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MATHEMATICS OF OPERATIONS RESEARCH 
Vol. 21, No. 2, May 1996 
Printed in U.S.A. 

ASYMPTOTICALLY EFFICIENT ADAPTIVE STRATEGIES 
IN REPEATED GAMES 

PART II: ASYMPTOTIC OPTIMALITY 

NAHUM SHIMKIN AND ADAM SHWARTZ 

This paper continues the analysis of a dynamic decision problem modeled as a two-person 
repeated game with random rewards, perfect observations, and incomplete information on 
one side. The emphasis is on strategies of player 1 (the uninformed player) which maximize 
his worst-case total reward in a strong non-Bayesian sense, namely, for all possible states of 
nature. An asymptotic bound on performance is first established, followed by the construc- 
tion of strategies which achieve this bound. The analysis highlights the efficient acquisition of 
(statistical) information under conflict conditions, and especially the relations between 
information and payoff which are inherent in this problem. 

1. Introduction. This paper continues the study of asymptotically efficient 
strategies for the model considered in Shimkin and Schwartz (1995). For complete- 
ness we summarize briefly the model and relevant notation. Further details and 
background may be found in Shimkin and Schwartz (1995). 

The game model involves two decision makers, player 1 (the maximizer) and player 
2, which repeatedly play a matrix game G(00), known to be a member of a finite set 
{G(0), 0 E }0. Each G(0) is a zero-sum matrix game with random rewards, and with 
finite action sets J for player 1 and / for player 2. The reward structure is thus 
specified by the probability distributions {po, i, j(): i E , j Ef on a finite reward set 
W. Perfect observations are assumed, so that after each stage t both decision makers 
observe and remember the actions (it, jt) and the reward at. Rewards accumulate to 
form the total n-stage reward Etlat. 

A strategy or for player 1 is defined as a sequence {o-J, which specifies for each 
history sequence ht = {is, , s,as}t a "randomized action" xt = rt(ht). Here xt E 
9(J) is a probability vector over J, used to select the pure action it. Randomizations 
at different stages are performed independently; thus, we consider only behavioral 
strategies throughout this paper. A strategy r for player 2 is defined similarly, with 
t = rt(ht) e ,(J). The sets of strategies for players 1 and 2 are denoted l and ' 

respectively. Player 1 does not know the value of the true parameter 00 (except that it 
belongs to 0), so that his strategies cannot depend on 00. Such dependence is 
allowed for player 2. For each triplet (00, r, r) in 0 x X X , let PO ' and Eo' 
denote the induced probability measure and expectation on the actions-rewards 
process. Further notations include 8(J) and 9(f)-the sets of probability vectors 
over J` and jf xt e (J) and Yt E ((f)-the randomized actions of player 1 and 
player 2 at stage t; v(0)-the minimax value of the matrix game G(0); and 
Ao(i, j) = E .a 'Po, ,j(a)-the expected reward in G(0) given actions (i, j). 

The performance measure for player 1 will be defined in terms of the (relative) 
loss. For fixed o-, r, 00 and n > 1 define the loss L,'(00) and the worst-case loss 
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L,((0) by 

(1.1) L,(00) A maxL'r((00) A maxEEo nvu(o)- Ea 
1' t-- / 

Note that nv(00) equals the value of the n-stage game under complete information, 
and serves as a reference level for the reward in the incomplete-information game. 
For each strategy or, the worst-case loss represents the deficiency in the worst-case 
(over all strategies of player 2) expected total reward with respect to this level. It is 
important to note that L, depends on the parameter 00, which is unknown to player 
1. It therefore presents, for given n and or, a vector of performance measures, whose 
entries correspond to the possible values of the true parameter. Ideally, player 1 
would like to minimize (reduce to zero) simultaneously all entries of this vector. 

While the previous paper (Shimkin and Schwartz 1995) focused on performance of 
strategies of relatively simple structure, the present paper is concerned with asymp- 
totic (long-term) optimality. In defining a meaningful sense of optimality, we shall 
follow the asymptotic theory introduced by Lai and Robbins (1985) in relation with 
the statistical multiarmed bandit problem, and its extension in Agrawal et al. (1989) 
to controlled i.i.d. processes. The idea is that the rate of increase of L,(00) may be 
simultaneously minimized for all 00. First, a lower bound on the rate of increase of 
L((00) will be established, which is logarithmic in n. More precisely, the bound holds 
for any strategy o which is uniformly good, i.e., achieves a "satisfactory" rate of 
increase for every possible value of the true parameter 00 (see Definition 3.1). It 
establishes that the rate of increase of L,(0o) is at least b(00)log n, with b(o0) a 
nonnegative constant which is explicitly specified. We then proceed to construct a 
strategy which is asymptotically optimal, in the sense that it satisfies the lower bound. 
This strategy is essentially based on the (much simpler) value-biased Certainty 
Equivalence strategy that was analyzed in Shimkin and Schwartz (1995), but some 
delicate modifications will be required to achieve asymptotic optimality. 

In the adaptive control problem (Agrawal et al. 1989), which corresponds to the 
present model without player 2, it was possible to achieve asymptotic optimality by 
using a standard parameter estimation scheme, modified by adding a special "prob- 
ing" phase. Probing is performed whenever it seems that insufficient statistical 
information was obtained, and is done by choosing actions which are solely dedicated 
to the efficient acquisition of information. In the present game model, such clear 
separation of an information acquisition phase is no longer possible. Indeed, depend- 
ing on the model data, player 2 may be able to hide the value of the true parameter 
by using "nonrevealing" actions, under which the reward statistics under different 
parameters coincide (for all actions of player 1). Instead, a delicate balance must be 
maintained here between information acquisition and immediate rewards. Certain 
(sub-) strategies which are related to Blackwell's approachability theory (Blackwell 
1954) will be constructed for that purpose. 

The remainder of the paper is organized as follows. In ?2 we introduce some 
simplifying assumptions regarding the model, as well as additional notation. Section 3 
contains the asymptotic bound on the loss, and the definition of an asymptotically 
optimal strategy. Construction of such a strategy commences in ?4, where two classes 
of sub-strategies are developed. These form the basis for the complete strategy, which 
is presented in ?5. 

2. Assumptions and further notation. In this paper we apply the following 
assumptions to the basic model: 
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ASSUMPTION Al. For each i EJ and j Ej, the distributions {Po, i,j(')}E are 
mutually absolutely continuous. That is, for every 0, 0' and a, Po , j(a) = 0 if and 
only if po' ,j(a) = 0. 

ASSUMPTION A2. In each matrix game G(O), the optimal strategies of player 1 and 
player 2, denoted x* and yf, are unique. 

ASSUMPTION A3. The values of the matrix games {G(0)} are distinct, namely 
v(O) - v(O') for 6 0'. 

These assumptions are technical in nature, but without them the construction and 
analysis of the optimal strategy would be much more complicated. Some of the 
associated complications (especially with respect to the omission of Al and A3) may 
be perceived in the analysis of Shimkin and Schwartz (1995). As for the lower bound, 
Al and A3 do not seem crucial; however, relaxing A2 would require a modification of 
the bound to account for nonuniqueness of y*. 

Some additional definitions and basic relations from Shimkin and Schwartz (1995) 
are next recalled. 97(J) denotes the set of probability vectors over the (finite) set J. 
For any matrix M = {M(i, j)), the following notation denotes averaging over rows or 
columns: M(x, j) D EixiM(i, j), M(x, y) - Ei jxiy M(i, j), and similarly for M(i, y). 

The one-stage loss is defined by do(i,j) = v() - A(i, j). In this notation the 
(total) loss may be written as 

n 

(2.1) = ^ 1:^0 A)? ( 2.1 ) L,' ' '( 0L ) E~r"r E doo(it, Jt)) 
t=- 

where doo(it, j,) may be replaced (by appropriate conditioning) by doo(x, Jr), doo(i, Yt) 
or doo(xt, Yt). 

Define the likelihood function A,,() = n1t P, i, j(at), and the log-likelihood ratio 

n 
(2.2) A,,(, 0') = log t) 

t=l P', ,j at) 

The corresponding information divergence (or Kullback Leibler information) is given by 

(2.3) I, '(i, ) = P,i,j(a)logP (a) 
ae V Poe,i,j(a) 

It is always true that Io, 2 0, and, under Assumption Al, I, , is finite. Thus we 
need not introduce a truncated version as done in Shimkin and Schwartz (1995). 

The parameters in 0 are assumed ordered according to the values v(o), so that 
0 > 0' stands for v(O) > v(0'), and 0 > 6' for v(0) > v(0'). Finally, 11 II denotes the 
Euclidean norm, and ii I11I the sup-norm. 

