related quantities in
each image. The resulting algorithm is shown to provide good tracking performance with only one iteration per
frame, which provides a considerable advantage for real time operation.
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1. Introduction

Deformable contours have emerged in the last decade
as a major tool for low level vision functions, in-
cluding edge detection, segmentation, and tracking
of non-rigid objects. Boundary detection and track-
ing based on deformable planar contours, known as
snakes, were introduced in Kass et al. (1987). Energy-
minimizing active contours are deformable contours
that evolve under the influence of image-induced

potential, subject to certain internal deformation con-
straints. The contour dynamics may be specified by
the Euler-Lagrange equations of motion associated
with the contour potential. Using the image gradi-
ent as the potential function, for example, results
in edge-seeking forces, leading the contour towards
high contrast boundaries. Many variations and ex-
tensions of the original snake model have been re-
ported in recent literature, see Blake and Yuille (1992),
McInerney and Terzopoulos (1996), Blake and Isard
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(1998), Jain et al. (1998), Sapiro (2001) and references
therein.

In this paper we present an active contour model in
three-dimensional space, which is used for temporal
tracking of the contour of moving objects based on
stereo image sequences.

Contour tracking in a sequence of images may be
simply performed by initializing the snake at each
new image according its final position in the previ-
ous frame. A significant improvement can be obtained
by incorporating a predictive step, which uses inter-
frame velocity estimates to enhance the initial posi-
tioning. By positioning the snake closer to the actual
object boundary, one obtains improved convergence
and reduced likelihood of trapping in local minima.
The required velocity estimates may be obtained by
extrapolating the contour motion from previous im-
ages, using Kalman filtering or related methods; see
e.g. Terzopoulos and Szeliski (1992) and Blake and
Isard (1998). Another approach, more relevant to the
present study, is to extract an estimate of local or global
velocity from two consecutive images. In Bascle and
Deriche (1993a). the authors use correlation and rigid
motion models to estimate the global motion of the
object between the two frames. Several papers (in-
cluding Caselles and Coll 1996; Bascle et al., 1994;
Berger et al., 1995) propose an explicit calculation of
the local velocity field along the detected contour us-
ing optical flow methods. A related idea (Paragios and
Deriche, 2000) is to use a potential term related to the
temporal difference between images, in order to focus
the tracking contour on regions of temporal change,
as an indicative of object motion against a stationary
background. In Bertalmio et al. (2000), two coupled
PDEs deform one image into the other, while the de-
rived velocity is used to transform the curve to its new
position.

Recently, an integrated spatio-temporal snake model
was proposed for 2D contour tracking in combined
spatio-velocity space (Peterfreund, 1999). This veloc-
ity snake uses the optical flow constraints in order to
propagate the contour in the direction of the local ve-
locity field. Explicit computation of the optical flow is
avoided by incorporating the flow constraint equation
directly into the snake dynamics equations. The the-
oretical improvement in tracking performance of this
model was demonstrated in Peterfreund (1997), which
showed in a continuous time setting that zero track-
ing error is obtained for boundaries moving at a con-
stant velocity. The present paper generalizes these ideas

to 3D contour tracking of shape and motion in stereo
images.

Deformable contours are well suited for stereo
matching, as they can perform simultaneously the two
tasks of feature detection and correspondence. This was
originally realized in Kass et al. (1987), which proposes
to use different 2D contours in each of the stereo im-
ages, coupled by a stereo disparity smoothness term
in their respective potential functionals. A deformable
spline model for stereo matching that evolves in 3D was
proposed in Bascle and Deriche (1993b), which em-
ploys an additive potential function based on the pro-
jections of the curve on each image. A similar stereo-
scopic potential was previously used in Terzopoulos
et al. (1988) in the context of a deformable surface
model. A similar idea will be employed in the tracking
scheme proposed here. In Cham and Cipolla (1997), the
authors propose an affine epipolar geometry scheme
for coupling pairs of active contours in stereo images
to enhance stereo tracking of 3D objects. Deriche et
al. (1998) use stereo vision and geodesic active con-
tours to trace 2D planar curves that lie at the inter-
section of the observed scene with a given plane in
3D space.

The related topic of deformable surfaces has been
addressed, e.g., in Caselles et al. (1997) and Faugeras
and Keriven (1999). While these models may be
applied to three-dimensional object tracking, they
may be too expensive computationally for real time
operation.

The active contour model proposed here is a pa-
rameterized curve which evolves in three-dimensional
space under the influence of a three-dimensional po-
tential function. The 3D potential function is obtained
by first projecting the 3D point unto the respective im-
age planes, and then combining the two image poten-
tials at the respective projected points. The 3D poten-
tial is essentially obtained by combining the two image
potentials, evaluated at the projections of a 3D point
unto the respective image planes. The basic potential
we consider is the additive one, augmented with cer-
tain normalization factors that compensate for differ-
ent sensitivities along the spatial axes. Furthermore, we
examine in a theoretical framework certain properties
and variations of the 3D potential function. To enhance
tracking performance, the snake model is augmented by
a velocity term related to the optical flow in each of the
images. This term provides an additional force which
approximately guides the snake contour along the ac-
tual contour motion. The resulting dynamic equation
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of the tracking contour is realized in discrete time and
space. In the discretized version, the velocity terms
are employed in the first iteration of each new frame,
possibly followed by additional potential-guided
iterations. Even with a single iteration step per frame,
the algorithm provides good tracking of realistic mo-
tion at video rate.

