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We propose a model for abandonments from a queue, due to excessive wait, assuming
that waiting customers act rationally but without being able to observe the queue length.
Customers are allowed to be heterogeneous in their preferences and consequent behavior.
Our goal is to characterize customers’ patience via more basic primitives, specifically wait-
ing costs and service benefits: these two are optimally balanced by waiting customers, based
on their individual cost parameters and anticipated waiting time. The waiting time distrib-
ution and patience profile then emerge as an equilibrium point of the system. The problem
formulation is motivated by teleservices, prevalently telephone- and Internet-based. In such
services, customers and servers are remote and queues are typically associated with the
servers, hence queues are invisible to waiting customers. Our base model is the M/M/m
queue, where it is shown that a unique equilibrium exists, in which rational abandonments
can occur only upon arrival (zero or infinite patience for each customer). As such a be-
havior fails to capture the essence of abandonments, the base model is modified to account
for unusual congestion or failure conditions. This indeed facilitates abandonments in finite
time, leading to a nontrivial, customer dependent patience profile. Our analysis shows, quite
surprisingly, that the equilibrium is unique in this case as well, and amenable to explicit
calculation.
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1. Introduction

The problem of customer abandonments from a queue, due to excessive waiting
times, is of considerable importance and concern in various applications. Traditional
queueing theory has dealt successfully with the analysis of queues under the assumption
of a given patience distribution (patience is the time a customer is willing to wait in
queue). It is, however, also of obvious importance to consider the factors which
affect this distribution, such as individual preferences and system performance. In this
paper we take a decision-theoretic viewpoint towards understanding the abandonment
phenomena: the abandonment time for each customer is based on an individual utility
optimization, which balances perceived waiting costs against the benefits of service,
and from which the patience distribution emerges as an equilibrium point.

 J.C. Baltzer AG, Science Publishers
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1.1. Background and motivation

On the application side, our study is motivated by the fast-expanding area of tele-
services, which prominently include telephone call centers and the emerging Internet-
based market. Our model assumptions, therefore, are geared towards such systems
where customers and service providers are remote from each other. There is little need
to elaborate here on the significance of Internet-based services. As for call centers,
these currently constitute a multibillion dollar industry which is rapidly expanding.
(Some estimate the 1998 yearly revenues of the U.S. market alone at about $5 billion,
growing at a rate of over 27% annually.)

Customers of call centers increasingly demand quick and efficient service, oth-
erwise abandonments of waiting customers become prevalent and of major concern.
Indeed, AT&T studies [3] indicate that a 15 s wait to an operator response caused 44%
of the callers to abandon the call; for a 30 s wait that figure increased to 69%. The
Help Desk Institute, in its annual report [11], specifies that about 43% of call cen-
ters have a target for the abandon-rate, and about 40% of the call centers experience
call abandon-rates over 10%. It should be observed that in toll-free services such as
1–800, holding times of customers (including ones that eventually abandon) are paid
by service providers. With the explosive growth of toll-free services, these costs have
become a major economic driver. Abandonments may also have a significant effect on
system’s performance [7], leading to an improved service level for the remaining cus-
tomers. With these observations, it is clear that the phenomena of abandonments must
play a central role in any definition of teleservice quality and call-center efficiency,
hence, it should be well understood and quantified.

1.2. Assumptions and results

As we wait in queue for service, our willingness to wait further may well be
influenced by our assessments concerning the remaining time to service. This effect
is explicitly captured in our model, through a cost function that weights anticipated
waiting costs against service utility. A basic ingredient of this model is customers’
expectations regarding their waiting times, which each customer summarizes as a
distribution function. We shall employ here a consistency assumption (section 2.3),
namely that these expectations, formed for example through experience, coincide with
the actual waiting time distribution in the queue. Since the latter depends, in turn,
on customer abandonment decisions, the system behavior then emerges as a Nash
equilibrium point, namely, a fixed point of the map induced by the individual decision
model and consistency assumption.

Another factor that may have considerable influence on customer patience is the
on-line information available regarding the current system state or position in queue;
see, e.g., [12]. In the present paper we assume that such information is not available
to the customer, which is a realistic assumption in current call center applications.
Increasingly though, state information is purposely provided by call centers, and the
integration of such information into our model is an important topic for further research.
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Our decision model assumes service utilities that are time-invariant and waiting
costs that are linear in waiting times; these parameters may vary, however, across
individual customers. As a base model, we consider the M/M/m queue. We show
(theorem 7) that in this case the rational (individually optimal) decision for each cus-
tomer is either to abandon the queue immediately upon arrival, or else to stay in the
queue until served. Such a simple behavior is a consequence of the property that the
hazard rate function for the virtual waiting time in the queue is increasing (IHR), for
any M/M/m queue with general abandonments (M/M/m +G in the notation of [2]).
While this leads to a complete and relatively easy characterization of a unique equilib-
rium, it is obviously quite unsatisfactory from a descriptive point of view, since finite
abandonment times prevail in practice.

Several options are available to address this deficiency, as elaborated in section 6.
Here we focus on the IHR issue. In reality, customers who are left waiting for a
long time are expected to start loosing confidence and, if anything, will assess their
likelihood of obtaining service in the near future as declining or even diminishing.
To accommodate such a tendency, we consider an extended model which includes a
fault option. According to this model, denoted M/M/m(q), each arriving customer
joins the regular queue with probability q, but with probability (1− q) will be placed
at a fault position where service will never be provided, without being notified of
this situation. The modified model can be considered both as addressing individual
faults, where indeed individual customers are occasionally ‘forgotten’ by the system; or
system-scale faults, where occasionally the system is malfunctioning and all arriving
customers are subject to slow service. This model also provides a proxy for other
causes of congestion which are not captured by the standard M/M/m queue, such as
varying number of servers, time-dependent arrival rates, service priorities, etc.

It turns out (proposition 4) that the M/M/m(q) system has an eventually-
decreasing (and, in fact, unimodal) hazard rate function, which makes finite aban-
donment times feasible as rational choices (proposition 2). Naturally, this additional
option both enriches the space of potential equilibria and complicates the analysis.
Still, by exploiting the very special structure of the M/M/m + G queue and some
explicit expressions for its performance (section 3.2), it will be established that the
M/M/m(q) model gives rise to a unique equilibrium point. Formulas which allow
to compute the equilibrium distribution of the abandonment times are also obtained
(theorem 8).

Regarding the latter uniqueness result, it should be mentioned that Nash equilib-
rium solutions are typically non-unique in an essential way, and multiple unconnected
equilibria may exist in general. In view of the heterogeneity in user behavior, range
of possible decisions and the complexity of a stochastic model, it is hardly apparent
that the equilibrium should be unique in the present case. Some general methods have
been suggested in the literature to establish uniqueness of the Nash equilibrium in
nonzero sum games, exploiting such properties as convexity [18] and contraction [15];
however, none of these has been found applicable to our problem. As it stands now,
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the uniqueness result rests on specific and explicit analysis, which in turn relies on the
special structure of the M/M/m +G queue.

1.3. Related research

Concerning previous literature, most related to the present study is the work by
Hassin and Haviv [9]. This paper considers a similar rational model in an M/M/1
queue, but assuming that all customers have an identical cost function. It is further
assumed that the service utility vanishes once service is not completed within a fixed
time beyond arrival, that abandonments are possible during service as well, and that
customers may decide to reneg (not join the queue at all). A unique equilibrium is
shown to exist in which each customer joins the queue with a fixed probability, and
then stays until his service time expires. While differences in details exist, this result is
also a consequence of the IHR property of the relevant queue and is closely related to
the findings regarding our base M/M/m model. A recent paper of Haviv and Ritov [10]
considers again the homogeneous customers case, but under a convex waiting cost, and
shows under certain conditions the existence of a unique equilibrium which induces a
continuous distribution of abandonment times.

A different temporal equilibrium problem is treated in [6,20], where motorists
optimize their arrival time at a congested bottleneck road, and a deterministic fluid
traffic model is used. Additional work on individual equilibrium in queues includes
[1,5,8,16,19].

It is both highly relevant and of historical interest to mention the classical work
by Palm [17], who develops methods for estimating the inconvenience experienced by
customers due to delayed telephone connection. Palm proposed a simple parametric
model for the inconvenience, as a function of experienced waiting time, and proceeded
to estimate its parameters by linking inconvenience to the abandonment rate and mea-
suring the latter. The link is provided by an M/M/m + G model, after postulating
that the hazard rate of customers’ patience is directly proportional to the marginal
inconvenience (irritation in terms of [17]). It is interesting to note that the empirical
data used in [17] were collected in certain exchanges at the Stockholm area, where
“relatively often, . . . through errors in dialing, . . . (subscribers) would not receive any
ringing tone, so that they were presented with a delay time of unlimited duration.” An
M/M/m(q) system indeed!