3. A lower bound on the loss. In this section we derive an asymptotic lower 
bound on the worst-case loss. This will be used to define a meaningful non-Bayesian 
sense of optimal performance for player 1. 

The stated objective of player 1 is to minimize (the rate of increase of) the 
worst-case loss. However, in general the worst-case loss cannot be minimized simulta- 
neously for every possible 00. For example, if player 1 plays at every stage his optimal 
(maximin) strategy in G(0) for some fixed 0 E 0, then he guarantees zero loss if 0 
happens to be the true parameter. But if the true parameter is different, his loss may 
grow linearly in n. 
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To exclude such nonadaptive strategies, we shall restrict attention to strategies 
which perform "reasonably well" for every parameter, as specified in the following 
definition (compare Lai and Robbins (1985), Agrawal et al. (1989)). 

DEFINITION 3.1. A strategy ao of player 1 is said to be uniformly good if for every 
00 E 0: 

(3.1) Lo( 0) = o(na) for every a > 0. 

From Shimkin and Schwartz (1995) we know that the set of uniformly good strategies 
is nonempty, and in fact there exist strategies which guarantee that the loss rate is 
O(log n) at most. Thus, strategies outside this set need not be considered. 

For each parameter 0, define an associated set of "bad" parameters (see the end of 
the section for interpretation of this set and discussion of the lower bound; note that 
0 is not included in B(0)): 

(3.2) B(O) = (0' E 0: v(0') > v(O),Io, o(x*,y ) = 0}. 

Since Io, ' is nonnegative, the requirement Io, ,(x, yo ) = 0 in the last definition is 
equivalent to: Io, 0(i,j) = 0 for every pair of relevant actions in G(0), namely 
i ei0 - {i: (x4)i > 0} and j 0 - {j: (yr)j > 0}. 

THEOREM 3.1. Let 0 E 0 be such that B(0) # 0. Then, for every uniformly good 
strategy o- of player 1, 

(3.3) liminf lo" >b(O), n-oo 0 logn 

where (defining 0/0 A oO), 

(3.4) b(O) = min d (x, ) 0. 
xe(Jr) min, B(0) Io 0, (X, yO ) 

PROOF. Consider a fixed 0 E 0 such that B(0) - 0. Let r = {ye} denote the 
stationary strategy of player 2, in which y, = y* at each stage (note that this strategy 
does not depend on the true parameter of the game). It will be proved below that for 
any uniformly good strategy o, 

(3.5) lim inf 
Logn b(0), 

which clearly establishes the required bound. 
Given that player 2 uses r0, player 1 in effect is facing a "controlled i.i.d. process" 

of the type considered in Agrawal et al. (1989) with "state" X,, = (a,,, j,,). However, 
the lower bound from Agrawal et al. (1989) does not apply here. The reason is that in 
the present case the single-stage loss may be either positive or negative, since it is 
defined with respect to the minimax value v(00), whereas in the single controller case 
the single-stage loss is naturally defined with respect to the best achievable reward, 
and hence is always positive. (See also the remark below (3.11).) Still, it will be 
possible to follow the proof of Agrawal et al. (1989) after establishing the next two 
lemmas. It is important to note that the proof of the next lemma requires con- 
sideration of other (nonstationary) strategies of player 2 besides r0. In fact, the 
results to follow do not necessarily hold if player 2 is limited a priori to stationary 
strategies. 
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LE'MMA 3.1 (COMPARE AGRAWAL ET AL. (1989, ~LEmMA 3.2)). Assume'that o, is a 
uniformly good strategy of player 1. Then, for any 6' e B(O), 

(3.6) o <Klogn} =o(nc") forevery a > O andK > 0. 

PROOF. Fix 6' e B(6). It is first shown that a small loss under 0' implies a large 
loss under 6 (see (3.10) below). Let J0 = {i eY; (4 )j > 01 be the set of relevant 
actions of player 1 in G(6). It is well known that this is exactly the set of actions 
which maximize the (expected) reward against yo (Parthasarthy and Ragahavan 1971, 
Theorems 3.1.2 and 3.1.16); that is, A0(i, yo*) = v(6) for i .o and A8(i, yO*) < v(6) 
for i 4J0. Consequently, 

(3.7) do (ii yo*) v( 0) - AO (i yo*) 0 for i Eii~ 

and, since the action set is finite, there exists a positive constant 81 such that 

(3.8) do(i,yI )?yo ,81 > 0 for i J5' 

Consider now the game GOY). By definition, 6' e- B(O) implies 1o ,(x4, yo) = 0 
(hence Io, 0(i, y*) = 0 for every i es~) and v(6')> v(6). Noting (3.7), 

(3.9) do,(i, y3) = v(6') -AO,(i, yo) = v(') -AO(i, yo) 

v(O') - uOe 0 > 0, i EX 

Denoting D maxi d40(i, yr ), it follows from (3.7)-(3.9) that 

(3.10) do,(i, yo ) ? 60 - (D + 80)1{i So1} 
? 8,- 82d0(i, yo), 

where 82 ~ (D + 6,)/51 > 0. Thus, using again the fact that d0(i, y*)* 0 by opti- 
mality of y', 

(3.11) PcitT{ do(i,, y) < K log n} 

PO~ A{E do(it,yo* < Klog n, Vm ?5n} 

?Pot~ oEdO'(it YO~ ~! 80m - 2K log n, Vm n} 

where the event F,, is defined accordingly. To establish the lemma, it remains to show 
that the last probability decays as o(na 1). (Note that application of Chebycheffs 
inequality, as in the proof of Lemma 3.2 in Agrawal et al. (1989), is impossible here 
since the loss 2;d6,(it, y*) may be negative.) Fix n ? 1, and consider the following 
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strategy r' of player 2. First define a stopping time T by 

and T = n + 1 if the minimized set is empty (this is exactly the event F,,). Define r' 
as the strategy which chooses Yt = yo for t < T, and y, = yo thereafter. Since r0 and 
r' coincide on F,, 

(3.12) OTf= PjT (F J. 

Also, noting that do0(i, yo) ? 0 (by optimality of yo* in G(6')), we obtain under r': 

n ~~~~T-1 n 

(3.13) do,(it,yt) E do(it,yo*) + Edo,(it,yo) 
t=1 t=1 t=T 

T- 1 

EC do,(it) YO*) 
t=1 

> 62K log n + 80(T- 1) 

> -2K log n + 0nnl(F,,) PTT_a.s., 

where the last inequality holds since T = n + 1 on F,. Now, since o- is uniformly 
good, it follows by (3.1), (1.1), (2.1) and (3.13) that for every a > 0: 

(3.14) o(n')= L'(6') ? L'?T'(6l) E4 T( E do0(itq y)t 

> -&2K log n + 80 nP6IT'(F,j, 

so that: 

(3.15) ?1) < o(n'1)/18n = o(nal). 

Together with (3.11) and (3.12), this implies the lemma. o 

LEmm,A 3.2. Assume B(O) # 0. Then 
(i) 0 <b(O) < oo. 

(ii) The minimization in the definition (3.4) of b(0) can alteratively be taken over 
X(6) { (x e xi9'): xi = 0 if (4*)i > 01: the set of randomized actions supported on 
nonrelevant actions. 

PROOF. The inequalities b(6)> 0 and b(6) < oo follow from the following facts 
(a) andI (b), respectively: 

(a) For every x e8'J),do(x, yo= 0 implies that Io,00(x, y)= 0 for every 
6' E B(6). This follows from the definition of B(6) by noting that d0(x, yO*) = 0 
implies that x is supported on the set J' of relevant actions (cf. (3.7), (3.8)). 

(b) ninoeB( Io, ,(x, yo*) > 0 for some x E 9{JI). To see that, note that for every 
6' EB(6), 
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i.e., rewards under 0 and 6' are not identical, which implies that I, ,(x,, yo) = 0. 
Thus fact (b) is satisfied by choosing x as a convex combination of {x,: O' e B(0)}. 