The underlying snake model in this paper is the clas-
sical energy-minimizing model, which evolves accord-
ing to Newtonian dynamics. Recent work has advanced
the so-called geodesic active contours, that utilize geo-
metric curve evolution techniques, and enjoy important
advantages (Kichenassami et al., 1996; Caselles et al.,
1997; Sapiro, 2001). Contrary to these models, how-
ever, the classical snake preserves the curve parame-
terization (i.e., the identity of individual points) over
subsequent iterations. This facilitates a natural incor-
poration of inter-frame velocities in the model. Further-
more, the linear evolution of the classical snake allows
a relatively large step size, which is used to advantage
in this work.

The proposed algorithm is easily scalable to more
than two cameras, as well as to general geomet-
ric configurations, simply by considering the appro-
priate projections of the contour onto each image
plane. We assume that the cameras are fully calibrated.
Clearly, calibration errors will lead to errors in the spa-
tial position estimates similar to the standard stereo
problem.

The rest of the paper is organized as follows. In the
next section we briefly review the velocity snake model
in two dimensions. The three-dimensional model is pre-
sented in Section 3, followed by a brief investigation of
the 3D potential and its properties in Section 4. Section
5 discusses some implementation considerations. The
experimental results are presented in Section 6, fol-
lowed by our concluding remarks.

2. Review of the 2D Velocity Snake

We start with a brief review of the two-dimensional
velocity snake, introduced in Peterfreund (1999). Con-
sider the collection {c(·, t)} of closed contours with co-
ordinates c(s, t) = (x(s, t), y(s, t))T , where s ∈ [0, 1]
is the position parameter and t ∈ [0, ∞) a time pa-
rameter. As is usual we start out with continuous time
and space parameters, the transition to an actual im-
age sequence will be carried out through discretiza-
tion and finite difference approximations. The snake
Lagrangian, as presented in Terzopoulos and Szeliski

(1992), is given by:

L = 1

2

∫ 1

0
µ(s)|ct |2 ds − 1

2

∫ 1

0
(w1(s)|cs |2

+ w2(s)|css |2) ds − 1

2

∫ 1

0
p(c, t) ds, (1)

where cx denotes the partial derivative with respect
to the variable x , and the dependence of c on (s, t)
is suppressed in our notation. The first term in the
Lagrangian is the kinetic energy, where µ(s) is inter-
preted as the mass density of the snake at position s.
The second term defines the internal deformation en-
ergy where w1(s) controls the tension and w2(s) con-
trols the rigidity of the snake at s. The third term is
the potential energy of the snake, associated with an
image-induced potential function. The potential may
be derived from a single (fixed) image, in which case
the snake will converge to a static shape, or it may be
derived from a temporal sequence of images for track-
ing purposes. In the latter case the potential becomes
a function of time. In this paper, we shall consider
for concreteness the common case of an edge seeking
potential:

p(x, y, t) = −k‖∇ (Gσ ∗ I (x, y, t))‖, (2)

which attracts the snake contour to to the image edges.
I (x, y, t) denotes the brightness of pixel (x, y) in the
image at time t , Gσ denotes a Gaussian smoothing filter
with variance σ , ∇ is the position gradient (considered
as a column vector), and ‖ · ‖ is the Euclidean norm.
For additional potential terms which may be useful for
tracking see, e.g., Paragios and Deriche (1999). Note
that we use the same time variable for the snake evolu-
tion and the image sequence.

The Lagrangian (1) is complemented by an energy
dissipation function which accounts for the effect of
nonconservative forces. For the velocity snake this
function is defined as

D = γ

2

∫ 1

0
‖LT (ct − vb)‖2ds + β

2

∫ 1

0

∥∥∥∥ ∂

∂s
ct

∥∥∥∥
2

ds

(3)

where L is a weight vector, and γ , β are positive con-
stants. vb = vb(s, t) is a “reference velocity” term,
which ideally should equal the velocity of the tracked
boundary; the actual choice will be specified below.
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The related term can be interpreted as a viscous fric-
tion of the snake (moving at velocity ct ) against a
background moving with velocity vb. The second term
represents a motion smoothness constraint. With the
Lagrangian (1) and the dissipation function (3), the
Euler-Lagrange equation of motion of the velocity
snake is

µ(s)ctt + γ d(ct , v
b) − β

∂

∂s

(
∂

∂s
ct

)

− ∂

∂s
(w1cs) + ∂2

∂s2
(w2css) = −∇ p(c, t) (4)

where d(ct , v
b) = L LT (ct − vb). Here and in the re-

mainder of this paper we assume that the tension and
rigidity parameters w1 and w2 are constant and do not
depend on the position parameter s. The five terms
on the left hand side stand, respectively, for the snake
inertia; the exogenous velocity constraint; a temporal
smoothness constraint; and spatial tension and rigidity
terms. The potential gradient term provides attractive
forces to desired features in the image, in our case to
image edges.

Since the object’s boundary velocity vb is unknown,
we use instead the apparent velocity (or optical flow)
vo of the image at the current contour position. This
relies on the assumption that the contour is sufficiently
close to the object’s boundary. Moreover, an explicit
calculation of the apparent motion field is avoided by
an appropriate choice of the weight matrix L , which
we define as L

�= ∇ I (c(s, t), t). With this choice, the
kinetic term in (4) becomes

d(ct , v
b) ∼= d(ct , v

o) = ∇ I ∇ I T (ct − vo)

= ∇ I (∇ I T ct + It ) , (5)

where the last equality follows from the optical flow
equation (Horn, 1986),

∇ I (x, y, t)T vo + It (x, y, t) = 0 . (6)

Substituting (5) into (4) we obtain the velocity snake
equation:

µ(s)ctt + γ∇ I (∇ I T ct + It ) − β
∂

∂s

(
∂

∂s
ct

)

− ∂

∂s
(w1cs) + ∂2

∂s2
(w2css) = −∇ p(c, t) . (7)

Apparently, this equation does not require an explicit
calculation of the velocity field vo.