1.4. Contents

Our paper is structured as follows. The next section presents the model de-
scription, including the individual decision model and the definition of equilibrium.
Section 3 develops some preliminary results concerning rational decisions. In partic-
ular, we explore the relation that exists between these decisions and the monotonicity
properties of the service hazard rate function, we recall the waiting time distribution for
the M/M/m queue with general patience distribution G, and establish the monotonic-
ity properties of the hazard rate function in this and the M/M/m(q) model. Section 4
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contains the main results regarding the uniqueness and structure of the equilibrium,
while the proofs of the relevant results for the M/M/m(q) model are deferred to sec-
tion 5. Finally, sections 6 and 7 offer some concluding remarks, with a discussion of
modeling choices and possible extensions.

2. Model formulation

This section presents the rational equilibrium model that is the subject of this
paper. We start by briefly introducing the queueing system, followed by a definition of
the individual decision model and the utility function employed by each customer. We
then consider the system as a whole and discuss the equilibrium concept that results
by reconciling customer expectations with actual system performance.

2.1. The basic queue

Our base model is the M/M/m queue, with Poisson arrivals at rate λ, i.i.d.
exponentially distributed service times with expected duration 1/µ, and m servers that
cater to customers in order of arrival (FCFS). The queue capacity is assumed infinite.
We shall also consider an extension of this model, where each arriving customer enters
the main queue with probability q, but has a probability (1−q) of being placed in a fault
position and never obtaining service. This model will be denoted by M/M/m(q), with
0 < q < 1, and will be further elaborated on in section 3.2. We assume throughout
that the queue is in steady state.

During their waiting period in the queue, customers may decide to abandon
the queue and give up the offered service. Abandonments do not occur after service
commences. Abandonment times are chosen individually by each customer, based on
a decision model which we now specify.

2.2. Individual utility and rational decisions

After joining the system, a customer may abandon the queue at any time T > 0
before admitted to service. It is assumed that no information is conveyed to customers
during this period regarding the status of the queue or their standing in it. Thus, an
abandonment policy for each customer is simply the time T she is willing to wait in
the queue before abandoning it. (See section 6 for some comments on the equivalent
sequential, or “real-time”, formulation of abandonment choices.)

Observe that a decision to abandon at T = 0 is different than not joining the
system at all, since in the former case the customer enjoys the opportunity of obtaining
service immediately upon arrival. Such a decision corresponds to the widely observed
phenomenon of customers who abandon immediately upon recognizing a delay.

We now define an individual utility function for the customers over their set
of choices. We consider a heterogeneous customer population, and customers will
be categorized into different types according to their decision model parameters. Let
z ∈ Z denote the type, with Z the set of possible types.



146 A. Mandelbaum, N. Shimkin / A model for rational abandonments

A customer of type z will be characterized by the following elements:

(i) rz , the service utility, assumed to be positive.

(ii) cz , the marginal cost of waiting, or simply the cost coefficient, also assumed
positive. The waiting cost (or disutility) is assumed linear in the waiting time,
and given by czw, where w is the time until the customer abandons or is admitted
to service.

(iii) Fz(·), a probability distribution function which reflects the customer’s belief about
her virtual waiting time V , namely, the time from her arrival until she enters
service, provided that she does not abandon the queue. Denote F z = 1− Fz .

Observe that Fz as used here is a subjective quantity, which is required in order to
define the customer’s expected utility. (We shall later impose the consistency condition
that the subjective distributions Fz all coincide with the distribution function of the
true virtual waiting time.)

Define the cost-benefit ratio γz := cz/rz . This parameter will play a central role
in our analysis.

Consider a customer that decides to abandon the queue after T > 0 time units
if not admitted to service by then. The actual waiting time will be W = min{V ,T},
where abandonment occurs if T < V , and otherwise the customer enters service. The
expected utility for such a customer will be

Uz(T ) =Ez
(
rz1{T > V }− cz min{V ,T}

)
=

∫ T

0−
[rz − czv] dFz(v)− czTF z(T ), (1)

where Ez stands for the expectation with respect to the subjective probability Fz . Note
that Fz conceivably includes a point mass at T = 0, representing the probability of
finding a free server immediately upon arrival, and the integral is taken to include
this point; thus, Uz(0) = rzFz(0). Observe also that we do not explicitly account
for the expected time-in-service in this utility function; however, this may be easily
incorporated in the service utility rz .

An optimal decision for a type-z customer is a time Tz > 0 that maximizes
the expected utility Uz. For concreteness, in case that the utility function attains it
maximum in more than one point we shall choose the later time. (Any other choice
may be made without affecting the results; indeed, in equilibrium it will turn out that
non-unique optimal choices may occur only for one specific customer type, which has
a zero measure according to the regularity assumption imposed below.) This definition
fixes Tz as a deterministic quantity for each customer of a given type z.

As already observed, with our utility function it is assumed implicitly that waiting
customers do not obtain information regarding the current state of the queue or their
standing in it. This justifies the convenient viewpoint that abandonment times are
chosen once upon arrival to the queue.

To complete the system description, we require an additional quantity:
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(iv) PZ , a probability distribution over the set of customer types Z. The type z of each
customer is randomly chosen according to PZ , independently across customers.
We shall assume for simplicity that the cost–benefit ratio γz , considered as a
random variable with distribution induced by PZ , has a density on the (positive)
real line.

Some comments regarding the customer type and its associated distribution PZ
are in order here. As defined, the type variable z parameterizes the distribution Fz ,
along with the cost coefficients rz and cz . However, under the consistent equilibrium
condition considered in the sequel all distributions Fz must coincide with the actual
one, so that customer types differ only in the coefficients cz and rz . Thus, PZ can then
be interpreted as a probability distribution over these coefficients. Moreover, it will be
seen that the maximizer of the utility function Uz depends only on the cost–benefit ratio
γz = cz/rz , so that a customer type may be identified with this ratio. The assumption
that γz has a density under PZ is not crucial, but quite conveniently alleviates the
need to consider randomized decisions, which would otherwise be essential for the
existence of an equilibrium (see [9]). Apart from that, the distribution of γz is general.

Suppose now that we are given the type distribution PZ , as well as the customer
parameters cz , rz and Fz for each type z ∈ Z. Assuming that customers behave
according to the decision model described above, and that the optimal decisions Tz are
well-defined, this induces a distribution on the abandonment times of each customer,
namely, a patience distribution G, which is i.i.d. across customers. The model is then
completely specified as an M/M/m +G queue, and its performance can be analyzed
using, e.g., the results of [2].

Our point of departure from M/M/m +G scenario concerns the assumption that
Fz is given a priori, without regard to actual system performance. This will be replaced
by a consistency assumption, which we consider next.

2.3. Equilibrium

As noted, given a patience distribution G, one can compute the system statistics
and, in particular, the “true” (or objective) distribution of the virtual waiting time, de-
noted F . Our basic assumption here is the consistency requirement, that the subjective
distributions held by all customers coincide with the true one, namely Fz = F for all
z ∈ Z. This leads to the following definition of system equilibrium, which is just the
Nash equilibrium under the consistency assumption:

Definition 1. The system is in a consistent equilibrium (or just equilibrium) if the
following hold:

(i) Individual rationality: Each customer of type z is using an individually optimal
abandonment time Tz , as defined above; recall that this choice is based on a utility
function which involves the subjective virtual waiting time distribution Fz .

(ii) Consistency: The subjective and objective virtual waiting time distributions coin-
cide: Fz = F , for every customer type z.
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We then refer to the set {Tz , z ∈ Z} as an equilibrium profile, and to F as the
equilibrium distribution.

The consistency requirement implies that customers have complete knowledge
regarding the statistics of the waiting time in the system. In practice, such knowledge
may grow out of previous visits to the system.

It is evident that the definition of equilibrium is not explicit, but rather specifies
F as a fixed point of an appropriate map, which may be summarized in the following
two steps:

• F → G. Given F , the consistency assumption Fz ≡ F together with other customer
utility and type characteristics (cz , rz and PZ) determine the patience distribution G.

• G→ F . Given the patience distribution G, the virtual waiting time distribution F
is determined through the queue dynamics.

Note that this map is on a space of probability distribution functions, so that we
obtain a functional fixed point condition. Another option is to consider the fixed point
of the map between decision profiles {Tz}, as follows:

• {Tz}→ F . {Tz} together with PZ determine the patience distribution G, which in
turn defines the queue statistics and the virtual waiting time distribution F .

• F → {Tz}. The consistency assumption Fz ≡ F , together with the utility parame-
ters cz and rz , determine the optimal individual decisions {Tz}.

Since the support of Z is in general of infinite cardinality, decision profiles belong
to an infinite-dimensional function space, and again we obtain a functional fixed-point
condition. We shall find this formulation more convenient for analysis than the previous
one.

The prominent questions regarding the equilibrium point include existence,
uniqueness, structural properties, and computation. These are all addressed in the se-
quel.

3. Preliminary analysis

3.1. Individual optimization and the hazard rate

In this subsection we examine some properties of the optimal abandonment times
and, in particular, their relation with the hazard rate function Hz associated with the
virtual waiting time distribution Fz . We consider here a fixed customer type z, with
a given subjective distribution Fz . We will show that monotonicity properties of the
hazard rate function lead to interesting structural properties of the optimal abandonment
time, which will be instrumental in the equilibrium analysis to follow.