Item (ii) of the lemma follows since i ej,* implies that do(i, y*) = 0 (see (3.7)), 
and that o, ,(i, yo) = 0 for all 0' e B(O) (by definition of B(0)). o 

Based on these lemmas, the proof of Theorem 3.1 may be concluded exactly as the 
proof of the lower bound in Agrawal et al. (1989). For the reader's convenience we 
outline the main steps. Given a uniformly good strategy a, our objective is to 
establish (3.5). Fix p > 0, and for each n > 1 define the event 

n 
d(nY* b(O) lgn 

F, = Edo (it,y) < 1 + 2plog 

Recalling that do(i, y^,) > 0, we obtain 

L,'3( O) = E ' E d(i,, y) > (1 - PO O{F),,}) 1 + 2plog. 
t=l 

Since p> 0 is arbitrary, to establish (3.5) it is now sufficient to show that 
P',"{F,,} -- O. Let B denote the number of elements in B(0). Denote P., = Po', 
and PB = B-1' EEB(0)P0'. Consider the following change of measure, for any event 
D,, measurable on the sigma algebra generated by {it, ,, at}l l: 

PsD i= ndP,| d, B min dP = B[ min exp(A,,(0, ')}dPB, 
d^PB m ( B J 

B 
, -dPB_ ' Bn EB(O) , , Dn WEB(0) 

where A,, is the log-likelihood ratio (2.2). Note that A,(0, 0') is the sum of the 
(controlled i.i.d.) random variables Xt A 

log{po,i,,jt(at)/Po', ,IJ,at)}, with conditional 
expectation E' (Xtlit = i) = Io 0,(i, y^). It follows from, e.g., Lemma 3.1 in Agrawal 
et al. (1989) that for every e > 0 and p > 0 there exist a constant K(e, p) and an 
event F(E, p) with P,{F(e, p)} > 1 - e, such that on that event 

A,1(0, 0') < (1 + p)nIo, ,(,,, y ) + K(e, p), Vn > 1, O' eB(O), 

where x,, denotes the empirical distribution of player l's actions up to time n, namely 
(x,,)i = n-E't=ll{it = i}. Since x,, e(J), it follows from the definition of b(O) in 
(3.4) that 

mm ( ld * minO'E B(O) I'(n, y ) min I ,(x ,,,y)=d (x,,, yI) do(A,lyl ) 
o'eB(o) d l'YOI 

1n 
All < do(.,, y,)b(O)- d= 1 
E d(it, yO)b()-1. 

t=l 

Thus, noting the definitions of F,, and F( p, e), 

P{F,, n F(p, )} < B exp(l + p) 1 +g 2p + K(e, p) PB{F,} 

= BeK(e p)n(l+p)/(l+2p)p {F }, 
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which converges to 0 as a consequence of Lemma 3.1. Finally, letting e -o 0 
establishes P{F,,} -- 0. The proof of Theorem 3.1 is thus complete. a 

Theorem 3.1 provides a lower bound on the asymptotic worst-case loss for those 
parameters which satisfy B(O) ? 0. Therefore, the best performance that player 1 
can hope for (in terms of the asymptotic rate of the worst-case loss) is to achieve the 
lower bound for these parameters, while keeping the loss finite for the rest. This 
leads to the following definition of asymptotic optimality. 

DEFINITION 3.2. A strategy cr of player 1 is said to be asymptotically optimal if 
(i) lirnsup,,.o L,(0o) < oo for every 00 E 0 s.t. B(o0) = 0, 

(ii) limrsup,, . L,(00)/log n = b(00) for every 00 e 0 s.t. B(00) 0. 
DISCUSSION. The lower bound of Theorem 3.1 can be rendered a simplified but 

useful heuristic interpretation, in accordance with Lai and Robbins (1985). Suppose 
that player 2 uses the strategy r0 = {y } for some 0 with B(0) ~ 0. Suppose that 
player 1 has (statistical) indications that 0 is the true parameter. If this is indeed the 
case, to achieve zero loss he must choose his actions in the relevant set *.. 
Unfortunately, this may lead to undesired consequences if in fact some O' E B(0) is 
the true parameter. Since Io o,(i,y*) = 0 for every i EJ and ' E B(O) (by 
definition of the latter), these actions do not yield any statistical information for 
discriminating 0 from 0'. Furthermore, under O' a positive loss will be incurred at 
each stage (cf. (3.9)), leading to O(n) loss. 

Therefore, in a uniformly good strategy (against r0), player 1 must "probe" the 
system by playing outside J'. To minimize the associated loss, he should choose a 
probing action which gives the best "loss to information ratio." This is the essence of 
the constant b(0), where information is quantified by the Kullback-Leibler informa- 
tion. 

The lower bound (3.3) may now be interpreted as follows. For a strategy of player 1 
to be uniformly good (against TO), if 0 is the true parameter he must maintain his 
total information (i.e., a measure of statistical value of the data for discriminating 0 
and B(O), related to the Kullback-Leibler information) at a level of log n at least (cf. 
Lai and Robbins (1985)). By performing the required probing optimally, he can keep 
the probing loss down to b(0)log n. 

4. Optimal strategies: Preliminary results 

4.1. Discussion and results. This section is an intermediate step in the construc- 
tion of an asymptotically optimal strategy. The latter will essentially be based on the 
certainty equivalence strategy with biased MLE which was introduced in Shimkin and 
Schwartz (1995). To indicate the required modifications in this basic strategy, we start 
by recalling its definition and performance. This will expose its deficiencies as 
compared with the required optimal performance. Two families of (sub-) strategies 
will be introduced to overcome these deficiencies. These strategies are not in 
themselves adaptive, i.e., each is designed with a specific parameter 0 in mind. They 
will however be used as building blocks for the overall (adaptive) optimal strategy, to 
be presented in the next section. 

Recall the following definitions from Shimkin and Schwartz (1995). The maximum 
likelihood estimator (MLE) ft is the maximizer of the likelihood function A_(0) = 
nlti p jij(as). For some fixed Q > 1, define the sequence 

K,, = n(log n)Q + 1 

494 

(4.1) 



ADAPTIVE STRATEGIES IN REPEATED GAMES. PART II 

(this is the "smallest" sequence which satisfies requirements (5.1) in Shimkin and 
Schwartz (1995). Further define the likely parameters set: 

(4.2) t = {0 E 
0: At_-(0, o) < log Kt}, 

and the value-biased MLE: 

(4.3) 0 = argmax{v(0): 0 E Ot. 

The certainty equivalence strategy with biased MLE, denoted a, is specified by 
Xt = x*(t). The following results have been established for this strategy (Shimkin and 
Schwartz (1995, Theorems 5.1 and 5.2)): 

THEOREM 4.1. For every 00 e O, 
(i) L, (00) < O(log n). 

(ii) Assume that B2(00) = 0, where B2(00) 
A ({' E 0: Ioo ,(x^, j)= 0 for some 

j ES }. Then L((0o) is bounded. 

Note that the requirement B2(00) = 0 is equivalent, under Assumption A3, to 
condition C2(00) of Shimkin and Schwartz (1995). It may be readily verified that 
B2(00)) B(0o), hence B2(00) = 0 implies B(0) = 0, so that the last result is 
compatible with the lower bound of ?3. 

Compared with the definition of asymptotic optimality, the performance guaran- 
teed by C falls short in the following two cases: 

(I) B(0o) = 0, but B2(00) - 0. Asymptotic optimality requires the loss to be 
bounded. However, 5: only guarantees a loss of order O(log n) in this case. 

(II) B(00) ; 0. Then B2(00) # 0, and again 5c guarantees an O(log n) loss. 
However, it does not guarantee that the optimal coefficient b(00) of the lower bound 
is achieved. 

Consider case (I). We shall identify the key properties which enabled us to bound 
the loss under strategy o when B2(00) = 0, and then attempt to obtain similar 
properties (by appropriate strategies) under the weaker condition B(Bo) = 0. For 
any parameter 0, consider those times when the estimator 0,, equals 0. According to 
5, x4 is played at these times. Now the key properties which were used in the proof 
of Theorem 4.1(ii) are the following relations between loss (positive or negative) and 
information: For some M, 8 and all j, 

(a) do(x, j) < O. 
(b) B2(0) = 0, which is equivalent to: do(x4, j) < -8 + M min>0 Io, ,(x, j) for 

all j. 
(c) do,(x, j) < -8 + MIo, 0(x4, j) for every 0' < 0. 
(The first property is of course a consequence of optimality of x4 in G(0), and the 

other two were established in Shimkin and Schwartz (1995 Lemma 6.1). In (b) we use 
the convention min 0 = oo.) The interpretation in the context of 5: is as follows. 
Assume that x4 is played (which occurs at the times when ,t = 0). If 0 happens to 
be the true parameter, then (a) guarantees nonpositive loss. Moreover, by (b), if for 
some o' > 0 no information is attained (i.e., Io, is low), this will be compensated by 
strictly negative loss. Also, if some O' < 0 happens to be the true parameter, then 
(c) low Io,, 0-information is compensated by strictly negative loss. 