3. The 3D Velocity Snake Model

Given a sequence of stereo images, we extend here the
two-dimensional velocity snake to object tracking in
three spatial dimensions. This model requires a 3D po-
tential function, which is extracted from the two stereo
images by appropriate projections. The velocity term
which serves to improve tracking performance across
subsequent images will be defined based on the ap-
parent motion in the image pair. We start with a brief
definition of the relevant projection operations. The 3D
tracking model will then be derived.

3.1. 3D Projections

We assume the general stereo camera configuration de-
scribed in Fig. 1. Let M = (X, Y, Z )T denote a 3D
space point in some fixed Cartesian coordinate frame,
and let m� = (x�, y�)T and mr = (xr , yr )T denote
the image coordinates in the “left” and “right” retinal
image planes, respectively. We assume that the follow-
ing transformations from world coordinates to image
coordinates are available:

mk = Dk(M) , k = �, r. (8)

Further, let

ṁk = Hk(M)Ṁ (9)

denote the relation between a velocity vector Ṁ and its
projection ṁk on image k, with Hk = ∂ Dk

∂ M .

Figure 1. The stereo camera configuration. The focal planes
(Xk , Yk ) are parallel to the retinal planes (xk , yk ). f is the focal
length of each camera.
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For concreteness, let us specify the standard
equations for perspective projection. Let Mk =
(Xk, Yk, Zk)T , k = �, r , denote the world coordinate
systems attached to the left and right cameras, respec-
tively, each with its origin at the focal point and the
(X, Y ) plane parallel with the image plane (see Fig. 1).
Let Rk be a rotation matrix and bk a translation vectors
such that

Mk = Rk M + bk, k = �, r. (10)

Under perspective projection, the point Mk projects
onto the image point mk = (xk, yk)T according to

xk = Xk

Zk
f, yk = Yk

Zk
f, (11)

where f denotes the focal length of the camera. (We
use for simplicity identical focal lengths in the two
cameras. This can always be obtained by a simple nor-
malization of the image coordinates.) Combining these
relations, we have

mk = f

Zk

[
Xk

Yk

]
�= Dk(M), k = �, r. (12)

Differentiating Eq. (12) with respect to time, we obtain
(9) with

Hk = ∂mk

∂ Mk

∂ Mk

∂ M
=




f
Zk

0 − Xk

Z2
k

f

0 f
Zk

− Yk

Z2
k

f


Rk . (13)

In our experiments we shall use the basic stereo con-
figuration where two identical cameras share the same
orientation, and are separated a distance b > 0 along
the x axes. The coordinate system M is placed in the
midpoint between the two camera coordinate systems.
Referring to (10), we have in this case

R� = Rr = I

b� =
[+ b

2

0

]
br =

[− b
2

0

]
(14)

where I denotes the identity matrix.

3.2. The Tracking Model

We define the snake at time t as a 3D paramet-
ric curve C(s, t) in Cartesian coordinates, C(s, t) =

[X (s, t), Y (s, t), Z (s, t)], where s ∈ [0, 1]. The cor-
responding Lagrangian is defined, similarly to the 2D
case, as:

L = 1

2

∫ 1

0
µ|Ct |2 ds

− 1

2

∫ 1

0
(w1|Cs |2 + w2|Css|2) ds

− 1

2

∫ 1

0
P(C, t) ds. (15)

The first term of this equation is the 3D kinetic energy,
the second term defines the internal deformation energy
of the snake, where w1 controls the tension and w2

controls the rigidity. Note that we omit in this model
the torsion term (which exists in three dimensions, but
not in two) in order to simplify the resulting equations.
Our experiments have indicated that this term does not
contribute to tracking performance.

The third term in Eq. (15) is the potential energy
of the contour, which needs to be computed based
on the stereo image pair. As the contour C is three-
dimensional, the potential field P needs to be defined
in three dimensional space. This 3D potential energy is
obtained by first projecting the contour unto each im-
age, and then combining the pair of two-dimensional
potentials that are obtained in an image plane to form
a single potential function. Thus

P(M) = G(p�(m�), pr (mr )), (16)

where m� = D�(M) and mr = Dr (M) are the projec-
tions of the point M onto image coordinates, as defined
in (8). The potentials p� and pr are two-dimensional
image potentials defined over the respective images,
e.g. as in (2). G is an appropriate potential fusion func-
tion, that combines the two image potentials into a spa-
tial potential.

The desired effect of this potential is to move the 3D
contour so that its projections are attracted to relevant
image features, such as image edges. The most obvious
way to combine the two image potentials is a simple
addition:

P(M) = p�(m�) + pr (mr ). (17)

Discussion of other alternatives and desirable prop-
erties of the potential function will be postponed to
Section 4.
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In analogy with the 2D case we propose the follow-
ing 3D dissipation function:

D(Ct , V b) = γ

2

∫ 1

0

∥∥LT
� (Ct − V b)

∥∥2
ds

+ γ

2

∫ 1

0

∥∥LT
r (Ct − V b)

∥∥2
ds

+ β

2

∫ 1

0

∥∥∥∥ ∂

∂s
Ct

∥∥∥∥
2

ds (18)

where γ and β are positive scalars, V b = V b(C(s, t))
denotes an exogenous estimate of the 3D boundary ve-
locity that corresponds to the snake point C(s, t), and
L� and Lr are real matrices which will later be de-
fined as functions of the left and right image data. The
third term represents a smoothness constraint. The first
two terms give rise to a velocity-induced force in 3D
space. In the following we show how these terms may
be applied without an explicit computation of V b.