Assume throughout that Fz(t) is continuously differentiable for t > 0 (that is, it
has a continuous density F ′z , except possibly for a point mass at t = 0), and that F ′z
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has a right limit at 0. This smoothness property is indeed enjoyed by all distribution
functions that arise in later sections. Differentiating the utility function (1) with respect
to T > 0 gives

U ′z(T ) = [rz − czT ]F ′z(T )− czF z(T ) + czTF
′
z(T ) = rzF

′
z(T )− czF z(T ). (2)

Since rz > 0 by assumption, when F z(T ) > 0 this may be written in the following
way:

U ′z(T ) = rzF z(T )

[
F ′z(T )

F z(T )
− γz

]
= rzF z(T )

[
Hz(T )− γz

]
, (3)

where γz = cz/rz is the cost–benefit ratio, and Hz is the hazard rate function associated
with the virtual waiting time distribution Fz , namely,

Hz(t) :=
F ′z(t)

F z(t)
, t > 0.

We shall also define Hz(0) = Hz(0+). The first order condition for a local optimum
at T > 0, namely, U ′z(T ) = 0, can now be simply stated as

Hz(T ) = γz.

Thus, an abandonment can take place only when the hazard rate crosses a specific
level, which is just the cost–benefit ratio.

We proceed to characterize the form of the optimal solution under certain
monotonicity assumptions on the hazard rate function. We shall consider the following
cases:

(a) Increasing hazard rate (IHR): Hz is monotone increasing.

(b) Decreasing hazard rate (DHR): Hz is monotone decreasing.

(c) Increasing–decreasing hazard rate (IDHR): Hz is unimodal, initially increasing and
then decreasing.

In all cases we consider Hz(t) for t > 0. Note that monotonicity is not required
to be strict, so that the IDHR class includes the other two as special cases.

Consider the IHR case first. It is easily seen from (3) that in this case Uz(T )
is either increasing, decreasing, or decreasing–increasing over [0,∞) and, therefore,
will be globally maximized at one of the edges, namely, T = 0 or ∞. The optimal
decision is, therefore, one of the following:

(1) T = 0: abandon immediately if not admitted to service upon arrival.

(2) T =∞: never abandon.

The implication is that it is never optimal to abandon after a finite (nonzero)
amount of time.

The DHR case is considered next. Here Hz decreases from Hz(0) to Hz(∞).
In one extreme case the graph of Hz may lie entirely below the level γz , implying
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Figure 1. An increasing–decreasing hazard rate. The utility function Uz is maximized either at T = 0,
or at the intersection of γz with the decreasing part of H .

U ′z negative and an optimal decision at T = 0. In the other extreme, the graph of
Hz lies entirely above γz , implying U ′z positive and an optimal decision at T = ∞.
The interesting case is the intermediate one: when Hz intersects γz , the intersection
point Tz is easily seen from (3) to correspond to a global maximum of the utility and,
hence, is the optimal decision.

We, finally, consider the IDHR case. Here γz can intersect Hz at two points
at the most (see figure 1), the first at the increasing part of Hz and the second at
its decreasing part. The first intersection corresponds to a local minimum, hence is
of no consequence. If the second intersection does not exist, then the situation is
similar to the IHR case, namely, an optimal decision at T = 0 or T = ∞. If the
second intersection does exist, then similarly to the DHR case it corresponds to a local
maximum of Hz, which in fact is the unique local maximum over T > 0. In this case
the global maximum can be either at that intersection, or at T = 0.

We summarize these findings in the following proposition:

Proposition 2. Given Fz and γz := cz/rz , let Tz be the optimal abandonment time
with respect to the utility function (1). Then:

(i) In the IHR case, Tz = 0 or Tz =∞.

(ii) In the DHR case, if γz intersects Hz(T ) then Tz is that intersection point. Other-
wise, either γz is above Hz(·) (i.e., Hz(T ) < γz for every T ) and Tz = 0, or γz
is below Hz(·) and Tz =∞.

(iii) In the IDHR case, if γz intersects the decreasing part of Hz(T ) then either Tz is
that intersection point or Tz = 0. Otherwise, Tz = 0 or ∞, with Tz = 0 if γz is
above Hz(·) and Tz =∞ if γz is below Hz(·).
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Discussion. Let us briefly discuss the three possible monotonicity assumptions that
were considered above. As we shall see in the next section, the actual hazard rate in
M/M/m + G queues is increasing for any patience distribution G, which motivates
the IHR case. However, from the subjective point of view of a waiting customer this
assumption does not seem to be realistic, since it implies that customers who wait for a
long time become more and more optimistic about the opportunity of obtaining service
in the near future, while in a typical scenario we expect that customers eventually
become pessimistic about obtaining service speedily. The DHR case, on the other hand,
excludes those cases where the virtual waiting time is characterized by some typical
value, and the hazard rate will be increasing at least initially up to this value. The
IDHR form is the simplest one that accommodates both these tendencies. Moreover,
while there is no special reason to maintain a priori that the actual hazard rate in
a system will be unimodal, from the subjective point of view customers are hardly
likely to adopt a more complicated form for their estimate of the hazard rate. Thus,
the IDHR case presents a very reasonable balance between simplicity and the ability
to capture the essential ingredients of the problem. We are thus led to consider models
where this form of the hazard rate arises naturally.

3.2. The M/M/m(q) +G queue

We now consider some characteristics of the queueing models that are treated in
this paper, which are valid for any distribution G of the customer patience. Of special
interest are the distribution function F of the virtual waiting time, and the associated
hazard rate function H = F ′/F . We start by recalling some explicit expressions for
F in the M/M/m + G queue, which play a central role in our analysis. We then
observe that the hazard rate function H is increasing (IHR case) in this model. We
shall then consider the M/M/m(q)+G queue, where with probability (1−q) customers
are subjected to a fault state with infinite waiting time. In this case the hazard rate
function turns out to be increasing–decreasing (IDHR).

Consider first the M/M/m + G queue, with patience distribution G. Each cus-
tomer is characterized by a patience T which is stochastically chosen according to G,
independently of other arrival and service primitives. A customer abandons the system
if not admitted to service within T time units of arrival. The distribution G may be
defective, i.e., G(∞) < 1, so that some customers may have infinite patience. The
stability condition λ[1 − G(∞)] < mµ is assumed to hold [2]. Denote G = 1 − G,
and let

I(t) = mµ− λG(t).

Let F denote the distribution function of the virtual waiting time V in steady state.
Then, from [2] we have

F ′(t) = λπm−1 exp

(
−
∫ t

0
I(s) ds

)
, t > 0, (4)
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where πm−1 is the stationary probability of having exactly m− 1 servers occupied.
This probability is determined through the normalization condition

m−1∑
j=0

πj +

∫ ∞
0

F ′(t) dt = 1, (5)

and πj = (1/j!)(λ/µ)jπ0 for j = 0, . . . ,m− 1.
We note that F ′ is well defined and F (t) 6= 0, as was assumed in section 3.1.

Moreover, the second derivative F ′′ also exists for all t > 0 (except possibly at jump
points of G, where we may simply define F ′′ = −I · F ′). Note also that F (0−) = 0,
F (0) =

∑m−1
j=0 πj (an atom at t = 0), and F (∞) = 1.

It is well known that for an exponential queue without abandonments, the virtual
waiting time V , given that V > 0, is exponentially distributed, hence, gives rise to a
constant failure rate. When abandonments are present, the following property holds.

Proposition 3. The virtual waiting time distribution F in an M/M/m + G queue is
IHR. Furthermore, the hazard rate H(t) is strictly increasing up to the first point t
(possibly infinite) where G(t) = G(∞), and is constant thereafter.

Proof. Differentiating H = F ′/F and using F ′′ = −I · F ′ gives

H ′(t) =
F ′′F + (F ′)2

(F )2
(t) =

F ′(t)

F (t)2

[
−I(t)

∫ ∞
t

F ′(s) ds + F ′(t)

]
.

Let K(t) > 0 denote the positive term that precedes the square brackets. Since I is
increasing, F ′ > 0, and F ′′ = −I · F ′, we obtain

H ′(t) > K(t)

[
−
∫ ∞
t

I(s)F ′(s) ds + F ′(t)

]
= K(t)

[∫ ∞
t

F ′′(s) ds+ F ′(t)

]
= 0,

where F ′(∞) = 0 was used for the last equality. It may also be seen that the above
inequality is strict unless I (equivalently G) is constant beyond t, which establishes
the claim.

We note that the IHR property may also be established by showing that F ′′/F ′

is decreasing, and the latter equals −I(t) which is decreasing since G is decreasing.
However, the direct calculation used is more instructive. �

Consider next the M/M/m(q) + G model. This model modifies the standard
M/M/m+G queue, by assuming that an arriving customer has a probability (1−q) of
being positioned in a fault state, where he is neglected and never admitted to service.
It is important to note that the customer does not know whether he is in a fault state
or not.

It is evident that the active part of this queue, of customers that are not in
the fault state, is just a standard M/M/m + G queue with a modified arrival rate
λq = qλ. Let F denote the virtual waiting time distribution in that queue, given by the
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expressions above with λ replaced by λq. Let Fq denote the corresponding quantity
in the complete system. (Note that F does depend on q through λq, however, this
dependence is suppressed for notational convenience.)