Unfortunately, property (b) does not hold if B2(0) / 0. Nonetheless, as long as 
the (smaller) set B(0) is empty, a generalized version of these properties may still be 
achieved. This requires us to deviate from playing x4 whenever 0 is the estimated 
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parameter, and instead use a modified (nonstationary, history-dependent) strategy 
over these times. The precise formulation follows. 

PROPOSITION 4.1. There exist strategies {o-*(0) e 2: 0 E 0} and positive constants 
M1 and 16 such that, for every strategy r of player 2 and every n > 1, the following hold: 

(i) Et=m de(xt, ji) M,, m = 1,2,..., n. 
(ii) El ld(x, jt) < -81n + M1 + M1 mino,G o()E'tIIo, 0,(x,t It), where Go(0) = 

{0': 0' > 0}\B(0). 
(iii) do,(xt, it) < - 6i + M110', (xt, jt) for every 0' < 0, t > 1. 

REMARK 4.1. The relations in Proposition 4.1, as well as in the rest of this section, 
hold in a sample-path sense, and for every 00 e 0. 

REMARK 4.2. All the strategies cr of player 1 which appear in the last proposition, 
as well as in the rest of this section, have the special form xt = ot(j, ..., Jt-1). Thus, 
xt depends on the history ht = {is, js, a} <t only through the actions of player 2. 

REMARK 4.3. Properties (i)-(iii) are a generalization of properties (a)-(c) listed 
above. In fact, when B2(0) = 0 then o-*(0) may simply be taken as the stationary 
strategy x = x4. 

REMARK 4.4. Note that (i) bounds the loss over any time interval [m,..., n], and 
not just on [1,..., n]. This will be essential for the results of the next section (cf. the 
proof of Lemma 5.1). 

The proof, as well as the definition of ro*(0), are presented in the second part of 
this section. The main idea in constructing this strategy is as follows. The negation of 
property (b) above (or of B2(0) = 0) may be written as: 

(4.4) Io ,,(x,y) = 0 and d(x,y) = 0 for some 0' > 0 and y e (/). 

Now, when B(0)= 0, (4.4) cannot hold for y = y*. In other words, (4.4) is then 
satisfied only if player 2 uses an action y which deviates from his optimal one. (Note 
however that any such randomized action y must be supported on the relevant action 
set J', as follows from do(x, y) = 0.) Thus, if that y was known in advance to 
player 1, he could achieve an expected reward greater than v(0) (i.e., strictly negative 
loss) in the matrix game G(0). When the game is repeated, a similar effect can be 
achieved (in the long run) by player 1 even if the yt's are unknown in advance; see 
Proposition 4.3 below. 

Let us turn to the second deficiency noted above, namely case (II). As discussed at 
the end of the last section, to achieve the optimal coefficient b(00), player l's strategy 
should include an "optimal probing" phase. This phase is intended to accumulate 
statistical information (quantified by Ioo o for 0 E B(00)) at a minimal loss-per-infor- 
mation ratio. Also, some safeguards should be activated if (due to player 2's actions) 
insufficient information is obtained. 

If player 2 played Yt = y* at every stage, then such "optimal probing" could be 
achieved on a single-stage basis by any x? e 9J) which is a minimizer in (3.4). (This 
is trivially satisfied in the single-controller case; cf. Agrawal (1989).) However, since 
player 2 may play differently, then a stationary strategy xt x? might not yield the 
desired result: The loss-per-information ratio may then be larger than b(0o), or 
possibly no information will be obtained. 

Again, the problem will be resolved by "punishing" player 2 for playing off y*o. This 
can in principle be accomplished by superimposing the one-stage probing strategy x? 
on a strategy similar to 'c*(o0) of Proposition 4.1. The following result may be thus 
obtained: 

PROPOSITION 4.2. Let 0 E 0 be such that B(0) : 0. Then there exists a strategy 
0r?(0) of player 1 and positive constants M2, 82 such that, for every 

- eTand n > 1, 
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(i) For every E > 0 and 1 < m < n, 

n n 

E do(xt, j) < (1 + e)b(0) min E , 0,(x,,j,) +M(e), 
t=m O'eB(O) t=l 

where b(O) is defined in (3.4), and M(e) > 0 is a constant which depends only on e. 
(ii) Etl do(x, jt) 

< 

- 82n + M2 + M2min0,> 0E'=1 4, ,(xt, ji) 
(iii) do,(xt, jt) < -82 + M2Io, o(Xt, jt) for every O' < 0, t > 1. 

The bounds in Proposition 4.2 may be roughly interpreted as follows. (i) implies 
that the information-per-loss ratio (with respect to B(0)) is close to optimal, provided 
that information is indeed accumulated (say, at an O(n) rate). Item (ii) implies that if 
the information rate (with respect to any 6' > 0, and in particular for 0' e B(0)) is 
smaller than some critical linear rate, then a strictly negative loss results; compare 
with (ii) of Proposition 4.1. Finally, (iii) is analogous to Proposition 4.1(iii) or property 
(c) above. 

4.2. Proofs. The proofs of Propositions 4.1 and 4.2 depend on a basic result for 
repeated matrix games, established by different methods in Hannan (1957) and 
Blackwell (1954), which essentially states the following. In a (complete information) 
repeated matrix game, each player can asymptotically guarantee for himself an 
average reward which is no less than what he could guarantee if he knew in advance 
the empirical frequencies of his opponent's actions. The following (somewhat non- 
standard) version of this result will be required here: 

PROPOSITION 4.3. (i) For every 0 E 0, there exists a strategy a(0) of player 1 such 
that 

1 n B 
(4.5) -EA?(xt,j) > max AO(xy,- , Vre8'n>1 n 

t=1 x E 
,Y vn_ 

where B is a positive constant, and y,, is the empirical distribution of player 2's actions up 
to stage n. 

(ii) The strategy a(0) may be defined as follows. Let 

Q = {(a,y) E R x9() a > max Ao(xy)}, 

and consider a point (a, y) E R x S(f) such that (a, y) 4 Q. Let c denote the closest 
point in Q to (a, y), and (a, 0) = c - (a, y). Finally, let x*(a, y) be an optimal 
(maximin) strategy of player 1 in the matrix game with augmented payoff matrix: 
A(a) A a A + 1' - (aAo(i, j) + ;j). Then 

(0) (h,,) 
= 

(x(-l'yn-1) 
if (a-ln-1 ) Q 

arbitrary otherwise, 

where aZ,, = n 1 A(Xt,, jt). 

PROOF. As observed in Blackwell (1954), the proof follows by applying general 
approachability results (Blackwell 1956) to the set Q. Although the approachability 
result required here is not standard (in that the one-stage payoff depends directly on 
xt instead of it, and a.s. relations are required), it may be easily inferred from the 
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version which appears, e.g., in Sorin (1980). A direct proof is provided in Shimkin and 
Shwartz (1993). o 

In accordance with Remark 4.2, the strategy r(0) as defined in (ii) depends on the 
history only through player 2's actions. Indeed, AO is deterministic, and xt may be 
recursively eliminated from the equations. 

We shall also require the following lemma, which lower-bounds the maximal 
penalty that a player in a matrix game pays for deviating from his optimal strategy. 

LEMMA 4.1. LetA be an J-x/ zero-sum game matrix with value v(A). Assume that 
y* is a unique optimal (minimax) strategy for player 2. Then for some 8 > 0 and every 
Y E S(f): 

(4.6) max A(x, y) > v(A) + Sly - y*ll. 

PROOF. Consider f(y) - maxx A(x, y), y e9(f). Since y* is a unique optimal 
strategy, it follows that f(y*) = v(A) and f(y) > v(A) for y # y*, so that y* is the 
unique minimizer of f. Note further that f(y)= maxi A(i, y), so that f is the 
maximum of a finite number of linear functions. The inequality (4.6) is an easy 
consequence of these facts. o 

The next lemma will be useful in establishing property (iii) in Propositions 4.1 and 
4.2: 

LEMMA 4.2. There exist a (small enough) constant 0 < A < 1/2 and positive con- 
stants 83, M3 such that IIx - x4 IIoo < implies 

do,(x,j) $ -8 3 + M31o', (x,j), Vj, O, ' < 0. 