Given the Lagrangian (15) and the dissipation func-
tion (18), the Euler-Lagrange equations of motion are:

µCtt + γ (d�(Ct , V b) + dr (Ct , V b)) − β
∂

∂s

(
∂

∂s
Ct

)

− ∂

∂s
(w1Cs) + ∂2

∂s2
(w2Css) = −∇ P (C(s, t), t)

(19)

where:

dk(Ct , V b) = Lk LT
k (Ct − V b), k = �, r.

An explicit calculation of the 3D object velocity V b

is obviously a demanding task. This may be avoided
by defining the following image dependent weight ma-
trices: LT

� = ∇ I T
� H� and LT

r = ∇ I T
r Hr , where H�

and Hr are the projection matrices in (9) and I� and Ir

are the left and right image grey-scale intensities. This
gives:

dk(Ct , V b) = H T
k ∇ Ik

(∇ I T
k HkCt − ∇ I T

k Hk V b
)
,

k = �, r. (20)

The quantity vb
k = Hk V b is the projected boundary

velocity onto image k. We may approximate vb
k by the

apparent motion vo
k of image k at the projected snake

position. Using the optical flow constraint Eq. (6) for
each image, the related term reduces to ∇ I T

k Hk V b ∼=

∇ I T
k vo

k = −(Ik)t . Now (20) becomes:

dk(Ct , V b) = H T
k ∇ Ik

(∇ I T
k HkCt + (Ik)t

)
, k = �, r.

(21)

The resulting Euler-Lagrange equation given by (19)
and (21) is easily implemented by direct discretization,
as discussed in Section 5.

4. Potential Shaping

We consider in this section the 3D potential function
P(M) that was defined in (16) as a combination of the
two image potentials. Several properties and synthesis
options will be elaborated. In the next subsection we
consider the general potential of this form under the
natural requirement of monotonicity of the combined
potential in each of its components, and discuss the
relation between minima of the image potentials and
minima of the combined potential, both for points and
for 3D curves. We then compare two specific poten-
tial functions, the additive and the multiplicative ones.
Some practical considerations that raise the need for
normalization along the Z axis for the additive poten-
tial are treated in Section 4.3. In the final part of this
section we consider some mathematical criteria for se-
lection of potential functions (or their gradients).

4.1. Preservation of Local Minima

We consider a potential function of the form (16),
namely

P(M) = G(p�(m�), pr (mr )). (22)

Recall that the potential field pulls the 3D snake in the
direction of decreasing potential. Obviously, it is de-
sirable that the induced motion of the projected image
curves would be in the direction of decreasing image
potentials. In particular, a natural requirement for the
3D potential is to inherit the minima of the image po-
tentials: that is, the (local) minima of the 3D potential
function should correspond to simultaneous minima
of the two image potentials. We show that this is in-
deed the case provided only that the potential fusion
function is increasing in each of its variables. We then
discuss a similar minima-preservation property for 3D
curves, and show that it holds provided the image gra-
dient along each projected curve is small.
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We assume henceforth that the two image potentials
p� and pr are smooth (i.e., continuously differentiable),
and that the projection operators D� and Dr of (8) are
uniformly continuous over the domain of interest. We
further assume that the stereo configuration is not de-
generate, in the sense that each pair (m�, mr ) of image
points can correspond to at most one point M ; that is,
the map (D�, Dr ) is injective. We further assume that
the potential fusion function G is smooth.

In the following, the term minimum refers to a strict
local minimum: f (x∗) > f (x) for all points x �= x∗

in some neighborhood of x∗. A weak minimum refers
to the weak local minimum ( f (x∗) ≥ f (x) in some
neighborhood).

Claim 1. Suppose that the potential fusion function
G(·, ·) is strictly increasing in each of its variables. If a
point M satisfies that mk = Dk(M) is a (weak) mini-
mum of pk for k = �, r , then M is a (weak) minimum
of P .

The proof is simple: For M ′ �= M close enough to M
we have that (m ′

�, m ′
r ) is close to (m�, mr ), and since

each mk is a local minimum then pk(m ′
k) ≥ pk(mk).

Further, as the map (D�, Dr ) is injective by assumption,
then (m ′

�, m ′
r ) �= (m�, mr ), so that pk(m ′

k) > pk(mk)
for at least one k. But since G is increasing in each
variable, then G(m ′

�, m ′
r ) > G(m�, mr ). A similar ar-

gument holds for weak minima. We note that this claim
holds also with respect to the global minima.

We next turn our attention to minimal curves. A
smooth 3D curve C = {C(s), s ∈ (0, 1)} is mini-
mal with respect to a potential P(M) if, for each s,
C(s) minimizes P in the plane perpendicular to C at
s. The definition is similar for a 2D curve, except that
the perpendicular here is a line rather than a plane. A
minimal curve can be viewed as lying at the bottom of
a potential “valley”, with gradients allowed in the di-
rection of the curve but not perpendicularly to it. Note
that the definition is intrinsic, as it does not depend on
the curve parameterization.

The next question to be posed is then: Consider a 3D
curve C so that each of its projections ck onto image
k is a minimal curve with respect to the image poten-
tial pk , k = �, r . Does this imply that C is minimal
with respect to the combined P? The answer here is
negative. The reason is, essentially, that the projection
operators do not preserve perpendicularity relations be-
tween vectors. What we do have is the following weaker
property.

Claim 2. Suppose that the potential fusion function
G(·, ·) is strictly increasing in each of its variables.
Let C be a 3D curve so that each of its projections
ck , k = �, r onto image k is a minimal curve with
respect to the image potential pk . Suppose further
that the respective potential gradient along each curve
ck is null. Then the curve C is minimal with respect
to P .

