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MATHEMATICS OF OPERATIONS RESEARCH 
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Printed in U.SA. 

ASYMPTOTICALLY EFFICIENT ADAPTIVE STRATEGIES 
IN REPEATED GAMES 

PART I: CERTAINTY EQUIVALENCE STRATEGIES 

NAHUM SHIMKIN AND ADAM SHWARTZ 

This paper addresses the problem of dynamic decision making in an uncertain and 
competitive environment. A decision maker (player 1) faces a system about which he has 
some (parametric) uncertainty, and which is affected also by the actions of other agents. We 
focus on a worst-case analysis from the viewpoint of player 1, using the simplified model of a 
repeated matrix game with lack of information on one side, where single-stage rewards are 
random but announced, and perfect observations are assumed. Certain ideas from the field 
of stochastic adaptive control are used to formulate performance criteria in a non-Bayesian 
setting, and to devise appropriate control strategies. The basic performance measure is the 
total reward accumulated by player 1 over all stages played; the purpose of player 1 is to 
guarantee that his expected total reward will be "close" to what he could guarantee under 
complete information. The present paper considers adaptive decision strategies of the 
Certainty Equivalence type, based on a (modified) Maximum Likelihood estimator, and 
studies their asymptotic (long-term) performance. A sequel paper will be devoted to "asymp- 
totically optimal" strategies. 

1. Introduction. This paper studies certain aspects of dynamic decision making 
under uncertainty and competition, and extends some ideas from stochastic adaptive 
control to this setting. Basically, we place ourselves in the position of a decision 
maker (player 1), facing a dynamic system on which he has incomplete information. 
The system is influenced also by the actions of other agents (collectively represented 
here as a single agent, player 2). Taking a worst-case view, we assume that player 2 is 
doing his best to obstruct us. We also assume that player 1 is non-Bayesian, in the 
sense that no prior probabilities are prescribed on his initial uncertainty. At the focus 
of our interest stands the issue of learning, namely the temporal reduction of initial 
uncertainty, which is made possible by observing the system's response to the players' 
actions. 

We consider the simplest system dynamics, where a fixed single-stage decision 
problem is repeated in time. The single-stage problem is a parameter-dependent 
zero-sum matrix game with random rewards, specified by the following elements: 

(a) finite action sets J and / for player 1 and 2, respectively; 
(b) a finite set of parameters 0; 
(c) a finite set v c 1R of possible rewards; 
(d) for each (0, i, j) E 0 X,XJ , a probability distribution P6 j over v'. 

A parameter 00 E 0 is first selected (by Nature), followed by the repeated play of the 
matrix game which corresponds to 00. Thus, at each stage t > 1, player 1 and player 2 
choose actions it and ]j respectively, and the reward (payoff) at to player 1 is 
determined according to the probability distribution p,,0 it, Player 1 does not know 
the true parameter 00, but assumes (a worst-case assumption) that player 2 does 
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know it. Perfect observations of actions and rewards are assumed, so that the action 
of each player at time t may depend on the entire history sequence {is, j, as; s < t}. 

The model just described belongs to the general class of repeated games with 
incomplete information. These games offer a convenient framework for the isolation 
and examination of various aspects of learning and information in dynamic conflict 
situations. They have been extensively studied within the classical Bayesian frame- 
work for incomplete-information games, typically under the limiting expected average 
payoff criterion. See, e.g., Mertens (1967), Sorin (1980), Aumann and Hart (1992) for 
surveys of this field. 

In this paper we focus on the (long-run) total reward, which is a refinement of the 
average criterion. This, together with the non-Bayesian approach, distinguishes the 
present work from the mainstream of existing research on repeated games with 
incomplete information. Furthermore, we are concerned only with the case of perfect 
observations. The approach taken here is closer in spirit to that of non-Bayesian 
adaptive control (Goodwin and Sin (1984), Kumar (1985), Kumer and Varaiya (1986)), 
and is indeed based on certain ideas and methods from that field. 

Let us next introduce the performance criterion for player 1. Generally speaking, 
player 1 wishes to secure a large total reward over all stages played. Assume for the 
moment that the game proceeds for n stages, with players 1 and 2 using strategies oa 
and r, respectively. One may then compute the total (n-stage) expected reward 
R,' (0o), and a reasonable objective for player 1 is to maximize that quantity. 
Unfortunately, he knows in advance neither player 2's strategy r nor the true 
parameter 00, so that further specifications are required to make this goal meaning- 
ful. 