PROOF. By Lemma 6.1(i) in Shimkin and Schwartz (1995), there exist positive 8 
and AM such that for every j and O' < 0: do,(x, j) < -8 + MI0, (X', j). (This is 
exactly the property (c) discussed at the beginning of this section.) The lemma follows 
by continuity of do, and Io,, in x. o 

We proceed now to the proof of Proposition 4.1. It will be convenient to use in the 
remainder of this section the abbreviated notation: 

n n 

do{fm:n}] do(xt, jt), Io, ,{fm:n) A 
E IO, (Xt, Jt). 

t=m t=m 

Also, recall that G(O) = {0' > 0} \ B(O). As an intermediate step, the following 
type of strategy is required: 

LEMMA 4.3. For each 0 E O, there exists a strategy r '(O) for player 1 and positive 
constants M4, 84, E4 such that the following hold for every r E Sand n > 1. 

(i) d{1: n} < M4. 
(ii) mino' E G(O)I O,{1: n} < qen implies do1: n} _ -84n + M4. 

(iii) Ilx,, - x4 lloo < L, where AL is as in Lemma 4.2. 

REMARK. The strategy o-(0) will be based on the strategy 5(0) of Proposition 
4.3. However, an essential improvement is property (i), i.e., bounded loss. In contrast, 
under a(0) the total loss may be as high as Bv/ if y,, =y, since then (4.5) is 
equivalent to: do{l: n} < B/n. 
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PROOF. Let 0 be fixed, and let &r(0) be the strategy of Proposition 4.3. For each 
0 < f < 1, define the following strategy: 

(4.7) r( ): o( ( t (0)t + (1- ( )X 

(This corresponds to independent mixing at each stage of actions r(0)t(ht) and xf.) 
The required strategy o'(0) will be defined by restarting or(s) at prespecified times, 
with e diminishing to zero. This scheme makes it possible to guarantee property (i), 
namely bounded loss. 

Let 0 < 'IL < 1/2 be as defined in Lemma 4.2. Choose a real sequence { Sk}k and 
a sequence of integers 0 = To < T1 < ", such that: 0 < k -< , k 4 0, and for some 
finite constants C, C2: 

00 

(4.8) E kTk+l -Tk C1 
k=O 

4 
(4.9) SkTk C2 T Vk 2 1. 

Two specific examples are (with 0 < e < 1/4): (a) Tk = 2 - 1, sk = /2-kO/2+). 
(b) Tk = k3, k = a(1 + k)-(2+e). 

Finally, define a1(0) as follows: 
Strategy c1(0). At stages t = 1,2,...,TI, play according to r(A,). Next, at 

stage Tk, k > 1, reset the history counter to 0, and then play over t = Tk + 
1,..., Tk+ according to cr(k). More precisely, for Tk < t ! Tk+,, xt 
4:k (0)t-(iT,+l... -l) (1 - gk)Xo. 

We proceed to upper-bound the loss and lower-bound the information under 
cr1(). Both bounds will be in terms of IIYj - y' 11, player 2's average deviation from 
his optimal strategy in G(0). It is assumed in the following that player 2 is using any 
strategy r E 9. 

Consider first the strategy cr( ) defined above, with ~ fixed. Suppose for the 
moment that this strategy is used throughout by player 1. Then xt = :xt + (1 - )x*, 
where t = c(O)t(ji,..., Jt-). Therefore, by optimality of x4, Proposition 4.3 and 
Lemma 4.1: 

1 n1 n 
(4.10) n EA(xt,J) = E {(Ae t,t) 

+ (1 - 
)A0(x4,jt)} 

t-1 t=l 

n 

>- - EA(tjt) + (1 - )(0) 
t=l 

> 
(mxaxAo(x,,) -B/vn) + (1 - )v(0) 

2 ((v(0) + yol , -y11 -B/? ) + (1 - )v(0) 

= v(0) + 0 IllY,, - yo~* - B//, 

where B and 86 are positive constants. (The second inequality follows from Proposi- 
tion 4.3, even though xt and not xt is actually played; to verify that, recall that x" is a 
function of the sequence {it} only, as are all the other variables in inequality (4.5). 
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Therefore, (4.5) may be interpreted equivalently as a deterministic inequality that 
holds for all possible values of this sequence.) This can be written equivalently as: 

n 

(4.11) do{l:n} nv(O) - EAo(xt,jt) < -~0%nly,, - y*ll + B5f 
t=1 

Returning to the strategy o-'(0), assume henceforth that this strategy is used by 
player 1. Let Tk < m Tk+1 for some k > 0. Observe that cr( k) is started at 
t = T, + 1. Therefore, (4.11) implies: 

d,{Tk + 1: m} < - -(m Tk)llAy(m, Tk)I + 4kBVm - Tk,, 

where 
m 

Ay(m,Tk) = - Tk et-Y 
k t=Tk+l 

Therefore, for any TK< n < TK+l, K > 0: 

d(l:n} < E (-k(rATkIlAy(Tk+ T , rk) + &kB T) 
k=O 

+(- K(n - TK)IIAy(n, TK)I + KBVn - TK), 

where ATk = Tk+l - Tk. Now, using the fact that {(k} is decreasing, the triangle 
inequality, and (4.8): 

d,{1:n} < -K8 i EA TkIlAY(Tk+l,Tk)ll + (n - TK)lIAy(n, TK)II + B E k Tk 
k=O k=O 

< - K \nllY - y0I11 + BC1. 

Moreover, since TK < n TK+,, it follows by (4.9) that: 

4 4 
Kn >2 KTK > C2 TK+l 2 C2 /, 

so that, finally, we obtain the upper bound 

4 
(4.12) do{1l:n} < -C2 ,j/OIln, -yo II + BC1. 

Next, the information will be bounded. Let 0' E G(0). Since xt = (1- 6k)Xo + 
(...) with 1 - k - 2 1 - , > 1/2, and noting that Io, , > 0, 

n 1 " 1 

(4.13) E !o,o,(Xt, J( ) > 2 E Io, ,(x4' Jr) = 
2'nlo, ,0(ox, Y,t) 

t=l t=l 

== jno, I ,(X,y 0* ) + 2.nI, (xj, )n - o ) 

2 81n - P -2nllY, - y*11II, 
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where 

31 = min I,,,(x, ) > 0, P2 = max axo,'( , j). 
O'WGo(O) O'eGo(O) J 

Note that ,i is positive by definition of G,(O) and B(0) in Proposition 4.1 and (3.2). 
We may now proceed to establish (i)-(iii) of the lemma. 

(i) Follows immediately from (4.12) (since C2 80 > 0), for any M4 2 BC1. 
(ii) Assume that for some 6' E Go(0), E't_lI0, 0t(x, j) < en where e > 0 will be 

specified shortly. Then, from (4.13), [JY,, - y*1 > (i - 2E)/P2. Therefore, for e = 

/,/4, (4.12) gives: 

do 1: n} < - C2 + BC 

which clearly implies (ii) for any 64 < C2 S0 31/2 P2 and M4 > BC1. 
(iii) Recall that, for TK < n < TK+1, x, = KXl, + (1 - K/)x for some x e J), 

and (K -< . Therefore, |x,, - x lm < ? |IIXI - || . ? 

PROOF OF PROPOSITION 4.1. To motivate the definition of -*(0) below, note that 
property (i) in the proposition requires the loss to be bounded on any time interval 
[m, n]. However, the strategy or1(0) of the previous lemma guarantees that only on 
[1, n]. Thus, if the loss is negative on [0, m - 1], say, it might be large on [m, n]. 

To rectify this problem, we define (r*(0) as the strategy which follows 0r1(0) as 
long as the loss is above a certain (negative) threshold. However, as soon as it goes 
below this threshold, the clock is reset and ar1(0) is restarted with a new history. The 
precise definition follows. 

Strategy o-*(0). Let C, be a positive constant. Let {mk}k 0 be the sequence of 

stopping times (possibly infinite) defined recursively by: mo = 0, mk+, = inf{m 2 mk 
+ 1: do{mk + 1: m} < -C1}. Then, for mk + 1 < t < mk+l, cr*(O)t(ht) 

a'1()tmh(kkh)), where hk) A 
(jmk,+,.. t). 

Assume that player 1 uses this strategy or*(0). Let r e Sand n > 1 be fixed, and 
let K > 0 be such that mK < n < mK+1. Define: 

Vk = {mk + 1,..., mk+1}, 0 2< k < K - 1: the kth (terminated) interval. 

VK = {mK + 1,..., n}: the last (Kth) interval. 

By definition of {mk}, it follows that on each interval: 

(4.14) do{mk + 1: m > -C, - D Vm E Vk, 0 k <K, 

where D = maxi jldo(i, j)l. On the other hand, on each terminated interval: 

(4.15) do{Vk) - E ( do(xt,) < -Cl, 0 < k K--1. 
tEV, 

Finally, since r1 (0) is used on each interval, and in particular on the last interval, it 
follows from Lemma 4.3(i) that: 

(4.16) do{VK} M4. 