This property may be verified similarly to the point-
minima claim, coupled with the uniqueness of the pro-
jections. Indeed, it immediately follows from Claim 1
that each point C(s) is a weak local minimum of P . It
remains to show that C(s) is a strict minimum in the
perpendicular plane. Observe first that the tangent to C
at C(s) is projected as a tangent to ck at ck(s), for both
k = �, r . By our injective assumption of the projection
operators, no other vector can have that property. Thus,
if V is a vector perpendicular to C at C(s), then at least
one of its projections vk , k = �, r will have a compo-
nent perpendicular to Ck at Ck(s). Thus, at least one pk

is strictly increasing in direction vk (while the other is
non-decreasing). The assumed strict monotonicity of
G now implies that P is indeed strictly increasing in
the perpendicular direction V .

Based on this observation, it is to be expected that
when the potential gradients along the projected curves
are small, then approximate minimality of the 3D curve
will be maintained.

4.2. Additive vs. Multiplicative Potentials

We next compare two specific choices for the 3D po-
tential (22). One is the basic additive potential (17).
While this may be the most straightforward, other rea-
sonable choices exist. An example is the multiplicative
potential

P = −α
√

p� pr (23)

(the image potentials are assumed here to be negative,
in accordance with (2)). Let us briefly discuss and com-
pare the properties of the two potentials mentioned.

Figures 2 and 3 provide an illustration of these two
potential functions. We use a synthetic stereo image
pair of a 3D cube given in Fig. 2. The stereo configura-
tion is the basic one described in (14), with two parallel
cameras separated a distance b along the x direction.
Figure 3 shows the values of the potential functions
(17) and (23) over the plane Y = 0, as functions of
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Figure 2. The synthetic 3D cube geometry (top), and the computed stereo-image pair of this cube.

the 3D coordinates X and Z . Note that the absolute
value of the potential is shown, so that minima of the
potential correspond to maxima in these figures; we
shall refer in the following discussion to the magni-
tude of the potential. Both functions are seen to have
four major local maxima, at the approximate (X, Z ) co-
ordinate locations {(−25, 500), (−10, 480), (10, 480),
(25, 500)}, corresponding to the true locations of the
four cube edges intersecting Y = 0. Some additional
local maxima, e.g. at (−20, 620), are formed through
false correspondence of different edges in the two im-
ages. To compare the two potentials, consider the addi-

tive potential (17) first. According to Fig. 3, each of the
four true maxima is formed by the intersection of two
“ridges”, each contributed by the the potential energy
term of a single image. The ridge is formed along the
epipolar line intersecting the image at the object’s edge,
and due to the additive nature of this potential it leads to
a considerable magnitude of the overall potential (and
possible local maxima) even off the intersection with
the other ridge. These spurious maxima disappear in
the case of the multiplicative potential function (23),
as illustrated in right hand side of Fig. 3, where the po-
tential will be small whenever one of its components
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Figure 3. The additive (left) and multiplicative (right) potential functions of the stereo-pair in Fig. 2 along the coordinate Y = 0, as a function
of the 3D coordinates X and Z . The magnitude (absolute value) of the potential is depicted.

is small. While this quenching of the potential off the
intersection points seems to lead to a smoother func-
tion and possibly decrease the chances of entrapment in
local extrema, the additive potential may posses some
advantage when the deformable contour is far from the
desired position as the information provided from one
image can guide it to the correct position. Moreover,
in the presence of partial occlusion in one image of
the stereo-pair, the additive potential provides partial
support for tracking based on the contribution of a sin-
gle image to the potential field, while the multiplica-
tive potential field is nulled. In the experiments per-
formed so far within this research fairly close tracking
was maintained, and the two potentials yielded similar
performance.

4.3. Z-Axis Normalization

A major problem that was observed in the initial model
simulations was the asymmetric response of the snake
in the different space directions, which severely dis-
torted the snake and degraded tracking performance.
In particular, larger motions were observed along the
normal (Z ) direction. This effect may be attributed to
the different sensitivity of the projected points to mo-
tions of the spatial point in the different directions.
We will propose here a certain normalization of the
potential that offsets this problem. For simplicity we
relate here to the additive 3D potential (17), and the ba-
sic stereo configuration of parallel cameras, described
by (14).

Recall that the 3D snake is driven by a force which
equals the potential gradient (Eq. (19)). Let us relate
the spatial gradients in the 3 spatial directions to the
image potentials. First,

∇ P(M) = ∇(p�(D�(M))) + ∇(pr (Dr (M)))

= H�(M)T ∇ p�(m�) + Hr (M)T ∇ pr (mr ).

(24)

Written explicitly, with Hk as in (13) and (14), this
gives

∂ P

∂ X
= f

Z

(
∂p�

∂x�

+ ∂pr

∂xr

)

∂ P

∂Y
= f

Z

(
∂p�

∂y�

+ ∂pr

∂yr

)

∂ P

∂ Z
= − 1

Z

(
x�

∂p�

∂x�

+ xr
∂pr

∂xr
+ y

∂p�

∂y�

+ y
∂pr

∂yr

)

where y = y� = yr . Comparing the gradient in the Z
direction to the other two, we see that its weighting of
the image potentials is essentially different. This obser-
vation suggests normalizing the Z -direction gradient.
A reasonable normalization is to multiply this gradient
by a position-dependent factor of magnitude

K Z (M) = f
1
2 (|x�| + |xr |) + |y| . (25)

This normalization proved very effective in solving the
Z -distortion of the contour, and was implemented in
all the experiments reported in the sequel.
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We observe that the normalized gradient will not
in general be a true gradient of any potential function.
This is of course not a problem, since the potential only
serves to define the driving forces in the model through
its gradients.

4.4. Best-Fit Projections

In this subsection we derive a formula for the
“potential-gradient” (namely, the driving force for the
3D snake) which relies on some optimal-fit considera-
tions. The resulting force can be viewed as a normalized
additive-potential term.