As already mentioned, with respect to player 2 we adopt a worst-case approach, 
namely we assume that his strategy would be the least favorable one to player 1. 
(Note however that any strategy of player 2 is subject to the information structure 
described above; in particular, a player's action cannot depend on the other's action 
at the same stage, since actions are chosen simultaneously.) This leaves the issue of 
the unknown parameter. Here a direct worst-case approach is inappropriate, since it 
fails to bring out fully the learning potential of player 1. The basic approach taken 
here is to use the "complete information performance" (i.e., the expected total 
reward that player 1 could guarantee if he knew 00) as a reference point for the 
actual performance, and require that the difference between the two should be small 
for all possible values of 00. This approach is well suited to problems where learning 
and adaptation are key issues, and seems most natural when the complete informa- 
tion performance may indeed be closely approached. 

To specify the complete information performance, note that had 00 been known, 
then player 1 could secure at each stage an expected total reward which equals v(00), 
the (maximin) value of the matrix game with parameter 00. Thus, in n stages player 1 
could secure nv(0o). Obviously, in the incomplete information game he can only come 
close to this level. Define then the relative loss (also known as regret) for player 1 as 
the difference between this and the actual expected total reward, namely L' T(00) = 
nv(00) - R,' T(0). We shall henceforth refer to this quantity simply as the loss. 
Maximization of the loss over all strategies r of player 2 yields the worst-case loss, 
denoted L,(0o). The long run performance of player 1 may now be measured in 
terms of the asymptotic rate of increase of the worst-case loss (e.g., linear, sublinear, 
logarithmic, bounded, etc.). An efficient strategy for player 1 must guarantee a low 
rate of increase for all possible values of the true game parameter. 

Implicit in this performance measure are certain assumptions concerning the time 
horizon n. Formally, this measure is defined for an infinitely repeated game. Indeed, 
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the rate of increase of the loss is computed for a fixed strategy o-, which must be 
prespecified for all stages t > 1. Practically, it is relevant to the case where the time 
horizon is very long, and not precisely known to player 1. However, in accordance 
with our worst-case approach, we do not preclude player 2 from having this informa- 
tion, so that his worst-case strategy is allowed to depend on the time horizon n (cf. 
Equation (2.3) below). 

The total loss criterion is a refinement of the expected average reward criterion, 
and in fact supplies rates of convergence for the latter. Indeed, an "ideal perfor- 
mance" with respect to the average criterion requires only that the worst-case loss 
would be o(n); a much refined result, namely O(log n), will be obtained here. We 
note that if rewards are not observed, then a convergence rate of O(n-1/2) of the 
average reward to the value of the game (in a Bayesian setting) cannot be improved 
upon in general (Zamir (1972)); our results clearly imply that with perfect observa- 
tions this rate is O(log n/n) at most. Other relevant results concerning the average 
criterion may be found in Banios (1968) and Megiddo (1980), which consider a 
completely uninformed non-Bayesian player and nonrandom rewards, and also in 
Lakshmivarahan (1981). For a related problem of statistical games against nature see 
Van Ryzin (1966) and references therein. 

What are the strategic problems that confront player 1? Obviously, he may use the 
observed game history to estimate, in a statistical sense, the true game parameter. We 
are then confronted with the dual role of control: actions which are good for 
(statistical) information acquisition may be inefficient in terms of rewards, and 
vice-versa. On top of this, the effect of player 2 on both aspects should be considered. 
In particular, the information content of the observations depends also on player 2's 
actions, and player 1 may not be able to guarantee consistent estimation of the true 
game parameter. This implies that player 1 cannot isolate the problem of information 
acquisition (probing), as is possible in comparable adaptive control problems (Kumar 
(1985), Kumar and Varaiya (1986), Lai and Robbins (1985), Agrawal et al. (1989a)). 
Instead, he should rely on interrelations between information and reward, in trying to 
guarantee that, no matter what player 2 may do, low information will be compensated 
by high enough reward. This theme will be dominant in the following analysis. 