An arriving customer joins with probability q the main queue, where her virtual
waiting time V is distributed according to F ; and with probability (1− q) is placed in
a fault position, where V =∞ by definition. It follows that

Fq(t) := P (V 6 t) = qF (t), t > 0,

which is the basic relation for this model. Note also that F q := 1 − Fq = 1− qF =
qF + (1− q), and the corresponding hazard rate function can be expressed as

Hq =
F ′q
F q

=
qF ′

1− qF =
F ′

F + g
, t > 0, (6)

where g = (1 − q)/q. It is not hard to verify that for 0 < q < 1 the hazard rate
function Hq will be eventually decreasing, in contrast to the standard case of q = 1
as discussed above. Indeed, observe that for large t, F q in the denominator of Hq

converges to (1−q), while the numerator decays exponentially as exp(−I(∞)t), where
I(∞) = mµ− λqG(∞) > 0.

It is also easily seen that for q close enough to 1 (so that g is small enough), Hq

will inherit the increasing property from H := F ′/F near t = 0, i.e., it will be initially
increasing. Therefore, the simplest class to which Hq might generally belong in terms
of its monotonicity properties is the IDHR class, defined in section 3.1 – provided that
Hq is unimodal. This is verified in the following:

Proposition 4. The virtual waiting time in the M/M/m(q) + G model, with q < 1,
has the IDHR property; that is, the hazard rate function Hq is unimodal and eventually
decreasing. Moreover, it is strictly decreasing with a strictly negative first derivative
beyond its maximal point.

Proof. For unimodality it suffices to verify that H ′q can have at most one sign change,
from positive to negative. Differentiating Hq and noting that F ′′ = −IF ′ by (4) gives

H ′q =
F ′′(F + g) + (F ′)2

(F + g)2
= Hq(Hq − I). (7)

Noting that F ′ > 0, hence, Hq > 0, it follows that H ′q is sign-equivalent to Hq − I .
But since I is a nondecreasing function of t by its definition, it immediately follows
that once H ′q becomes (strictly) negative it will stay that way. This verifies that Hq is
unimodal and, moreover, strictly decreasing beyond it maximum. �

Remark. In the definition of the M/M/m(q) system we have assumed that the fault
state is an individual state to which each customer is subjected independently of the
others. Another important interpretation may be given in terms of a system fault.
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Assume that the whole system is in a fault state a fraction (1− q) of the time, during
which all arriving customers are subjected to the individual fault state as defined before.
Then, provided transients between the operating and fault states of the system can be
neglected, as arriving customer will enter a standard M/M/m queue with probability q,
and the fault state otherwise; thus, from the customer point of view the situation is
equivalent in the two cases. Note also that the system fault interpretation is close in
spirit to a server vacation model.

3.3. Some properties of a consistent equilibrium

The consistency assumption implies, in particular, that the subjective distributions
Fz all coincide: Fz ≡ F . We now develop some consequences of this equality. These
properties are not restricted to the M/M/m queue.

We first establish the reassuring property that the rational abandonment times are
decreasing in the cost–benefit ratio.

Proposition 5. Let z and y be two customer types, with Fz = Fy := F and γz < γy.
Then the respective individually optimal abandonment times satisfy Tz > Ty . Further-
more, the strict inequality Tz > Ty holds provided that: 0 < Tz <∞, F ′ is continuous
at Tz , and F (Tz) > 0.

Proof. We first observe that if F (Tz) = 0, meaning that customers who wait in
the queue more than Tz will never obtain service, then waiting more than Tz cannot
be optimal for any customer; thus Tz > Ty in this case. Assume henceforth that
F (Tz) > 0.

The optimal decisions are obviously unaffected if we normalize each utility func-
tion Uz by 1/rz , that is, replace Uz by Wz = r−1

z Uz . From (2), the derivative of this
normalized utility is

W ′z = F ′ − γzF.
Since F is non-negative, this derivative is decreasing in γz , that is, W ′z > W ′y at
every point t, with strict inequality if F (t) > 0. This implies that Wz(t2)−Wz(t1) >
Wy(t2)−Wy(t1) for any pair of points t2 > t1 > 0, with strict inequality if F (t1) > 0.
Now, if Tz < Ty , we can identify Tz with t1 and Ty with t2, and obtain

Wz(Ty)−Wz(Tz) > Wy(Ty)−Wy(Tz).

However, this contradicts the assumptions that Tz is z-optimal (hence, Wz(Ty) −
Wz(Tz) 6 0) and Ty is y-optimal (hence, Wy(Ty) − Wy(Tz) > 0). It follows that
Tz < Ty is false, thus Tz > Ty .

To establish the strict inequality under the stated assumptions, note the the con-
tinuity of F ′ at Tz implies continuity of the utility function derivative W ′z at that
point, so that the first-order optimality condition W ′z(Tz) = 0 must hold. But as ob-
served above, due to F (Tz) > 0 the strict inequality W ′y < W ′z holds at Tz , so that
W ′y(Tz) < 0, which implies that Tz is not optimal in Wy. �
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The following lemma establishes a useful continuity property of optimal aban-
donment times, which is valid when the hazard rate function is IDHR.

Lemma 6. Suppose that Fz = F for all z ∈ Z, and assume that the hazard rate
function H = F ′/F is increasing–decreasing, and in fact strictly decreasing beyond
its maximum. Then the optimal abandonment times Tz are a continuous function of
γz , for γz ∈ (0,∞), except for one possible jump from Tz = 0 to a positive value.

Proof. As established in proposition 2, an optimal decision Tz in the increasing–
decreasing case is either 0 or at the intersection of γz with the decreasing part of H .
The present assertion is an immediate consequence of that fact. �

4. Existence, uniqueness and structure of the equilibrium

We now turn to the questions of uniqueness, structure and computation of the con-
sistent equilibrium point. We first consider the relatively simple case of the M/M/m
queue, in theorem 7, and then extend the results to the M/M/m(q) model, for which
the main results are summarized in theorem 8. The detailed derivations and proofs of
the latter are deferred to the next section.

The following theorem reveals the special structure of the equilibrium point in
the M/M/m model, that is essentially a consequence of the IHR property inherent in
the M/M/m +G queue. This structure is employed to establish uniqueness.

Theorem 7. Consider the M/M/m queue with the rational abandonment model. Then
there exists a unique consistent equilibrium point, which is of the following form:
Tz = 0 for γz > θ, and Tz = ∞ for γz 6 θ, where the constant θ is the unique
solution of the equation θ = Iθ, with Iθ = mµ− λPZ{z: γz < θ}.

Proof. Assume that the system is in consistent equilibrium. From proposition 3
we know that the hazard rate function is monotone increasing. It then follows from
part (i) of proposition 2, together with the monotonicity in γz of the optimal decisions
established in proposition 5, that any equilibrium point must be of the stated form.

Uniqueness now follows using a basic monotonicity argument with respect to the
equilibrium parameter θ. Essentially, increasing θ means that more customers remain
in the queue, hence, the queue becomes more congested; but then less customers will
find it optimal to stay, leading to a unique balance point.

More formally, assume that customers are following the decision rule above with
some threshold θ. This leads to a patience distribution G which satisfies G(t) =
G(0) = PZ{z: γz < θ} for t > 0. Substitution in equation (4) yields

F ′(t) = λπm−1 e−Iθt,

where Iθ = [mµ− λG(0)]. Consequently, by integration F (t) = I−1
θ F ′(t), and H(t) =

F ′/F = Iθ; that is, the hazard rate is constant. Proposition 2 (DHR case) implies then
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that the optimal abandonment times are Tz = 0 if γz > Iθ, Tz = ∞ if γz < Iθ,
and neutral if Iθ − γz = 0 (in which case we choose Tz = ∞ by convention). For
the initially assumed and the latter optimal decision rules to coincide it is required
that θ = Iθ. It remains to verify existence of a unique solution to that equation. By
its definition, Iz is decreasing and continuous in z (where the latter follows by our
standing assumption that PZ has a density). Thus, z − Iz is continuous, and strictly
increasing from a negative value (at z = 0) to +∞, so that z = Iz indeed has a unique
solution. �

We remark that if PZ was allowed to contain point masses, then a similar result
could be retained by allowing a probabilistic splitting of customers of identical type
(as in [9,10]).

Observe that under the established equilibrium profile, a fraction G(0) =
PZ{z: γz < θ} of arriving customers have infinite patience and will never abandon
the queue, while the remaining customers will abandon immediately if not admitted to
service upon arrival. The distribution of nonzero waiting times in this queue (that is
the distribution of V conditioned on V > 0, which equals F ′(·)/F (0)) coincides with
that of a standard M/M/m queue with arrival rate λG(0). However, the chance of
finding a free server upon arrival will be smaller in the present case due to the effect
of the impatient customers.

We have thus established the uniqueness of the consistent equilibrium in the
M/M/m queue, and obtained an explicit form for the equilibrium abandonment deci-
sions. The notable property of this equilibrium is that abandonments should occur only
immediately upon arrival; as noted, this is a consequence of the IHR property which
is inherent in the M/M/m +G queue. Obviously, this structural constraint presents a
serious limitation of this model.