We proceed now to prove assertions (i)-(iii) of the proposition. Note that it is enough 
to prove each assertion with different constants (M1, 8,), since then the maximal M, 
and minimal 81 satisfy the assertions simultaneously. 
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(i) Fix 1 < m ? n. Then m - 1 eT Vk for some 0 ? k ? K, so that by (4.14), 

(4.17) d M :M-1 t-,-D 

Also, by (4.15) and (4.16) it follows that dom{k + 1: n) ? M4. Subtracting the last two 
inequalities gives do(m: n} < M4 + C1 + D, so that (i) holds for Ml = M4 + C, 

+ D. 
(ii) Since o-1(0) is used on each interval, it follows by Lemma 4.3(ii) that, for some 

positive constants E4, 84 and every 0? 1 k ? K, do{Vk) > - 84x/fk + M4 implies 

(4.18) min J0, 0 VJ ? E41 VkI 
O'~G0(6) 

Let L > 0 be some large enough constant so that -84VT + M4< -C, -D. It 
follows then from (4.15) that on each interval Vk, 0 ? k ? K, for which IVkl L: 

do(Vk} -C1-D> -8jiVI+M - IWWJ+M4, 

so that (4.18) holds on that interval. Therefore, 

K 

(4.19) Io, o{1: n} ?E EF I Vkll{IVkl L} 
k=O 

K 

=E4(f E IVkI1{IVkj <LI) 
Ik=O 

? E4[n - L(K + 1)J, VOe G0(6). 

On the other hand, by (4.15) and (4.16) it follows that d0{1: n) ? -CjK ? M4. Using 
(4.19) to eliminate K from this equation, we finally obtain 

do(l n - Lln+(M4 C + CIo,LE4 00 (1:n} VO' EG0(6), 

which implies (ii) with Ml = max{M4 + C1, C1/Le4} and 81 = C1/L. 
(iii) Recall from Lemma 4.3(iii) that, under o1(G), lIx,, - 4k p. I /i for every n?1. 

By definition of o-*(Q), this is valid under o "(0) as well. Therefore, by Lemma 4.2, 

do, (x,,, jll) 8 3 +- M3 IO't e (Xi, j ,n) Vol < ol 

which implies (iii) for any 81 ? 83, M1 ? M3. Thus, the proof of Proposition 4.1 is 
complete. o 

We turn now to the proof of Proposition 4.2, which proceeds through the following 
lemmas. 

LEMMA 4.4. Let O e 0 be such that B(O) #A 0. Then there exists a strategy 0.2(0) 

for player 1 and positive constants B5, Ms, 85 such that, for every r E.-and n?A!: , the 
following hold: 

.(i) d0(1: n} ?b(G)minO'CeB(G) Io, {1 : n} + B5?ni. 
(ii) do{: n) ? -85n + M5 +M5 mino> 41, {1: n}. 

(iii) fix,, - x*." i <t, with ji as in Lemma 4.2. 
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PROOF. Consider some fixed 0 such that B(0) # 0. Let x? = x?(O) E (Y) be a 
minimizer in (3.4), and let a(0) be the strategy of Proposition 4.3. For any 0 < E < 1, 
define the following strategy or : 

06': a= (1 - 
l)x + [EX? + (1- E):(0)tI. 

It will be proved that, for e small enough, a' satisfies the lemma. 
Denote do = do(x?, y ). Note that, by definition of x?: 

(4.20) d =b( ) min Io,,(x?,y) > 0. 
O'eB(O) 

Assume now that player 1 uses the strategy a', and player 2 any strategy r E 97 
Preceeding similarly to (4.10), (4.11), the loss may then be bounded by: 

d,{l: n} < I Endo(xo, Y,,) - ( - )[ ,nll\\y,, - y Bx/4], 

where B and 80 are positive constants. Furthermore, note that 

do(xo, Y,^) < de(x?, y ) + plllY,, - yi 1, 

where p,1 A 
maxjldo(xo, j). Therefore, 

(4.21) d,{l: n} < ,ledon - u4[ , - E( 5 + P31)]nllj,, - yo* + 1tBF. 

Next, the information will be lower-bounded. Consider first any O' E B(0). Then, by 
definition of cr and (4.20): 

(4.22) Io, ,{l:n}- Io 0(X, j) E pIo 0,(x?,)jt = 1EnI, o,(xO,y,) 
t=l t=l1 

= LEn(Io, o,(xO, y) + Io, O(x ,9 - y)) 

> IEn(b( )- d - P2/ 11Y, - yI), 0' EB(0), 

where p2 A 
maxj, ,> oIo ,(xo, j). 

Consider now O' E Go(O) = {0' > 0} - B(O). Then, similarly, 

(4.23) I ,{1: n} ? (1 - )nI, ,(x, 

, 

) 

> (1 - iL )n(Io ,(X, yJ) - x311Yn- yll) 

2 (1 - L)n((p4 - P311Y,l - Y II), o' E G(O), 

where P3 - max maxj,(x,), 4 ino,eC()I (X, y*). Note that 4 > 0 
by definition of Go(0) and B(0). 

Choose e > 0 small enough so that: 

(4.24) e(8, + 1 + b(0)/2) < 280, E(60 + 1, + do P3/P4) -< "6' 
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Assertions (i)-(iii) of the lemma now follow from the bounds derived above by simple 
algebra: 

(i) Multiplying (4.22) by b(6), subtracting from (4.21) and rearranging yields: 

dofl: n) < b(O)IO 90,1 1 n) POnlI~n - yo* 1 pBBJ/n ' E- B(0)1 

where /5 = , 80 - E(100 + 0 + b(6)P2)]. Since P5 ? 0 by the choice (4.24) of 'E, (i) 
follows with B5 = rtB. 

(ii) Using (4.22) to eliminate II.,, - y* II from (4.21) gives: 

(4.25) d0{l:n) ? -13n + 06 IO,0{l: n} + ljBFn 01 6' eB(6), 

where 16 = 0/2e/3, /7 = gdJ[80 - E(50 + p + b(O) 2-)I/b(6)/2. Note that 7, > 0 
by the choice (4.24) of E. A similar calculation with (4.23) used instead of (4.22) gives: 

(4.26) d{l:n}) ? -f3n + 8 IO,'{1 : n) + ABFn 6' E-EGO 8)) 

where i30 = 8/(1 - L)33, /3 = /44/33[8 0 eGS0 + /3 + do 03/P4)]; note that 
39 > 0 by choice of E. Combining (4.25) and (4.26) establishes (ii) with, e.g., 

85 = (1/2)min{/3,, 39 and M5 max{ f, [39, max,, , 1( tBvrn - 85n)}. 
(iii) Follows directly from the definition of . o 

LEMMA 4.5. For the strategy cr2(0) of the previous lemma, and under the same 
conditions, 

(i) For every E > 0 there exists M'(E) > 0 such that: 

d0(l: n) ? (1 + E)b(6)I0,0,{1: n) + M'(E), Yn ? 1,60' e=B(6). 

(ii) Let E5 = 85/(2M5), 86 = 85/2. Then m >ino >0 {10l : n} ? E5n implies doll: n} 
? -6n + M5. 

PROOF. Since (ii) follows directly from Lemma 4.4(ii), it remains to prove (i). 
Assume first that S, 

A mino B(O)IOQ 0,(1: nl ? oEn. Noting that B(6) c (6': 6' > 6}, 
it follows by item (ii) of the present lemma that doll: n} M5. Assume next that 
5,,> E5n. Then, by Lemma 4.4(i): 

(4.27) d0{l: nJ ? b(6)S,, + B5vH- ? (1 + E)b(6)S,, + (B5?nT- Eb(6)e5n). 

Let M'(E) A 
max(M5, max,, j(B5?n - EI(6)E5n)}; then (i) follows from the last two 

bounds. o 

PROOF OF PROPOSITION 4.2. Similarly to the proof of Proposition 4.1, it is required 
to modify the strategy 0.2(6) so that item (i) will hold on any interval [i,..., n]. 
Thus, define 

Strategy ao-(Q). Defined similarly to cr*(6) in the proof of Proposition 4.1, except 
that a1(6) in that definition is replaced by a 2(6) of Lemma 4.4. 

Let r E 5?and n ? 1 be fixed. Retain the notations in the proof of Proposition 4.1 
(i.e., Cl, ik, Vk and K). We proceed to prove (i)-(iii) of Proposition 4.2. 