Our formulation of the performance criterion is closely related to that of Lai and 
Robbins (1985), where a theory of asymptotic total reward optimality is presented for 
the statistical Bandit Problem. These results have been extended to various adaptive 
control models, e.g., Agrawal et al. (1989a, b), Anantharam (1987). In particular, our 
game model reduces to that of Agrawal et al. (1989a), if player 2 is removed. 
Asymptotic optimality results in that vein will be presented for the game model in a 
sequel paper (Shimkin and Shwartz (1996)). 

In the present paper we shall focus on some relatively simple strategies, which are 
intuitively appealing and easy to implement, study their performance, and identify 
conditions under which they perform well. These strategies are based on the Cer- 
tainty Equivalence principle, where a point estimator of the true parameter is 
substituted in a complete-information optimal control law. First, we consider a 
strategy which is based on the Maximum Likelihood Estimator (MLE). It turns out 
that performance is poor in general, in that the loss might increase linearly in time. 
However, certain conditions are provided which ensure a bounded loss (which is of 
course the best possible "rate of increase"). These results are related to the "closed 
loop identification problem" which arises in the adaptive control of Markov chains 
(Kumar (1985), Kumar and Varaiya (1986)). Motivated by an idea of Kumar and 
Becker (1982), we then consider a Certainty Equivalence strategy with a modified 
estimator, the value-biased MLE. Considerable improvement in performance is 
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obtained: here the loss is O(log n) at the most and, moreover, a bounded loss is 
guaranteed under weaker conditions than before. 

The paper is organized as follows. The next section describes the model. Section 3 
develops some preliminary results required in the analysis. Sections 4 and 5 consider 
Certainty Equivalence strategies which are based on the MLE and value-biased MLE, 
respectively, and ?6 is devoted to the proof of Theorem 5.2. The paper ends with 
some concluding remarks in ?7. 

NOTATION. 9(J)) denotes the set of probability vectors over the finite action set 
J, and /(f) denotes the set of probability vectors over . An element x = (xi) of 
9(Jo) is referred to as a "mixed action," and similarly for y E 5{(/). For any JY X 
matrix M = {M(i, j)}, let M(x, y) denote the averaged (expected) value of M with 
respect to the mixed actions x and y, namely 

(1.1) M(x, y) = xiM(i, j)yj 
i,j 

The mixed notations M(i, y) and M(x,j) will also be used, with similar interpreta- 
tion. For positive sequences {f,} and {g,}, we write f,, = o(g,,) if lim supf(,,(/g,,) = 0, 
and f, = O(g,) if limsup,j(f,1/g,) < o.o Finally, 1{*} denotes the indicator function. 

2. The model. Let G(0) denote the matrix game corresponding to the parameter 
0 E 0, as described in (a) to (d) above. The repeated game r1 proceeds as follows. At 
stage 0, Nature chooses an element 00 E 0 ("the true parameter"). This choice is 
revealed to player 2, but not to player 1. Then, at each stage t = 1,2,...: player 1 
and player 2 simultaneously choose actions it E J and jt , respectively. Conse- 
quently, the reward at e to player 1 is chosen according to the probability 
distribution poo, ,i(,). At the end of each stage, both players observe the actions 
(it, j) and the reward at. Perfect recall of past information is assumed. Rewards 
accumulate to form the total n-stage reward s,, = Et 1at. 

A strategy for each player is a (possibly randomized) rule for choosing his actions at 
each stage. Since perfect recall is assumed, it follows by the Kuhn-Aumann theorem 
(Aumann (1964)) that one can restrict attention (at least as far as the reward 
sequence distribution is concerned) to behavioral strategies, where randomizations 
are performed independently at each stage. Formally, a (behavioral) strategy for 
player 1 is a collection of maps ot: Ht - ->(), t = 1, 2,..., where Ht denotes the 
set of all possible observed histories ht = {is, j, as,)t- up to stage t. Thus xt A 

ar(ht) 
is the randomized action of player 1 at stage t. Strategies of player 2 are defined 
similarly except that they are allowed to depend explicitly on the true parameter 00. 
A strategy of player 2 is denoted by r, his strategy set by 9 and his randomized 
action at stage t is denoted Yt. Let P'*T and Eo' denote the probability measure 
and the expectation induced by the triplet (0o, or, r) on the sample space H1. 