Recall that the term ∇ P (with minus sign) in (19) is
in effect a spatial force field that drives the 3D snake.
Assume for the moment that ∇ P is an actual 3D gra-
dient; it would then be reasonable to require its projec-
tions on the image planes to coincide with the respective
image gradients. That is:

H�(M)∇ P(M) ∼= ∇ p�(m�),

Hr (M)∇ P(M) ∼= ∇ pr (mr ),

where, as usual, mk = Dk(M). That will be the start-
ing point for the following derivation. We make two
observations. First, we shall not insist here (as we did
not in the previous subsection) that the driving force
field will be integrable (i.e. an actual gradient of some
scalar function). We therefore replace ∇ P in (19) and
in the last equations with F , a general force field. Next,
we observe that the last two equations cannot in gen-
eral be satisfied simultaneously. Algebraically, at each
point M we have four scalar equations for the three
components of F . Indeed, a pair of vectors in stereo
images can be the projections of a single spatial vector
only if they satisfy certain geometric (epipolar) con-
straints. We thus define F as the optimal least-squares
approximation to these equations, namely F(M) is the
solution of the following linear least-squares problem:

min
F

{‖H�(M)F − ∇ p�(m�)‖2

+ ‖Hr (M)F − ∇ pr (mr )‖2}.
The solution is

F(M) = (
H T

� H� + H T
r Hr

)−1
(M)

× (
H T

� (M)∇ p�(m�) + H T
r (M)∇ pr (mr )

)
.

We may now compare this expression with the
force field induced by the additive potential (17), as

computed in (24). It is evident that the expressions dif-
fer by the inverse matrix (H T

� H� + H T
r Hr )−1, which

can be considered a multiplicative normalization of the
additive potential force.

To get a quantitative idea of this normalization ma-
trix, we evaluate it for the basic stereo configuration
defined in (14). By straightforward computation and
some re-arranging,

(
H T

� H� + H T
r Hr

)−1
(M)

= Z2

2d2
x




x̄2 + d2
x x̄ y x̄

x̄ y y2 + d2
x y

x̄ y 1




where x̄ = 1
2 (x� + xr ), dx = 1

2 (x� − xr ), and y =
y� = yr . It is interesting to note that the elements is the
matrix depend only on image coordinates. If we com-
pare the diagonal elements to the Z -axis normalization
suggested in (25), one may observe some similarity in
the relative normalization of the Z axis to the X and Y
axes; however, here we have different normalizations
of the X and Y axes, and the dependence on the image
coordinates is quadratic rather than linear. An empiri-
cal comparison of different normalization schemes has
yet to be performed.

5. Space and Time Discretization

We briefly describe next the discretization in space and
time that will be used the numerical implementation
of the 3D velocity snake. The continuous model (19)
is transformed into linear discrete-time equations with
nonlinear image-based inputs through conventional fi-
nite difference techniques.

Consider first the space discretization of the equa-
tions of motion. Let U = [u1, . . . , uN ] be an equidis-
tant sampling of the contour C(s), with uk = C(sk)
and sk = k/N . We use the standard forward Euler ap-
proximation, Cs(sk) = N−1(uk+1 − uk) and Css(sk) =
N−2(uk+1 −2uk +uk−1). Substituting in (21) and (19),
we obtain the discrete-space version of the equations
of motion:

MUtt + γ
(
H T

� ∇ I�
(∇ I T

� H�Ut + (I�)t
)

+ H T
r ∇ Ir

(∇ I T
r HrUt + (Ir )t

))
+ βDDT Ut + KU = −∇ P(U ) (26)

where K is a deformation matrix defined in
Terzopoulos and Szeliski (1992), and M is a diagonal
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mass matrix (the unit matrix in our case), and D is the
difference matrix

D =




−1 1 0 0

0 −1 1
. . .

... 0
. . .

. . . 0

0
. . . 1

1 0 . . . 0 −1




. (27)

The temporal discretization of (26) is again per-
formed by straightforward central difference approx-
imation. We shall omit further details here. The fol-
lowing remarks are however in order regarding the dis-
cretization and implementation scheme:

1. It should be stressed that the discrete time step in
the snake model is taken as the video inter-frame
interval. This means that exactly one iteration is
performed for each stereo pair. In this iteration the
velocity term is fully employed in order to place the
contour at the position projected by the apparent mo-
tion calculation, while the other terms account for
attraction to image features and rigidity constraints
of the snake.

2. As an option, additional iterations per frame may be
used in order to improve the accuracy of correspon-
dence between the snake and image features. How-
ever, these must be performed for the basic model
without the velocity terms (which are fully utilized
in the first iteration). Thus, while the first iteration
uses (26), additional iteration may rely on the basic
snake model of the form (Terzopoulos and Szeliski,
1992)

MUtt + BUt + KU = −∇ P(U ) (28)

where B is an appropriate damping matrix.
3. We note that contour space discretization (in terms

of the contour parameter) is held fixed across im-
ages. This leads to linear update equations, which
are relatively robust with respect to large time steps
as performed here. (In comparison, in the geodesic
snake model the curve is in effect re-parameterized
in each step according to arc-length, which leads
to non-linear evolution equations. As noted in
Goldenberg et al., 2001, these equations require a
small numerical step for stability.)

4. Keeping a fixed space parameterization may cause
performance degradation due to such phenomena as

point bunching. This has indeed been observed in
our experiments in the absence of the velocity term.
However, the incorporation of this term practically
eliminates these problems for the duration of our
experiments, as reported next.