(i) Consider a fixed 1 ? m ? n. Let 0 ? k : K be such that m - 1 e Vk, and note 
that (4.15) and (4.17) hold true. Moreover, since - 2(6) is restarted at t = mK + 1, it 
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follows by Lemma 4.5(i) that for every E > 0, 

K 

(4.28) do{mk + 1: n} = E d0{Vk} ? do{VKI 
k' -=k 

? (1 + E)b(G) min IoG{,(VK} + M'(E) 
0' EB(0) 

(1 + E)b(O) min 0{1 : n) +M'(E). 
' E1B( ) 

Item (i) follows by subtracting (4.17) from (4.28), with M(E) = M'(E) + C1 + D. 
(ii) By Lemma 4.5(u), it follows that for every 0 ? k ? K, dO{Vk} > -6IVkI + M5 

implies 

(4.29) min Io, 0'{J} > ESIVkl. 
0,>0 

Let L > 0 be a large enough constant so that -6L + M5 < -C1 - D. Then on 
each interval Vk such that IVkI > L, 

do{Vk} ? -C1-D> -86L+M5?> - 8IVkI + M5, 

so that (4.29) holds on that interval. Therefore, for every 0' > 0, 

K-i1 K-1 

(4.30) J Io, 0,6{Vk ? e lVkll{lVkl L) ? E5(n - LK - IVKI). 
k=O k=O 

On the ot'her hand, by (4.15) and Lemma 4.4(u) (applied to the last interval), 

(4.31) d0{l:n) ? -C,K- sI5VKI + M + M5 min Io,o{VKI . 0,>0 

Using (4.30) to eliminate K from (4.31) and noting that C1/L < 85 by choice of L, it 
follows that for every 0' > 0, 

K-1 

do(l: n1? - - E Io, 0((Vk) + fl - lVKj - 51 V/KI + M5 + MIO, O{ VK I L I5 k=O 

Cl 
- n + M20, 0{(1: n} + M2, 

where M2 P max{M,, C1/L E5}. Thus, defining 8 A C1/L > 0, (ii) is established. 
(iii) Follows by Lemma 4.4(iii) and Lemma 4.2, exactly as in the proof of Proposi- 

tion 4.1(mii). 

5. The optimal strategy. We are now in a position to present a strategy o-* 
which is asymptotically optimal. The following definitions will be required. 

DEFINITION 5.1. Let {mkk>_ 1 be a strictly increasing sequence of stopping times 
with respect to the history a-algebras (H,,{,, , . Let o- be a given (behavioral) strategy 
of player i. By the strategy a7 restricted to the times {m k we refer to the following selection rule at the times ik, k A 1: Xmk = uk(hk), where hk " {i,'Im,, a,}i. 
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Let 0, Ot, Ot and Kt be defined as in ?4.1. For every 0 E 0 and t 1, define the 
following conditions C* (0) and Ct (0): 

C*(0): t = 0, and either B(O) = 0 or else 

t-1 

(5.1) min IO, 0'(X,S j)l0s = 0} > log Kt. 
0'eB(0) s= 

Ct(0): , = 0, B(0) # 0, and 

t-1 

(5.2) min 2 Io, o0(x, j,)l{ = 0} < log K,. O' EB(0) s= I 

Note that exactly one of C*(0) and Cf,(0) is satisfied when t = 0. To introduce the 
optimal strategy, observe that for each fixed 0, the times t at which condition C*(0) 
[or C'(0)] is satisfied form a sequence of increasing stopping times. We shall consider 
each such sequence separately, and apply on it a restricted version (according to 
Definition 5.1) of an appropriate substrategy. 

Strategy cr*. For t = 1,2,.. . Denote 0= ,. If C*(0) is satisfied, then play 
according to the strategy cr*(0) of Proposition 4.1, restricted to the times t' when 
Ct*,() is satisfied. If Ct(0) is satisfied, then play according to the strategy '?(0) of 
Proposition 4.2, restricted to the times t' when Ct,(0) is satisfied. 

The strategy a* may be interpreted as follows. At each stage t, the value-biased 
MLE 6 = 0t is computed. Then the level of information for discriminating 0 from 
B(0) (quantified as in (5.1) or (5.2)) is evaluated, and compared with the critical level 
log Kt (which is slightly larger than log t). If below that level, then the probing 
strategy cr?(0) is followed. The latter ensures that, if indeed 0 = 00, additional 
information will be obtained at a loss-to-information ratio close to b(0o), or else a 
negative loss will accumulate. 

If the information level is above the critical level (or if B(0) is empty), then the 
strategy cr*(0) is used. As discussed in ?4.1, this strategy replaces the stationary 
strategy {x~}, and its stronger properties guarantee that the loss associated with the 
parameters in {B2(00) \ B( 0)} is finite. 

Observe that the "information level" in (5.1) and (5.2) is evaluated only over the 
times when the estimator was identical to the current one. This turns out to be 
important for the proof of the following theorem, which is the main result of this 
paper. 

THEOREM 5.1. The strategy a* is asymptotically optimal, in the sense of Definition 
3.2. 

The rest of this section will be devoted to the proof of this result. The proof 
strategy is basically similar (and extends) that of Theorem 5.2 in Shimkin and 
Schwartz (1995) (quoted above as Theorem 4.1(ii)), and some of the results estab- 
lished there will be used here as well. 

Assume henceforth that player 1 uses the strategy a *, and let 00 E 0, r E9; 
n > 1 be fixed. In what follows, all relations between random variables hold Po*' -a.s. 
Also, all constants (M, 8, Q, no etc.) are independent of r and n, unless otherwise 
stated. 

It will be convenient to use the abbreviated notation: dt = do(xt,, ), (dt)+= 
max{d,,0), D =max, jd,o(i, Ij),, 0(t) I=o, 0(x, ,j), E=Eo* 

T, and finally ,, 
Et-1dtl{0t 00}. 
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By (2.1), 

n n n 

(5.3) L:*T(0,0) =EiYd1=EiYd,l( 
O< 0+E2d1{O?00 (5.3) *L, t ( 0o) =E E dt= E , dtl{t, < },) + E E d,l({t 2 o0) 

t=l t=l t-= 

n 

DE E l{( < 00} + El,, < DQ1 + El,, 
t=l 

where the last inequality is a basic property of the value-biased estimator 0,, as 
established (for some Q1 < ?o) (in Shimkin and Schwartz (1995, Lemma 5.1(ii)). We 
proceed then to bound El,,. 

LEMMA 5.1. For every e > O, there exists a constant Mo(e) such that, 

n 

(5.4) 1, < (1 + e)b(0o)log K, + Mo(e) + E (dt)+ l{lt > j, O > 
tl 

where b(Oo) is defined by (3.4) if B(00) = 0, and b(0o) A 0 otherwise. 

PROOF. Noting Assumption A3, one has 1,, =- l + 1b, where 

n n 

l = Edtl1{t 
= 0o}, l = Edtl({t > 0). 

t=l t=l 

Define the stopping time m = max{0 < t < n: t1, 0, where 10 O. Then 

(5.5) l 1 < 1 - Im (la la) + (b _ bm) 

Now, 

n n 

(5.6) l, -1 < E (d,) l{Ot > 0} = (dt) l(lt > , ot > 00o 
t=mIl tf=m+ 

n 
< E (dt) 1+ lt > O, Ot> 30o}, 

t=l 

where the last equality follows by definition of m. 
It remains to upper-bound the term: 

n 

(5.7) la -l = E dtl{t = 00 
t=m+l 

n n 
= dtl{C (00)} + E dtl{Ct(00)}, 

t=m+l t=m+l 

where Ct*(00) stands for "C*( 0) is satisfied," and similarly for Ct?(00). Note that, by 
definition of o-*, player l's strategy on the times in which Ct*(0o) is satisfied is the 

(5.8) E dt l{Ct* ( 0)} < M,. 
t=m+l 
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To bound the term involving {Ct(00)), note first that if C'(00) is not satisfied for any 
m + 1 < t < n, then that term vanishes (this is trivially the case if B(00) = 0). 
Otherwise, note that player l's strategy on the times when C' (00) is satisfied is the 
restriction of cr?(00) to these times. Thus, by Proposition 4.2(i) it follows that for 
every e > 0, 

n n 

E d,l{C0t(00)} (1 + e)b(00) min Io,(t)l{Ct(0)} +M(E). 
t=m +1 OEB(Oo) t-m+1 

Define m' = max{m + 1 < t < n: Ct(0o) is satisfied). Then, 

ft . m 

min I min Io, (t){ C( 0)o ?) l 
OGB({0) t=m+l OeB(0o) t=l 

< I + log Km, < I + log K,, 

where I = max/ j, Ioo o(i, j), and the next to last inequality follows by definition of 
condition Ct(0o) (which is satisfied at t = m'). Thus, 

(5.9) E dtl{C*(0o)} < (1 + e)b(0o)log K,, + [(1 + e)b( 0)I+ M(E)], 
t m+l 

(which holds trivially if B(0o) = 0, with b(00) = 0). 
The lemma now follows from (5.5)-(5.9), with Mo(e) = M + (1 + e)b(0o)I+ 

M(E). C 
To upper-bound the (expected value of the) last term in (5.4), the following lemmas 

will be required. 