Let A0(i, j) = Ea /apo, (a) denote the expected reward in the matrix game 
G(0) given actions i and j. The value of G(0) is given by 

(2.1) v(0) 
A max min A(x,y) min max A(x,y), xe9(J) y E() ye(f) (xe 9(Y) 

where the notation (1.1) is used. 
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We now turn to the performance measure for player 1. For each strategy pair 
(a, r), 00 E 0 and n > 1 define the loss: 

(2.2) L(,T(o0) =E' Tnv( o) - Ea) 

Maximizing over all strategies of player 2 yields the worst-case loss: 

(2.3) L'(00) = maxL' T( 00). 
T 

As motivated in the Introduction, the asymptotic rate of the loss will be used as a 
performance measure for player 1. Thus, we are interested in a strategy cr of player 1 
which guarantees a "low" rate (in n) for every possible 00. 

We define now some additional quantities that will be used in the sequel. The 
one-stage loss is defined as 

(2.4) do(i,j) = v(0) -Ao(ij). 

Note that do(i, j) may be negative. Denote D = max, i, do(i, j). The loss may be 
expressed in terms of the one-stage loss as follows: 

nIi~ n 

(2.5) L', (00) = EOE doo(i,t) = EO do(, ) 
t=l t=l 

These relations follow by using the definition (2.4) of doo and applying appropriate 
conditioning to each term separately. 

Let XO denote the (closed convex) set of optimal (maximin) randomized actions of 
player 1 in the matrix game G(0), and let Y0* denote the set of optimal (minimax) 
randomized actions of player 2. Let oJ cj denote the set of relevant actions for 
player 1 in G(0), namely the set of actions which are given positive probability by 
some optimal randomized action x* E XO . Similarly define X' as the set of relevant 
actions for player 2. Let x*(0) be an arbitrary point in the relative interior of X~, 
which we fix for the rest of the paper. Note that i e.Y* if and only if x*(0)i > 0. It 
follows from Theorems 3.1.2 and 3.1.16 in Parthasarathy and Ragahavan (1971) that 
X' is exactly the set of actions which minimize the expected reward against x*(0), 
that is, 

(2.6) do(x*(0), j) v(0) - A(x*(0),j) = 0 forj eo*, 

(2.7) d(x*(0),j) < 0 forj 0X 

Another important quantity is the information divergence between Po, i, and P', i, j 
defined as 

(2.8) ,o(i, ) = E P ,i,( g i (a) 
a o Po', i,(a) 

(where 0 logO A 0). The information divergence, also known as the cross-entropy or 
Kullback-Leibler distance, is a well-known measure of statistical distinguishability 
between probability distributions, and arises naturally as the expected log-likelihood 
ratio. It is easily verified (Cover and Thomas (1991)) that Io, ,(i,j) 0, and 
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f, ,(i,j) = 0 if and only if Po, i, = Po'i,i. Since I may be infinite, it will be 
convenient to define a "truncated"version: 

(2.9) I, (i j) = o,i,j(a)min MO, log p (a) 
a e=A \ Peo'J j(a)) 

Here Mo > 0 is a large enough constant so that Io, (i, j) > 0 implies I, ,(i, j) > 0 
(such a constant obviously exists since the sets O, , f, are finite). It follows that 
0 < Io, ,(i, j) < Mo, and 

(2.10) Io, ,(i,j) = 0 if and only if po, =p, j i,j. 

3. Preliminaries: Controlled I.I.D. processes. This section develops some results 
which in essence will be used to bound the deviation of the log-likelihood ratio from 
its (conditional) mean. These results are derived within a general "controlled i.i.d. 
process," whose exact relation to the repeated game model is indicated in Lemma 3.1 
below. 

We consider the following controlled process, which is similar to a one-player 
version of the repeated game. Let U denote the action space, and Z the state space. 
For each u E U, let q(.lu) E 95(Z) be a probability distribution over Z, and let 
r: Z -> 1R be the reward function. At each stage t > 1, the controller chooses an 
action ut e U, the state zt E U is randomly chosen according to q(.lut), and a 
one-stage reward rt = r(zt) is collected. A control policy wr is a sequence of mappings 
Vrt: Ht 9-(U), which associate with each observed history sequence ht = 

(u1, Zi,..., ut_, zt-_) a probability distribution over U. (Since the sets U and Z are 
not necessarily finite, some measurability conditions are required for the above 
description to induce a well-defined stochastic process. Thus, assume that U, Z are 
measurable sets, q: U -- 9(Z) and 1rt: H, ~-* (U) are transition probabilities, where 
Ht is endowed with the product co-algebra, and r is a Borel-measurable function.) Let 
II denote the set of control policies. 