6. Experimental Results

The performance of the proposed three-dimensional
velocity snake is demonstrated in this section by ap-
plying it to simulated and real image sequences. It
should be emphasized that these experiments are in-
tended to demonstrate the applicability of the velocity
snake (with a single iteration per frame) to 3D track-
ing at video rate, and to demonstrate the improvement
achieved by the velocity term. No attempt was made to
deal with hard background and clutter problems. Ac-
cordingly, the basic edge-seeking potential of the form
(2) was used in our experiments.

We first show the tracking capability of the three-
dimensional velocity snake (26), applied to a synthetic
cube sequence, and compare the results to that of the
three-dimensional active contour (28) which does not
employ the velocity term. As was noted, the latter is
a direct generalization of the original snake model of
Kass et al. (1987) to the three-dimensional space. The
tracking capability is then demonstrated on three real
stereo-image sequences, two with rigid motion (book
and chair) and one with nonrigid motion (a human
hand).

Prior to the calculation of the image gradients and
derivatives, the image sequences were smoothed in
space by a Gaussian filter with σ = 2 pixels for the
potential computation, and with σ = 5 for the velocity
measurements. This choice of smoothing parameters
was related to the maximal expected image motion. The
position derivatives in the image planes were calculated
by a 3 × 3 Prewitt operator, and the time derivative by
simple differences between successive images.

The results presented in this section are all for the
active contour models (26) or (28) with the additive
potential function (17), normalized according to the Z -
axis normalization described in Section 4.3. The image
potential is p = −k‖Gσ ∗ ∇ I‖. The parameters of
the contour models were chosen empirically. For an
approach to self tuning of the parameters in similar
models see Blake and Isard (1998).

Similar experiments were carried out using the mul-
tiplicative potential (17), both for the synthetic cube
and the real images (book and chair sequences). In all



230 Zaritsky, Peterfreund and Shimkin

Figure 4. Tracking results of the synthetic cube with the regular snake (28) and velocity snake (26) at the initial position (top), and at the time
of the 1st, 50th and 97th frame (bottom). Note that the cube is in motion as the Z coordinate values are increasing.
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Figure 5. Position tracking errors for three snake points relative the synthetic cube. The errors in the three spatial axes are shown for the entire
97 frame simulation, point 1 is on the left.

cases the results were similar to the ones obtained with
the additive potential, and are therefore omitted here.

For the regular three-dimensional snake (28), the
contour position at each sampled image was computed
based on 100 iterations. This number was chosen in
order to allow the snake a reasonable time to stabi-
lize on a solution. This heavy computation is in con-
trast to the reduced complexity provided by the veloc-
ity snake (26) which requires only one iteration per
frame, and provides estimation of both shape and mo-
tion. We note that using the basic model (28) with a sin-
gle iteration per frame resulted in an immediate loss of
tracking.

Synthetic Cube: In order to fully monitor the track-
ing performance of the proposed 3D active contour un-
der controlled conditions, the model was applied to a
synthetic stereo image sequence of a simulated cube
(Fig. 2). We simulated a three-dimensional cube with
dimensions 40 × 40 × 40 length units, moving in the
positive Z direction (away from the camera) with a
velocity of 25 length units per second. The cube was
initially positioned at a distance of 500 units in the Z
direction. The two-dimensional stereo image sequence
was formed by using perspective projection with a cam-
era focus of f = 500 pixels and with a gray-scale of
64 levels. Each visible cube face was painted with a

different color (gray-scale level of 15, 40 and 63 re-
spectively) with the background painted in black (gray-
scale level of 1). The image sequence was made up of
97 images, sampled at a rate of 25 frames per second
(T = 1/25 sec.).

Stereo Configuration: Both the synthetic and the
real-image tracking experiments used the basic stereo
configuration described in (14): two identical cameras
with identical orientation, with a separation b along
the x axis. The baseline b was chosen small enough to
prevent qualitative shape distortions between the two
views, b = 100 was used in the cube experiment.

Contour Parameters: We used contour models with a
three-dimensional spatial sampling distance of 4 units.
The model (28) was used with µ = 1, w1 = 5, w2 =
0.1 and γ = 100 and the three-dimensional velocity
snake with µ = 1, w1 = 5, w2 = 0.01, γ = 0.01 and
β = 1000. In addition, the potential was multiplied by
a factor of 100 in order to allow the image to form the
proper attraction force.

Tracking Results: The results of tracking the mov-
ing cube are shown in Fig. 4. We show samples of the
tracking results of the regular snake (28) and of the
velocity snake (26), at the initial frame, and at the 1st,
the 50th and the 97th frame, respectively. It can be seen
that both models successfully track the cube throughout
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Figure 6. Samples of three stereo images (1st frame, 51th frame and the 101th frame) with the position of the three-dimensional velocity snake
projected onto them.

the sequence. However, the tracking performance of
the regular three-dimensional snake exhibits two ma-
jor problems. The first concern is with the bunching
of the sampling points towards the center of the cube
sides. This occurs since there is no correspondence in-
formation between points in successive images. The
second is that the contour lags behind the synthetic
cube. Both of these issues are rectified when velocity
term is added to the three-dimensional snake. This term
gives an estimate of the object velocity vector between
subsequent frames which prevents the bunching of the
snake points and improves the tracking accuracy.