We now turn to the M/M/m(q) model. As has already been shown, the in-
troduction of the fault state introduces a decreasing tail in the hazard rate function,
and consequently abandonments after a finite wait in the queue become feasible as a
rational choice.

As soon as finite abandonment times are introduced, the fixed-point problem
becomes multi-dimensional, and a simple monotonicity argument as used in the last
proof cannot be applied to establish uniqueness of the equilibrium point. To be specific,
consider the case of only two customer types, z = 1 and z = 2, and assume an
equilibrium point with abandonment times T1 and T2. It is quite reasonable that another
equilibrium point with uniformly larger times (T ′1 > T1 and T ′2 > T2) cannot exist,
since then the system becomes more congested and a rational choice should be to
abandon earlier rather than later. However, if T1 and T2 are modified in opposite
directions (say, T ′1 > T1 but T ′2 < T2), it is not clear what would be the overall
effect on the system, and whether these new values might constitute an additional
equilibrium.

This difficulty will be tackled by first establishing detailed structural properties
that must hold in any equilibrium point. For this purpose we exploit the special structure
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of the virtual waiting time distribution in the M/M/m(q)+G queue, as inherited from
the M/M/m+G queue. In the process we develop some formulas and relations which
will enable explicit computation of the equilibrium profile.

The next theorem summarizes our main findings concerning the structure and
computation of the equilibrium in the M/M/m(q) model. The following quantities
will be required. For 0 < γ <∞, let

Iγ = mµ− λqPZ{z: γz < γ}

and define γo as the unique solution to Iγ − γ = 0. Further define, for 0 < γ 6 γo,

J(γ) = exp

(∫ γ

0
(Iy − y)−1 dy

)
, L(γ) =

(
γ

λqBm
+ 1

)
J(γ),

where Bm is specified in (18).

Theorem 8. Consider the M/M/m(q) model with rational abandonments.

(i) A consistent equilibrium exists and is unique.

(ii) The equilibrium profile has one of the following two alternative forms:

(a) If L(γo) > (1 − q)−1: Let θ be the unique solution of L(θ) = (1 − q)−1 on
(0, γo]. Then Tz = 0 for γz > θ, and

Tz = τ (γz)− τ (θ) :=
∫ θ

γz

y−1

Iy − y
dy for γz 6 θ.

(b) If L(γo) < (1− q)−1: Tz = 0 for γz > γo, and

Tz = T o +

∫ γo

γz

y−1

Iy − y
dy for γz 6 γo,

where T o > 0 is given by the solution to (23), namely,

T o =
1
γo log

(
(1− q)−1

J(γo)
− γo

λqBm

)
.

(iii) If the probability density of γz is bounded in magnitude, then L(γo) = ∞ and
the equilibrium is necessarily in form (a).

(iv) The equilibrium hazard rate function Hq is non-increasing. In fact, it is strictly
decreasing in case (a), while in case (b), Hq(t) ≡ γo for 0 6 t 6 T o, and it is
strictly decreasing thereafter.

The proof of this theorem may be found in the next section, together with a more
detailed discussion of the equilibrium structure.

The two possible forms of equilibrium are depicted in figure 2. The examples
below serve to further illustrate these results.
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Figure 2. An illustration of the two possible equilibrium forms. The graph depicts the equilibrium
hazard rate function Hq(t) as a function of t. Since Hq(Tz) = γz , the inverse function of Hq displays
the abandonment times Tz as a function of γz. (The illustrated equilibria corresponds to example 1, with

q = 0.5 for case (a), q = 0.85 for case (b), and q = 0.755 in between.)

Given (iii) of the last theorem, it is evident that the equilibrium profile will be
in form (a) in most cases of interest. In fact, the question may be raised whether
form (b) of the equilibrium is obtainable at all. The following example gives the
positive answer.

Example 1. Let λq = 2, m = 1, µ = 2, and PZ(z) := PZ{z′: z′ < z} = 1 −√
1− z − 0.5z for 0 6 z 6 1, and arbitrary for z > 1. Note that PZ(0) = 0,

PZ(1) = 0.5, and the associated density fZ equals (2
√

1− z)−1−0.5 on [0, 1], hence,
is unbounded near 1. To determine the equilibrium form according to proposition 15
we evaluate J(zo). Here Iz − z = 2

√
1− z on 0 6 z 6 1, with stationary point

zo = 1, and J(zo) = exp(
∫ zo

0 (2
√

1− z)−1 dz) = exp(1) = e. Since zo/λqBm = 0.5,
the equilibrium will be in form (a) if 1.5e > (1−q)−1 (i.e., q 6 1− (1.5e)−1 ≈ 0.755),
but in form (b) otherwise. Figure 2 shows the different equilibrium profiles obtained
for several choices of q.

Finally, we show how explicit solutions may be computed when the customer-
type distribution is specified.

Example 2. Uniform type distribution. To illustrate the computational results, we
consider the case of a uniform distribution PZ , namely, γz is distributed uniformly
on [0, 1]. Then

Iγ = mµ− λqPZ{z: γz < γ} = mµ− λq min{γ, 1} for γ > 0.
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Figure 3. Equilibrium profiles for an M/M/m(q) system with uniformly distributed customer types
(example 2). In part (a) q = 0.9 while µ is modified, and in part (b) µ = 1 while q is modified.

Assume for simplicity that mµ/(λq + 1) 6 1 (the computations otherwise are similar
but somewhat more cumbersome). Then the solution γo to γ − Iγ = 0 is simply
γo = mµ/(λq + 1). Next,

J(γ) = exp

(∫ γ

0

1
mµ− (λq + 1)y

dy

)
= exp

(
1

λq + 1
log

γo

γo − γ

)
=

(
γo

γo − γ

)1/(λq+1)

.

It may be seen that J(γo) =∞, hence, L(γo) =∞, which implies that the equilibrium
profile must be in form (a), as implied by theorem 8(iii). The equilibrium parameter θ
is the solution to

L(θ) :=

(
θ

λqBm
+ 1

)
J(θ) = (1− q)−1,

which needs to be evaluated numerically. Finally, Tz = τ (γz)− τ (θ) for γz 6 θ, with

τ (γ) =

∫ γ −1
y(mµ− (λq + 1)y)

dy =
1
mµ

log
mµ− (λq + 1)γ

γ
.

Some numerical results for this example are presented in figure 3 for a system with
parameters m = 1, λ = 1. Part (a) of this figure presents the equilibrium points
obtained with q fixed at 0.9, for several values of the service rate µ. It may be seen
that as µ increases, the fraction of customers who will not abandon immediately (given
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by θ, in light of the uniform type distribution on [0, 1]) also increases, approximately
in linear proportion to µ. However, the abandonment times of those customers who
choose to stay tend to become shorter. Part (b) depicts the equilibria obtained for the
same system, with µ fixed at 1, and several values of the service reliability parameter q.
As q increases, the abandonment times of waiting customers become larger. However,
the fraction of customers who abandon immediately remains almost constant.

5. Proof of theorem 8

In this section we provide the proofs for the main results in the previous section
concerning the M/M/m(q) model, as summarized in theorem 8. The analysis proceeds
through several lemmas. We first identify in lemma 9 the general structure of the
equilibrium profile, which is a consequence of the IDHR property inherent in the
M/M/m(q) + G queue: the abandonment times are zero above some type threshold,
and then are positive and increasing as the type decreases below this threshold. The
key lemma 11 considers the positive part of the abandonment profile, and derives an
explicit function of the customer types which specifies positive abandonment times
to within a constant shift. The transition from zero to positive abandonment times
is addressed in lemmas 10 and 12, which establish that this transition is either done
continuously or at a specific value of the type parameter. These results provide us
with a set of candidate equilibrium profiles, specified in proposition 13, which are
essentially parameterized by a one-dimensional parameter and strictly dominate each
other. Uniqueness will then be established by using the normalization condition (5).

For the purpose of the forthcoming analysis, it will be convenient to use a canon-
ical parameterization of the customer types, namely,

z ≡ γz ,

which identifies the customer type with the cost-benefit ratio parameter. According to
our assumptions on γz , z is then distributed on (0,∞) according to the distribution PZ
which admits a density. Except for replacing γz with z, other notations are not affected.
This canonical parameterization will be maintained till the end of this section.

We start by pointing to some basic relations that will be used repeatedly in the
following. Given a decision profile {Tz}, the virtual waiting time distribution F in
the active (M/M/m) part of the M/M/m(q) system is given by (4), with I(t) =
mµ− λqG(t), and

G(t) = PZ{z: Tz > t}.

Assume next that {Tz} is a consistent equilibrium profile. Then we can deduce the
important observation that G(Tz) is a fixed quantity for each z. Indeed, monotonicity
of Tz in z (proposition 5 with z ≡ γz) implies that

G(Tz) = PZ
{
z′: Tz′ > Tz

}
= PZ

{
z′: z′ < z

}
:= PZ(z).
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Obviously the latter is a function of z alone and does not depend on the particular
equilibrium considered. We thus obtain

I(Tz) = mµ− λqPZ(z) := Iz , (8)

where Iz again depends only on z.
We further recall that optimality of Tz implies that H(Tz) = γz whenever Tz > 0;

hence, H(Tz) = z under parameterization z = γz .
The first lemma concerns the structure of an equilibrium profile, and is a conse-

quence of the IDHR property of the M/M/m(q) +G queue.