Let R,, denote a random variable distributed as the one-stage reward given action 
u E U (i.e., RU = r(Z,,) where Z, - q(lu)), and let R,, denote its expected value: 
R, = E(R,,) = fzr(z)q(dzlu). Define also the total n-stage reward S,, = E'1rt. The 
following conditions are imposed throughout: 

ASSUMPTION 3.1. (i) The reward function r is bounded: Ir(z)l < 
R, z E Z. 

(ii) R, > 0, u E U. 
(iii) There exists a constant CO > 0 such that E(R2) < CoR, for every u E U. 

Item (ii) requires the expected reward to be nonnegative. The essence of (iii) is that if 
R,, is small, then so is (the second moment of) R,. 

The next lemma and remark summarize the required correspondence between this 
model and the repeated game model. 

LEMMA 3.1. Let 0o, 0 E 0 be fixed parameters. Consider the following definition: 

Ut = (t,Jt ), Zt = (it t t at), 

r(z) = min Mo, log P, i,j(a) Vz (i, j, a), 
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where Mo is the same as in (2.9), and we arbitrarily define r(z) = 0 if oo ij(a) = 0. Then 
Assumption 3.1 is satisfied. 

REMARK. Under this definition, we have 

n 

, = min Mo, log A,(, 0), 
t=l ( p0 ,jj(a) 

(the "truncated log-likelihood ratio'), and Ru = Eixioo 0(i j) = Ioo (, j) for u = 
(x, j) [cf. (2.9)]. Note that we identify the action u with (x, j), instead of just (i, j). 
This will enable us to apply the results of this section to bound certain expressions 
that contain I,, (x, j). 

PROOF. The reward function r(z) is obviously bounded since Z = XxJ X s is a 
finite set. Also, R,, = 

Ioo o(x, j) > O. To establish the remaining part (iii) of Assump- 
tion 3.1, consider first the finite set UO = {(i, j): i e>, j Ef}, taken as a subset of U 
by embedding pure actions in randomized ones. For every u = (i, j) there exists a 
positive constant C,, such that E(R2)< C,R. This follows since E(R2) < R2 < o, 
R = I (i, j) > 0, and,_by (2.10) R 0, = 0 implies R, 0. Since Uo is finite, it 
follows that E(R2) < C0 R for some constant CO and all u e U. But then, for every 
u = (, j) e U, 

E(R ) = ExiE(R(i)) < Co C ,,(^) == (,,j)) c xi(ij) = Coki, 
i i 

The next lemma is required in the proof of Lemma 3.3, the latter being the main 
result of this section. 

LEMMA 3.2. There exist constants A > 0, A > 0 such that: 

(3.1) (i) E(e- R) 1 - ,R,, u e U 

(3.2) (ii) sup P,{S,, < -K) < e-AK, VK > 0. 

PROOF. (i) For every u E U we have E(e-AR')IA0 = 1, 

(3.3) dAE( e-AR -)I,, = -E(R,,) = -R < 0, 

and, by Assumptions 3.1(i) and 3.1(iii), 

d2 
dA2E(e-dAR,) = E(R2 e- AR) < E(R2 elRIl) 

< e E(R2) < (Co eR)Ru, VA [0, 1]. 

Therefore, a second order power series expansion of E(e-&AR) around A = 0 yields 

(3.5) E(e-AR) < 1- AlR, + 2 (Coe)R, 0 A < 1, 

and the result follows with A = (CO eR)-1, u = A/2. 
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(ii) Let A > 0 be the constant for which (3.1) holds. Since 1{/3 < 0} < e-,~ for 
every/3 e R, then 

(3.6) P,r{S,i < -K) < E, e-A(s"+K) = e-K E(I tie-A 

Now, by standard Dynamic Programming arguments applied to multiplicative cost 
functionals (e.g. Bertsekas (1976, p. 66)), it follows that 

(3.7) E( fie-Ar < [supE(eAR))] < 1 

where the last inequality follows from (3.1). o 

LEMMA 3.3. _Let ({3,,) be an o(n) positive nondecreasing sequence such that Pfi - oo. 
Let S,, == E R, . Then 

(i) There exists a constant Q < o such that: 

supE, , i{S,_1< } ) < Q. 
r t=l 

n= 1 
n n 

\ 
(ii) limsup g sup E l,,{- < ,l 

< 
1. 