The tracking errors for three representative snake
points are depicted in Fig. 5. The points were cho-
sen on different edges of the cube, and are indicated
on the upper-right image in Fig. 4. For each of these

snake points, we match a fixed reference point on the
cube edge, which is chosen as the closest edge point
in the initial frame (the initial placement of the snake
contained some deliberate error). The tracking error at
each frame is defined as the difference (in each spatial
axis) between the snake point and the current position
of its matched cube point. It may be seen that the track-
ing errors are in the order of one unit or less. (Note that
the perspective projections (11) with f = 500 and
Z ≈ 500 imply that a spatial error of one unit corre-
sponds to one image pixel.) In particular, it may be seen
that each point closely maintains its relative position to
the original cube point, which is indicative of the lack
of point bunching. Only in the X coordinate of the first
point, one can observe a persistent increase in the error,
which reflects a gradual sliding of this point along the
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Figure 7. Tracking results of the book in Fig. 6 with the velocity snake (26) and with the regular snake (28) at the initial frame (top), and at
the 1st, the 50th and the 101th frame, respectively.
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Figure 8. Samples of the chair stereo sequence (initial position, 1st frame, 51th frame and the 96th frame) with the position of the three-
dimensional velocity snake projected onto them.

cube edge. It may also be seen that the errors are oscil-
latory in nature, these oscillations may be damped (if
needed) by the use of an appropriate temporal smooth-
ing filter, such as the Kalman filter.

Book Tracking: Next we present the results of track-
ing a book in office background with the regular model

(28) and with the velocity snake (26). The book mea-
sured of 24 × 21 × 6 cm, and was moving towards
the camera (Z direction) from a distance of 3.1 me-
ters to 2.3 meters. The image sequence comprised of
101 images for the three-dimensional velocity snake.
The stereo images were captured using a stereo rig
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Figure 9. Samples of the hand stereo sequence (initial position, 100th frame, 225th frame, and 345th frame) with the position of the three-
dimensional snake projected onto them.

in our standard configuration—two identical synchro-
nized cameras positioned b = 58 cm apart with par-
allel orientation. The focal length of each camera was
f = 476 pixels. The images had a gray-scale of 256
colors and were digitized on two Silicon Graphic work-
stations at a rate of 25 frames per second.

Contour Parameters: We used the contour models
with a three-dimensional sampling distance of 2.5 cm.
The model (28) was used with µ = 1, w1 = 5, w2 =
0.01 and γ = 10. For the three-dimensional velocity
snake, we used µ = 1, w1 = 1, w2 = 0.01, γ =
0.001 and β = 2000. For the regular three-dimensional
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Figure 10. The 3D velocity snake position for the images of Fig. 8 (left) and of Fig. 9 (right).
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snake, the potential was multiplied by a factor of 10,
while a factor of 5 was used for the three-dimensional
velocity snake.

Tracking Results: The results of tracking of the book
in 3D and the corresponding projection onto the 2D
stereo images, are shown in Figs. 6 and 7. We show the
results of the model (28) only until the 51th frame as
they were very poor following that frame. The velocity
snake gave precise results along the entire 101 images
of the sequence.

Chair Tracking: In Figs. 8 and 10 we show the track-
ing results of a “flying” chair with the proposed 3D
contour model. The sequence, composed of 100 im-
ages, illustrates the tracking capability in the presence
of non-constant object velocity. Note that the proposed
model does not employ the rigidity property of the ob-
ject in 3D. The only information it uses is the con-
straints on the dynamical behavior of shape and motion
along time, which is embedded within the parameters
of the tracking contour. The results in Figs. 8 and 10
demonstrate high quality of tracking in the presence of
non-constant motion.

Hand Tracking: In Figs. 9 and 10 we depict the track-
ing results of shape and of motion of the nonrigid con-
tour of a moving hand. The results were obtained by
the velocity snake (26). In this sequence we aimed to
demonstrate the robustness of the three-dimensional
velocity snake in a long image sequence (about 12 sec-
onds) which included changes in velocity of the object
being tracked (forward and backward motion) as well
as a change in the object’s shape and the presence of
occlusions (the hand turns sideways at the end of the
sequence). The sequence was comprised of 345 im-
ages of a hand moving towards and away from the
cameras from a distance of 3.4 meters to 2.4 meters.
The hand moved backwards and forwards as well as
to the sides, with close tracking maintained through-
out the sequence. A noticeable increase in the tracking
error was observed when the motion changed direc-
tions, but snake quickly caught up to the object. This
sequence also demonstrates the three-dimensional ve-
locity snake’s capability of tracking changes in shape
of the three-dimensional object.

7. Concluding Remarks

We have considered in this paper the problem of 3D
tracking of deformable contours in stereo movies. Our
approach relies on the explicit representation and evo-
lution of the active contour in three-dimensional space,

under the influence of a spatial force field induced by
an appropriate combination of image potentials. This
approach may be contrasted with the option of using
separate 2D contours in each of the images, and form-
ing the 3D contour at each step through stereo cor-
respondence. The proposed approach offers important
advantages as the actual problem geometry is retained.
Structural constraints and prior knowledge regarding
the size and shape of the tracked object may be directly
incorporated. The same holds for the compensation of
known camera motion and the incorporation of geomet-
ric constraints from the environment. Data from other
3D sensors, if available, may be easily integrated. The
correspondence problem is practically eliminated once
the contour is initialized; in particular, such phenom-
ena as self-intersecting of the 2D contours should not
affect the 3D contour evolution. Occlusions may also
be better handled as the position relative to possible
occluding objects may be computed, and the contour
maintains its spatial state and shape in the absence of
image-induced forces.

The proposed tracking model incorporates within the
3D active contour a velocity term related to the opti-
cal flow in the two images. We introduced a particular
choice of the relevant parameters, which greatly re-
duces the computational requirements. The experimen-
tal results indicate successful tracking of simulated and
real scenes and clearly demonstrate the performance
enhancement associated with the velocity term.

The results of this paper demonstrate the feasibil-
ity of the proposed approach for real time 3D contour
tracking. Additional work on the basic model is re-
quired in order to optimize the computational load and
improve numerical stability. Clearly, to obtain state-of-
the art tracking performance one needs to incorporate
additional elements, in particular more elaborate image
potentials, and additional shape and motion constraints
when available. The development of similar ideas in
the context of geometric snake models and related
level set approaches are interesting areas for additional
research.
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