Lemma 9. Let {Tz} be an equilibrium profile, and Hq the corresponding hazard rate
function. Then

(i) {Tz} is of the following form, for some constant θ > 0:

(a) Tz = 0 for z > θ.

(b) Tz > 0 for z < θ, and is then specified by the intersection of z with the
decreasing part of Hq; in particular, Hq(Tz) = z.

(c) z = θ is indifferent between T = 0 and T = limz↑θ Tz > 0. By convention
we define Tθ as the larger value.

(ii) Tz is a strictly decreasing and continuously differentiable function of z on 0 <
z 6 θ, and Hq(t) is strictly decreasing for t > Tθ.

Proof. (i) By proposition 4, Hq is in the IDHR class. The stated form of the equilib-
rium point then follows from proposition 2(iii) combined with the monotonicity result
in proposition 5. The neutrality of z = θ follows from continuity of the cost function
in z. Finally, it is easily argued that for z small enough (diminishing waiting cost)
it will be preferable to stay in the queue for some positive time rather then abandon
immediately, so that θ > 0.

(ii) By proposition 4, Hq is strictly decreasing beyond its maximum point. But
Tθ is already on the decreasing part, so that Hq(Tz) = z implies that Tz is strictly
decreasing (and continuous) in z for z < θ.

To establish differentiability, note the F ′ is continuous by its expression in (4),
hence, so is Hq = F ′/(F + g). Also, for t > Tθ,

G(t) = PZ{z: Tz > t} = PZ
{
z: Hq(Tz) < Hq(t)

}
= PZ

{
z: z < Hq(t)

}
,

and since PZ has a density (i.e., is absolutely continuous) by assumption it follows
that G is continuous. Revisiting (4), where I = mµ− λqG, it follows that F ′, hence
Hq, is continuously differentiable, and Hq(Tz) = z with Hq strictly decreasing implies
the same for Tz . �

Note that the definition of Tz in lemma 9 extends to every z > 0, even if z is
not in the support of PZ . This will conveniently enable to consider derivatives with
respect to z on the entire positive real line.
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The next lemma establishes a basic cutoff value in the type (or cost–benefit ratio)
parameter, beyond which customers will necessarily choose to abandon the queue
immediately if not admitted to service upon arrival.

Lemma 10. Let Iz = mµ − λqPZ(z), as defined in (8). Then for every z > 0,
z − Iz > 0 implies Tz = 0. Equivalently, Tz = 0 for z > zo, where zo is the unique
solution of z − Iz = 0.

Proof. Assume Tz > 0. We proceed to show that z − Iz 6 0, thereby verifying the
first assertion. Differentiating Hq, as in the proof of proposition 4, shows that H ′q
is sign-equivalent to [Hq − I]; hence, H ′q(Tz) is sign-equivalent to [Hq(Tz)− I(Tz)],
while I(Tz) = Iz by (8).

From lemma 9, H ′q 6 0 at t = Tz > 0, so that Hq(Tz) − Iz 6 0. However, the
optimality condition for Tz > 0 is Hq(Tz) = z, so that z − Iz 6 0 follows, as we set
out to show. Finally, the existence of a unique solution to the equation z− Iz = 0 was
established in the proof of theorem 7. �

Next, we provide an explicit characterization of the equilibrium profile Tz for
positive abandonment times, which specifies these times to within a constant shift.
This is done, essentially, by moving backwards on the waiting-time axis, from large
to small T , and simultaneously constructing the equilibrium profile and the virtual
waiting time distribution F .

Lemma 11.

(i) There exists a function τ (z), independent of the equilibrium point considered, so
that every equilibrium profile satisfies, for some constant C:

Tz = τ (z) + C whenever Tz > 0.

(ii) When Tz > 0, both F ′(Tz) and F (Tz) depend only on z but not on the particular
equilibrium point. We denote these values as F ′z and F z, respectively.

Proof. (i) Let {Tz} be an equilibrium profile, of the form specified in lemma 9. Con-
sider z < θ, where Tz > 0 by definition of θ and the optimality condition Hq(Tz) = z
holds. Recalling that Hq = F ′/(F + g), this optimality condition may be written as

z−1F ′(Tz)− F (Tz) = g.

Differentiating with respect to z gives

−z−2F ′(Tz) + z−1F ′′(Tz)
dTz
dz

+ F ′(Tz)
dTz
dz

= 0,

where all derivatives are well defined (cf. lemma 9(ii)).
From (4) we know that F ′′(Tz) = −I(Tz)F ′(Tz), where I(Tz) = Iz as specified

in (8). Substituting in the last equation and cancelling F ′ > 0 gives (−z−1Iz +
1)(dTz/dz) = z−2, or
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dTz
dz

= − z−1

Iz − z
. (9)

Since the right-hand side does not depend on the equilibrium point considered, this
establishes part (i) of the lemma, with

τ (z) =

∫ z −y−1

Iy − y
dy. (10)

We note that Iz − z > 0 must hold for z < θ, since (dTz/dz) < 0 there by
lemma 9. See also a comment below lemma 12 concerning the positivity of Iz − z.

(ii) Starting again with the optimality condition

F ′(Tz)

F (Tz) + g
= z,

multiplying both sides by −dTz/dz we obtain

d
dz

log
(
F (Tz) + g

)
= −z dTz

dz
= (Iz − z)−1.

Together with the initial conditions limz→0 F (Tz) = F (∞) = 0, this equation uniquely
defines F (Tz) as a function of z, namely,

F (Tz) = −g + g exp

(∫ z

0
(Iy − y)−1 dy

)
:= F z. (11)

F ′(Tz) can now be determined by differentiation, or more simply via the optimality
condition:

F ′(Tz) = z
(
F (Tz) + g

)
:= F ′z. (12)

�

Remark. An alternative proof to lemma 11 could start with the basic differential re-
lation (7) for the hazard rate Hq(t). Together with the equalities I(Tz) = Iz and
z = Hq(Tz) it implies that Hq is a solution of the following autonomous first-order
differential equation: H ′q = Hq(Hq − IHq ), where IHq(t) is simply Iz evaluated at
z = Hq(t). Then (9) can be deduced from Hq(Tz) = z, namely, that Tz is the inverse
function of Hq(t).

Let us briefly consider the options for the structure of the equilibrium profile, in
view of our results so far. Referring to lemma 9, we can distinguish two cases which
give rise to different equilibrium structure: either Tθ = 0, or Tθ > 0. In the former
case the equilibrium is completely determined by the single parameter θ, since the
equilibrium profile for positive abandonment times (z < θ, Tz > 0) is determined by
lemma 11. In the latter case, however, there seem to be two independent parameters θ
and Tθ, where the latter represents a jump in the equilibrium profile from Tθ+ = 0 to
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a positive value Tθ > 0. We now examine the second case more closely, and show
that such a jump can occur only at a specific value of θ. Furthermore, an interesting
property of the hazard rate function is established for this case.

Lemma 12. Refer to the equilibrium structure as established in lemma 9, and the
cutoff value zo defined in lemma 10. Suppose Tθ > 0. Then θ = zo, and Hq(t) = zo

for 0 6 t 6 Tθ.

Proof. From lemma 9(c), Tθ > 0 implies that

Uθ(Tθ)− Uθ(0) = 0. (13)

Recall that by (3)

U ′θ(t) is sign-equivalent to
[
Hq(t)− θ

]
. (14)

Also, recall from the proof of lemma 10 that H ′q(t) is sign-equivalent to [Hq(t)−I(t)].
Now, on 0 6 t 6 Tθ , since there are no abandonments between 0 and Tθ we have
G(t) := PZ{z: Tz > t} = G(Tθ), hence, I(t) := mµ− λqG(t) = Iθ, so that

H ′q(t) is sign-equivalent to
[
Hq(t)− Iθ

]
on 0 6 t 6 Tθ. (15)

It follows from this sign equivalence that [Hq− Iθ] (and H ′q) must keep the same sign
on [0,Tθ] – in fact, it must be either strictly positive, or strictly negative, or zero on
that entire interval.

We are now ready to show that θ = zo. From lemma 10 and the definition of θ
it is obvious that θ 6 zo, so that it is enough to show that θ < zo is not possible. But
if θ < zo, then θ < Iθ follows by the definition of zo and the strict monotonicity of
(z − Iz). Invoking the optimality condition at Tθ gives

Hq(Tθ) = θ < Iθ.

But then by (15), H ′q(Tθ) < 0, and the sign preservation property established above
implies that H ′q(Tθ) < 0 on [0,Tθ]. Together with Hq(Tθ) < θ this means that
Hq(t)− θ > 0 on [0,Tθ], and by (14) this implies that U ′θ(t) > 0 on that interval.
But this contradicts (13). It follows that θ < zo cannot hold, hence, θ = zo is
established.