n-ox T nr t=l 

00 

(iii) E supP,{o, r> rn, S,, < /3, < o, V > 0. 
n-l r 

(iv) E supPi EI= l{ lSt_ -L 
< 13 , } > n < , V 

n=l r t=l 

(v) For any a > O, e > 0, there exists a constant Q = Q(a, E) < oo such that 

00 

E, ER,{(S,t_i > (1 + )ft- ,St-1 < t} < Q, Vr 7E l[n. 
t=l 

PROOF. (i) Let A > 0, /j > 0 be as in Lemma 3.2(i). Note that 1{S,_ 0} < 
e-ASt-l, so it suffices to prove that the bound 

(3.8) J' & supE, ( R e-SR, '- < Q 
t=l 

holds for some Q < oo and every n. Fixing n > 1, define for every 1 < m < n: 

(3.9) J= suPE E RL,, exp(-ASt-1) 
t=m 
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where St-l = l r for t > m, and Sm-1 = 0. Further define J,, = 0. Then, for 
every 1 < m < n, 

J = sup E {Ru,,R + er R exp(-ASt-1 
Xir \ t=m+l 

(3.10) = sup EjRA +te1 (3.10) = sup E,, ,, + e-A" E- R,,, exp(-AS-+)} 
?r, t=m+l 

=supR + E(e-AR")Jm+) 
U 

(which is in essence just the optimality principle of Dynamic Programming). Hence, 
by Lemma 3.2(i), 

(3.11) Jm < sup R,, + (1 - R,-)J+} = J,,+ + sup (RI,(1 - /J,1)}. 
u u 

Since 0 < R, R, it follows that J, < J?1 + R, and also that JM < JM, +if JM+ 1 
J-1. Since J,+ = 0, this clearly implies that Jm < R + /-1, and in particular 
J;t R + 1. 

(ii) Let 0 < E < 1 be fixed. Then, recalling that 0 R< <? R, 
n 

J,, 
A E Rl{St-, < i,,j 

t=l 

== ? l{5-1 S <,,,_< St > (1 - E)St-l 
t=l 

(3.12) + E R,,l{taSt-1 < St-1 (1 - e)S_ 1} 

t=1 

(3. E iRt1{St-I -< i, 1 >, (1 (1-E)_l} 
t=1 

n (3.12) + , + E Ru,{S t {-1 ?< (1 - E)S,_1] 

t=l 

(The last inequality follows from the definition of St.) In order to bound the last 
term, define a modified reward function: r'(z)_= r(z) - (1 - e)R. Denoting all 
quantities related to r' by a prime, it follows that Rk = R,,, and S = St - (1 - E)S. 
Note further that the model assumptions are satisfied for this modified reward 
function: in particular, r' is bounded, and 

(3.13) E(RI)2 < E(R2) CR = (e-C)R,. 

Therefore, by item (i) of the present lemma, 
n 

(3.14) ElE lst- (1 - )Stl} 
t=l 

n 

E-1 ElE ,l R i{St < 0} e-Q(e). 
t=l 
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Combining (3.12) and (3.14) gives 

(3.15) limsup 1 
supE,(J,) 

n - oo p r 

< limsup (1 - +R +E -Q(E))= 1- 

The required result then follows by letting e -~ 0. 
(iii) Define, as in the proof of (ii), a modified reward function r'(z) = r(z) - R,. 

Then, for every rTr II and r1 > 0, 

P,(S,, rn, S, < j S31 < P1{S - I - Ian) 

(3.16) < P,{S;, ( /,,- n)} 

< exp(-A'(r2n -,,)) a,, 

holds for some A' > 0, where the last step follows by Lemma 3.2(ii) applied with the 
modified reward function. Since P,, = o(n), then {a,,) is summable and (iii) follows. 

(iv) For every rt e II and r7 > 0, 

P E R {ll{St-i < I,} > qn < P,r(3m, 1 m < n, s.t. Sm > rn, S,i_1< ,, 

(3t17) n 
(3>.~17) -< E Pr{Sm-l > qn -R, Sm_1 < 1,} 

m=l 

< na,, exp(A'A/2), 

where the last inequality follows exactly as in (3.16), with a,, and A' as defined there. 
Since the sequence {na,,) is summable, the result follows. 