LEMMA 5.2. There exist positive constants r' and no such that, for any n > no, I,t > 0 
implies that at least one of the following conditions fll(n) - f14(n) is satisfied: 

gl(n): E=llI{0, < 00) -2 rn. 
12(n): Etll 1 , (t)l{6t = 0} > rqn for some 0 > 00. 

f3(n): min0> E't1 Io, (t) > r7n. 
f4(n): both f4,(n) and Q4b(n) below are satisfied; 

C4a(n): min0G oo)Et=) 1Io 0(t) - rqn, where Go(00) S> 60) \B(00). 
l4b(n): N,*(00) = Etl=1l{C*(00)} >2 (1/2)n. 

PROOF. Let us first translate the relevant relations in Propositions 4.1 and 4.2 to 
the setting of the present strategy o-*. For that purpose, define for each 0 E 0: 

n n 

N,*(0) = {C*(0)}, N,?(0) = E 1(Ct?()}, 
t=l t=l 

n 

N,(0f) = N,* (0) +N?(0) =- Ei = . 
t=l 

Let Ml, M2, 81, 82 be the constants for which Propositions 4.1 and 4.2 hold, and 
define M = max{M1, M2}, 8 = min{ 8,, 82 > 0. It then follows from items (i) and (ii) 
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of Proposition 4.1 (upon substituting 0 -- 00 and 0' <- 0) that 

(5.10) Idt l{C (00)) }< M, 
tl1 

n n 

(5.11) Edtl{C* 00)} < - N,*( 0) +M+M mi E I o (t){ C*( 00)} 
t-l 1OEG0o(00) t=1 

Similarly, by Proposition 4.2(ii), 

fl n 

(5.12) E dtl{C?(00)} < -N?(O00) + M+Mmin E1o,0(t)1{Cf(0o)}. 
t=l 0>00 t=l 

Finally, combining Propositions 4.1(iii) and 4.2(iii) (with 0' ,- 00) gives 
n _n 

(5.13) ;, dtl{t= 0} -8NI(O) + M E I, (t)l{0t= o}, v0> 0o. 
t=1 t1= 

Assume now, in contradiction, that fl1(n)- fl4(n) are false. It is required to show 
that 1,, < 0. Write _fi(n) for 'fi(n) is false,' and let r7 be an arbitrary positive 
constant. Then by I3(n) and (5.12): 

n 

(5.14) E dtl{CP( 0)} < -N( 0) + M + M7n. 
t=- 

By (5.13) and ,12(n), 

n 

(5.15) dtl{= 0} ?< -8N,,(0) +M7n, 0> 0o. 
t=1 

Note also that Q4(n) implies that at least one of the following holds: 
(a) L4b(n), i.e., N,*(00) < (1/2)n. 
(b) ,4b(n) (i.e., N,(0o) >2 (1/2)n), and 4j,(n). 

We consider these two cases separately: 
(a) By (5.10), (5.14) and (5.15), 

n n n 

1,,n Eidtl{C*(0o)} + Edtl{Ct(0o)} + E E dtl{ = o} 
t=l t=l >0 t-1=l 

< -8 NA,(00) + E N,(0) +2M+MOlrIn. 
0>0o 

However 

NIo( ) + E Nl(0) n- N*(0o)- E N( 0) n- 7n, 
O>0o 0<00 

which is implied by T4b(n) and f1i(n), so that in case (a): 

1 ,, < -48n + ,(8 + MIOl)n + 2M. 
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(b) Since F4,,(n) is assumed, it follows from (5.11) that 

(5.17) Edtll{C* ( o)) < - 8N,* (0o) + M + Mqn. 
t=l 

Proceeding as in case (a), with (5.17) used in place of (5.10), we get: 

(5.18) 1, < - N,,(0o) + E N,,(0) + 2M + (MIOI + M) rn. 
O> 0 

Noting that Slf(n) implies 

N,(o) + E N,,() =n - E N,,() <n - n, 
0>00 0< 0o 

it follows that in case (b): 

(5.19) l,, < -8n + q( 8 +MIOI + M)n + 2M. 

It is obvious that for r7 small enough, both (5.16) and (5.19) imply that 1, < 0 for all 
n large enough. o 

LEMMA 5.3. Let f14(n) be as defined in the previous lemma. Then 

00 

(5.20) E E (d,,) 1(14(n), ,,> 00)} Q3 < . 
n=1l 

PROOF. By definition of Qf4(n) and Go(00), 

1{fl4(n), ,, > 00} = l{14(n), , E Go(00)} + l{f14(n), 6,, B(00)} 

< 1{fi4a(n), 0, e Go(00)} + l{14b(n) ,, eE B(0o)}. 

We first claim that, for some Q' < 0o, 

00 00 

E E (d,,) 1(l{4a(n), 06, E Go(00)} < D E P(f4a(n) , 0, E Go(00)} < Q'. 
n =1 n=1 

The proof of the last bound is the same as that of Lemma 6.4(ii) in Shimkin and 
Schwartz (1995). Namely, by the union bound 

P{l4a(n), f,, E Go(0o)} <_ E P E IoO, (t) > rjn, Ot = 

0eGo(O) t-=l1 

and the rest is identical to the above-mentioned proof. 
Thus, it remains to bound the term 

00 

J3 =J3(r) E E (d,n) + l{4b(n), 0,, E B(0o)}. 
n-l 
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As established in Shimkin and Schwartz (1995, Lemma 5.2), there exists a constant 
M < c such that d0,( 4, j) ? MI6, O(x4, I) for every j and 6> 60 (hence, in particu- 
lar, for 6 e B(06)). Replacing fl4b by its definition, it follows that 

00 

13 < EF MI60, (n) 1{AI* ( 0) ? = 6}. 
0EB(00) n=1 

Now, NA*(60) ? (1/2)n implies that C,*(6o) is satisfied for some (1/2)n ? m ? n, 
which in turn implies that 

n-1 

V1,(6) I >2 10, l(t)1{Q 0 6j ? log K[,,/2, > log K,1 - a, 
t=l1 

where the last inequality follows from the definition of (K,,) in (4.1) for some finite 
constant a (independent of n). Noting further that 6,, = 6 > 60 implies 
A,,'1(60, 6) ? log K,,, we finally get 

13 M F o E10, (t){l(1,(6) ?logK,, - aA,A,l,l(0,) ?logK,} 

M 2 Q(6) AQ", 
6EB(6O) 

where the last bound follows for finite constants {Q(6)} by applying Lemma 3.3(v) of 
Shimkin and Schwartz (1995) (and the standard translation procedure as described 
there following equation (4.12)) to each 6 e B(60) separately. Thus, letting Q3 = 

Q' + Q", (5.20) is established. c 

LEMMA 5.4. The following bound holds: 

00 

4( ,r() 
A 

E E (dj )+ 1(1 > 09 > 00 O 4 < 00 

n=1 

PRoOF. By Lemma 5.2, 

4. 00 

J4 Y2CE >2 (d,,)1{fl(R (n),6,> 6o} +Dn 
i=1 n=n0 

3 oo 00 

? > > P{f( ,n), 6> 61 + E (d,,)j {ff(n), 6, > 6} + D^n0. 
i=1 n=1 n-1 

The three terms corresponding to f2l(n) - Q3(n) have been bounded in Shimkin and 
Schwartz (1995, Lemma 6.4) (for any strategy or of player 1). Therefore, the assertion 
follows by Lemma 5.3. u 

The proof of Theorem 5.1 may now be concluded. By (5.3), Lemma 5.1 and Lemma 
5.4, it follows that for every E > 0, 

Lit,r(60 D ?DQ, + (1 + E)b( 60)log K,, M0(E) + Q4, 

where b(60) = 0 if B(60) = 0. Thus: 
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If B(Oo) = 0, then 

Lf(0o) = sup L* (0o) < DQ1 + Mo(1) + Q4 < o, Vn > 1. 

If B(00) ) 0, then 

limsup L < (1 + )b(0), 
n-oo logn 

and the required result follows by letting e - O. o 
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