Consider next the hazard rate function given that θ = zo. By definition of zo

we then have Iθ = θ. Now, if Hq(t) − θ 6= 0 at t = 0, it follows by the above sign
preservation property that is must keep the same sign on [0,Tθ], hence, so does U ′θ.
But this again contradicts (13), which establishes that Hq(0)− θ = 0, and by the sign
preservation property this must hold on the entire interval [0,Tθ], as asserted. �

A few comments are due regarding the last result. In the case of Tθ > 0 (hence,
θ = zo), the utility function Uzo(T ) is constant (at its maximal value) for 0 6 t 6 Tθ;
see (14). It follows that any choice of T in the interval [0,Tθ] is optimal for type zo

customers in this case.
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The fact that Hq is constant on 0 6 t 6 Tθ is of particular interest, since it will
allow to conclude that the hazard rate function in equilibrium is always non-increasing.

The last proof also shows that the threshold θ satisfies Iθ − θ > 0 (with equality
if θ = zo, and strict inequality if θ < zo). If follows by monotonicity that Iz − z > 0
for z < θ, which is consistent with the observation that the function τ (z) in (10) is
strictly decreasing for z < θ.

We summarize our findings regarding the structure of an equilibrium point in
the following proposition. The two possible forms of equilibrium are illustrated in
figure 2.

Proposition 13. Consider the M/M/m(q) model with rational abandonments. In any
equilibrium point:

(i) The equilibrium profile has one of the following two alternative forms, with zo as
defined in lemma 10:

(a) For some θ 6 zo, we have Tz = 0 on z > θ, and

Tz = τ (z)− τ (θ) :=
∫ θ

z

y−1

Iy − y
dy for z 6 θ. (16)

(b) For some constant Tzo > 0, Tz = 0 for z > zo (hence, θ = zo), and

Tz = Tzo +

∫ zo

z

y−1

Iy − y
dy for z 6 zo. (17)

(ii) The associated hazard rate function Hq is non-increasing. In fact, in case (b),
Hq(t) = zo for 0 6 t 6 Tzo .

Proof. The stated form of the equilibrium follows from lemma 9, combined with
lemmas 10 and 11, where the the function τ is specified in (10). The fact that the
hazard rate function is non-increasing follows from lemma 9(ii) (for t > Tθ) and
lemma 12 (for 0 6 t 6 Tθ), where the latter also established that Hq = zo on the
indicated interval. �

Given these structural characteristics of the equilibrium, we have essentially ob-
tained a one-dimensional parameterization of all possible equilibrium points. It should
be noted that these candidate equilibrium profiles are completely dominated by each
other; that is, the profile {Tz} is (weakly) increasing as θ increases from 0 to zo, and
then as Tzo increases from 0 to infinity.

Uniqueness of the equilibrium may now be established by applying an appropriate
normalization condition.

Theorem 14. For the M/M/m(q) model with rational abandonments, a consistent
equilibrium exists and is unique.
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Proof. Recall that F ′ is the virtual waiting time distribution in the active (M/M/m)
part of the M/M/m(q) system, and must satisfy the normalization condition (5). Ob-
serve that

∑m−1
j=0 πj = B−1

m πm−1, where the constant Bm is given by

Bm =
(1/(m− 1)!)(λq/µ)m−1∑m−1

j=0 (1/j!)(λq/µ)j
. (18)

(Note that this coincides with the Erlang-B formula.) Also, (4) implies that F ′(0) =
λqπm−1, so that (5) may be written as

1
λqBm

F ′(0) +

∫ ∞
0

F ′(t) dt = 1. (19)

We will show that only one of the candidate equilibrium points suggested by the
previous theorem satisfies this condition.

As already noted, the set of candidate equilibrium profiles may be considered a
function of a single parameter, which first increases (as θ) from 0 to zo, and then in-
creases (as Tzo) from 0 to infinity. Refer to this parameter as the equilibrium parameter.
Using relations implied by the optimality conditions, we shall associate with each can-
didate equilibrium profile a virtual waiting time density F ′(t), and show that the latter
is an increasing function of the equilibrium parameter (at every t), so that only one can-
didate F ′ can satisfy the normalization condition above. Existence can be established
by noting that F ′ is actually continuously increasing in the equilibrium parameter, so
that the normalization condition is satisfied by one of the candidate equilibria, which
is therefore an equilibrium point. Here we shall take a more direct approach, and
derive explicit expressions for the normalization condition on F ′ which will turn out
monotonic and continuous, and which will also be useful for computational purposes.

To start, observe that any F ′(t) associated with an equilibrium profile must be
strictly decreasing in t. Indeed, F ′′(t) = −I(t)F ′(t) and

I(t) > I(0) = Iθ > Izo = zo > 0;

here the first relation is by definition of I , the second by definition of θ as the cutoff
value, the third since θ 6 zo by lemma 10, and the last two by definition of zo.

Consider first a candidate equilibrium in form (a), parameterized by 0 < θ 6 zo.
Observe, from (16), that for a given θ, Tz decreases continuously from ∞ to 0 as z
increases from 0 to θ. Furthermore, Tz is strictly increasing in θ at any z for which
Tz > 0. Also recall, from lemma 11(ii), that F ′(Tz) = F ′z , independent of the specific
equilibrium, whenever Tz > 0. But since F ′(t) is strictly decreasing in t, as observed
above, it is now easily shown that F ′(t) is strictly increasing in θ at every t. Indeed,
refer to two candidate equilibria with corresponding parameters θ < θ̂. Denote by T̂z
and F̂ the quantities related to θ̂. Then for any t > 0 there exists z so that Tz = t,
and consequently

F ′(t) = F ′(Tz) = F ′z = F̂ ′
(
T̂z
)
< F̂ ′(Tz) = F̂ ′(t),

where the inequality follows from Tz < T̂z.
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Let us write explicitly the normalization condition for a candidate equilibrium
in form (a). Note that (19) may be written as 1/(λqBm)F ′(0) + F (0) = 1. Using
expressions (11) and (12) for F and F ′ at time Tθ = 0, we obtain

g

λqBm
θ J(θ) +

(
−g + g J(θ)

)
= 1,

where

J(θ) := exp

(∫ θ

0
(Iz − z)−1 dz

)
. (20)

Collecting terms and noting that g = (1− q)/q gives(
1

λqBm
θ + 1

)
J(θ) = (1− q)−1. (21)

Observe that the left-hand side of this equality condition is continuously and strictly
increasing in θ ∈ [0, zo], from 1 to a positive value.

Consider next a candidate equilibrium in form (b), parameterized by Tzo > 0.
Treat F ′(t) separately on 0 < t 6 Tzo and t > Tzo . On the latter interval it may be
shown that F ′(t) is increasing in Tzo , using the same argument as in form (a). On
the former interval, since we have there I(t) = Izo = zo (see above (15), and the
definition of zo), it follows by (4) that F ′(t) = F ′(0) exp(−zot) there, so that

F ′(t) = F ′(Tzo) exp
(
zo(Tzo − t)

)
for 0 6 t 6 Tzo . (22)

But since zo and F ′(Tzo ) = F ′zo are (positive) constants, it obviously follows that F ′(t)
is strictly increasing in Tzo on this interval as well.

We proceed to express explicitly the normalization condition for a candidate
equilibrium in form (b). Here we start with (19) written as

1
λqBm

F ′(0) +

∫ Tzo

0
F ′(t) dt+ F (Tzo ) = 1.

Using expressions (11) and (12) for F (Tzo) and F ′(Tzo), together with (22), we obtain
after integration and rearranging terms,(

zo

λqBm
+ ez

oTzo

)
J
(
zo) = (1− q)−1, (23)

where J(zo) is defined in (20). Again, the left-hand side of this condition is a contin-
uously increasing function of Tzo , from a positive value (which coincides with the left
hand side of (21) for θ = zo) up to infinity as Tzo increases from 0 to infinity.

It follows that the normalization condition in (21) and (23) will be satisfied for a
unique equilibrium parameter. Thus, one and only one candidate equilibrium is con-
sistent with the normalization condition (19), and is, therefore, the unique equilibrium
point of the system considered. �
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We shall now use the expressions obtained in the last proof in order to compute
the equilibrium parameter, which specifies the actual equilibrium point in the set of
candidate equilibria.

Proposition 15. Let zo be defined as in lemma 10, J(z) as in (20), and the candidate
equilibrium profiles defined in proposition 13. If (1/(λqBm)zo + 1)J(zo) > (1− q)−1,
then the equilibrium point is of the form (a), with θ given by the solution to (21).
Otherwise, the equilibrium point is in form (b), with Tzo obtained explicitly from (23).

Proof. The specified condition for selecting between the equilibrium forms is just the
normalization condition (21) for θ = zo, which coincides with (23) for Tzo = 0. The
rest is a consequence of the previous proof. �

The next result shows that the equilibrium will be in form (a) in most cases of
practical interest. Recall, however, that in example 1 above it was shown that form
(b) may arise under certain conditions.

Proposition 16. Assume that the density fZ = dPZ/dz of z is bounded in magnitude.
Then the equilibrium profile is in form (a), as defined in proposition 13.

Proof. We show that J(zo) =∞, which implies that the equilibrium is in form (a) by
proposition 15. From (20), J(zo) = exp(

∫ zo

0 (Iz − z)−1 dz). Recall that Izo − zo = 0,
and by strict monotonicity, Iz − z > 0 for z < zo. Furthermore, for z < zo,

Iz − z = (Iz − z)−
(
Izo − zo) = λqPZ

{
z′: z 6 z′ < zo}+

(
zo − z

)
.

Let B <∞ be an upper bound on fZ(z); then

Iz − z 6 λqB
(
zo − z

)
+
(
zo − z

)
= (λqB + 1)

(
zo − z

)
,

so that

J
(
zo) > exp

(
(λqB + 1)−1

∫ zo

0

(
zo − z

)−1
dz

)
=∞. �

Theorem 8 is now a compendium of theorem 14 and propositions 13, 15 and 16. Note
that this theorem is stated in terms of the general parameterization of the type variable,
so that the canonical parameterization γz = z which was assumed for convenience at
the beginning of this section is not imposed; the formulas for the general case are
obtained simply by substituting γ in place of z at the appropriate places.

6. Modeling choices and options

Let us now briefly discuss some of the features of the models that have been
considered in this paper, and point out some alternative and additional elements which
may be of interest, and should be considered as part of future work.
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The starting point for our study was the M/M/m queue with rational abandon-
ments, a utility function based on a linear waiting cost, and a consistent equilibrium
solution. As we have seen, for this model abandonments occur either upon arrival or
none at all, which is obviously contradictory to our common experience and, perhaps,
common wisdom. Within the rational abandonment model, several elements may cause
this mismatch:

• Linearity of the waiting cost.

• The queueing model.

• The consistency assumption.

Costs. The assumption of a linear waiting cost is amenable to analysis, but may
be lacking an important component. The waiting cost may be reasonably divided
into two components: an alternative waiting cost and a psychological cost. The first
reflects the actual value of time, and may be viewed as the amount a customer is
willing to pay beforehand for someone else to wait in her place. This component
may be argued to be approximately linear. The additional psychological component
refers to the subjective feeling of impatience that develops while waiting, and can
be argued to be strictly convex. One can check that strictly convex costs will induce
abandonments in finite time. The equilibrium analysis, however, may be consider-
ably more difficult and less explicit than in the linear case, and is not available at
present.

The second and third points are centered around the shape of the hazard rate
function associated with the virtual waiting time. Even for nonlinear waiting costs,
and in fact under any abandonment profile, the hazard rate in any M/M/m queue
is increasing. As already pointed out, this seems to be at odds with the subjective
interpretation of the waiting time distribution. Indeed, excessive waits will often be
interpreted by waiting customers as an indication that the system performs below
its standard performance, thus leading to a decrease in the subjective hazard rate as
perceived by the customer.

The queueing model. In this paper we have approached this discrepancy by assuming
that the system actually deviates from the basic M/M/m model. This has been done
in the simplest possible way that captures the desired effect of a decreasing hazard rate
– namely, the inclusion of a fault state which is hit by arriving customers with certain
probability. More involved models of resource deficiency and congestion may be of
interest here, such as variable number of servers, varying arrival rates, priorities, and
variable number of servers. The latter is the closest one to the model of this paper,
and can perhaps be analyzed using similar methods. But either one of these factors
tends to decrease the hazard rate in time, as the relative (posterior) weight of possible
unfavorable circumstances increases while waiting. We finally note that heavy-tailed
service distributions (in an M/G/m queue model) could also lead to decreasing hazard
rate functions.
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Consistency. An alternative approach for inducing a decreasing hazard rate tail, is
to attribute it to the subjective beliefs of customers, which need not coincide with
actual system performance. It may be argued that the virtual waiting time distribution
in a given system is never learned perfectly by the customers, due to, say, limited
experience, variation in time, prior belief, experience with other systems, etc. This
is especially relevant for the tail of the distribution, since exceptionally long waiting
times are rarely reached. We are thus lead to the concept of a partially consistent
equilibrium, which may be of independent interest – where the subjective waiting time
distribution is influenced by the actual one in some specified manner, but does not
necessarily coincide with it. One option may be to specify some parametric form for
the subjective distributions, and assume that this parameter is determined by some
characteristics (e.g., the mean) of the actual system performance.

We next point out some additional issues that have not been dealt with in the
present paper.

Retrials. These are obviously an important issue when abandonments are concerned.
Besides their effect on the arrival process, the option of retrial may play a significant
role in the abandonment decision. The incorporation of retrials within the rational
model is an important subject for future work.

Demand elasticity. An additional concern is the arrival rate, which was assumed
constant. In fact, we may expect the system performance (viz. the virtual waiting time)
to affect not only the abandonment decisions, but also the decisions of some customers
regarding whether to try to approach the system at all. This may be accommodated
within the current rational framework, simply by appending some arrival cost to each
customer type, and assuming that each customer joins the system only if his utility for
approaching the system (and abandoning optimally) surpasses the arrival cost. This
would lead the system to stabilize on a new effective arrival rate, but should not affect
the uniqueness and structure of the equilibrium.

Real-time decisions. In our model formulation, abandonment times were considered
as decision policies which are determined by customers upon arrival. These policies
may be easily reinterpreted as real time decisions, which may seem more natural for
the problem at hand. Specifically, while waiting a customer continouosly considers
whether to abandom immediately, or wait further and possibly abandon at some later
time. Once the former becomes preferable, in terms of residual utility, the customer
leaves the queue. More formally, consider a z-type customer who has been waiting
for t time units in the queue. Let Fz(·|t) denote this customer’s subjective distribution
on his remaining virtual waiting time V − t. Possible decisions for this customer are
to leave immediately (T = 0) or stay, in which case he can leave at any time T > 0
in the future. The (residual) utility associated with a T -abandonment would be

Uz(T |t) = =Ez|t
(
rz1
{
T > (V − t)

}
− cz min

{
(V − t),T

})
.
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An optimal decision at time t would then be to abandon immediately if T = 0 maxi-
mizes Uz(T |t), and stay otherwise.

As may be expected, this real-time decision pattern coincides with the initial
policy formulation, provided that customers are temporally consistent (cost parameters
are not modified, and Fz(·|t) is obtained from Fz(·) via Bayes’ rule). The real-time
formulation may become useful in more complicated situations, where partial on-line
information is supplied to customers concerning their remaining waiting time.

Asymptotic analysis. Queueing theory enjoys some universal laws which are valid
under very broad assumptions. An outstanding example is Kingman’s discovery [14]
that waiting-times in heavily-congested G/G/1 queues tend to an exponential distrib-
ution. This fundamental law has been extended to cover the G/G/m queue [13], and
much more. It is of interest to identify analogous universal laws that pertain to cus-
tomers’ patience. (Asymptotic analysis of queues with abandonments has been carried
out only under the very restrictive assumptions of the M/M/m + M queue, namely,
exponentially distributed patience; see [7].)

Queueing science. Our paper could be viewed as an initial theoretical step, in an
attempt to understand and model the patience (or impatience) of delayed individuals,
as reflected in common queueing situations. A natural next step is a validation of
the theory, either via laboratory experiments (as in [4]), or real-world measurements
(in the spirit of [3,17]). This validation is likely to be followed by refinements or
modifications of our theory, until a satisfactory understanding of the phenomenon of
abandonment is achieved.

7. Conclusion

This paper suggests a rational decision framework for determining the abandon-
ment times of waiting customers, assuming that these customers have no information
regarding their standing in the queue. We focused here on the consistent equilibrium
solution, which supposes that customers’ expectations regarding their waiting time in
the queue coincide with actual system performance. The utility function assumes a
marginal waiting cost and service utility which are constant in time, but may vary
among customers.

Our main results concern the existence, uniqueness, structure and computation
of the equilibrium in the M/M/m queue, and in the extended M/M/m(q) system. In
the former case it was shown that, due to an intrinsic increasing hazard rate property,
rational decisions are either to leave immediately if not admitted to service upon arrival,
or not to abandon at all. By introducing a possible fault state into this basic system,
a nontrivial abandonment profile has been obtained in equilibrium.

In both cases, it turns out that the hazard rate function related to virtual waiting
time tends to become non-increasing in equilibrium: in the M/M/m case it is (weakly)
increasing in general but becomes flat in equilibrium, while in the M/M/m(q) case
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it is increasing–decreasing in general but becomes decreasing under the equilibrium
abandonment profile. This points to a general tendency which deserves further study.

We have pointed out several directions in which our basic models can and should
be generalized. Of immediate interest to us are the incorporation of convex waiting
costs, and the generalization of the fault state formulation to queues with more general
failure (or congestion) modes. At present it is not clear whether a unique equilibrium
exists in these models. The effect of intentionally supplied status information to cus-
tomers is of great importance in practice, and appropriate methods for its incorporation
and investigation within the rational model are yet to be explored.

Naturally, the practical utility and further evolution of the models suggested in this
paper need to be evaluated in light of actual applications. A methodology is required
to estimate the basic model parameters (and especially the customer parameters) from
attainable measurements, and test the predictive capability of this model under varying
conditions. All in all, it is apparent that much remains to be done in this area.
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