(v) Define, as in the proof of (ii), a modified reward function: r'(z) = (1 + e)r(z) 
- R,,. Then 

n 

Jl E < l{ {S1(-_ ? (1 + E)3t - a, S-1 P) 
t=l 

n 
(3.18) < E R,l{(1 + E)S_1 - S- < a) 

t=l 

n 

=- 1 E tt1Sit <} . 
t-1 

Now E,J,, can be bounded by applying the proof of (i) to the process with this 
modified reward function. Indeed note that for any A > 0, 

n 

EJI, < E-1 eAaE, E Rl e-AS1, 
t=l 
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Comparing this expression with (3.8), it follows that for some finite A' and Q', 

EJ, < e- e'AQ' - QQ < oo Vmr, n. o 

4. Certainty equivalence with the MLE. We consider in this section a simple 
strategy that is based on the Certainty Equivalence principle and the Maximum 
Likelihood Estimator (MLE). This means that player 1 computes at each stage the 
MLE of the unknown parameter 00, and then plays the optimal action in the matrix 
game which corresponds to this estimate. This strategy may give rise to poor 
performance in general, as indicated at the end of this section. However, we shall 
provide sufficient conditions, related to the interplay of information and reward in 
our model, which guarantee a bounded loss even for this simple strategy. 

The MLE of 00 just prior to stage t > 1 is given by: 

(4.1) 0, = argmax{A,l(0)): 0 0}, 

where 
t-1 

(4.2) At_,(0) = 1po,is,,,(as) 
s=l 

is the likelihood function. To define Ot uniquely, we assume that ties in (4.1) are 
decided according to some fixed ordering of 0; also, let Ao(0) 1. For every 00, 
0 E 0, define the log-likelihood ratio: 

A,(00) Po i1(as) 
(4.3) A,(00, 0) = log(0) = E log 

" s 
At(0) s=l Po.i,J (as) 

and the "truncated" log-likelihood ratio: 

(4.4) A(, 0) = min M, log P0o ' 
I ) 

s=l \ 
where Mo > 0 is the same constant as in (2.9). Note that, by definition of the MLE, 

(4.5) o, = 0 =A(00, 0) < 0. 

The following strategy - of player 1 will be considered in this section: 

STRATEGY a. Xt = x*(0t), where Ot is the MLE defined in (4.1). 

Control policies of this type, namely Certainty Equivalence with the MLE, have 
been well studied in the context of stochastic adaptive control (e.g., Mandl (1974), 
Borkar and Varaiya (1979, 1982), Kumar (1985), Kumar and Varaiya (1986)). Perfor- 
mance of these schemes is often hampered by the closed-loop identification problem: 
the prescribed control signals may be inadequate for efficient identification, and poor 
performance might result. These observations have led to two research directions. 
The first is to specify appropriate identifiability conditions on the system which 
ensure "optimal" performance (see the above-mentioned references on adaptive 
control). The second is to consider modifications of the basic policy which alleviate 
the need for such conditions; this will be further discussed in the next section. 

We now proceed to formulate an identifiability-type condition which guarantees 
bounded loss for the strategy a. For each 00 E 0, define the following conditions 
(recall that Io,, is the information divergence defined in (2.9)): 

753 



N. SHIMKIN & A. SHWARTZ 

CONDITION Cl(0o). For every 0 and j, Ao(X*(O), j) < v(00) implies 
Io, o(x*( ), j) > 0. 

CONDITION C1 C1(0o) is satisfied for every 00 E 0. 

Condition C1 essentially requires low rewards to be "compensated" by the informa- 
tion content of the observed signals. This should hold for all (optimal) actions of the 
form x*(0), which is just the set of actions which player 1 might employ under the 
strategy a. Further discussion of this condition is deferred to the end of the section. 

It will be useful to express this condition in terms of the one-stage loss. Recalling 
the definition of do in (2.4), C1(0o) reads: For all 0 and j, doo(x*(), j) > 0 implies 
Ioo (x*(), j) > 0. Since Ioo. is nonnegative and both 0 and / are finite sets, this 
implies (actually is equivalent to) that for some M < oc: 

(4.6) doo(x*(0),jj) < MIo,(x*( ),j), V0,j. 

We then have the following result. 

THEOREM 4.1. Assume that player 1 is using the strategy '. 
(i) If C1(00) is satisfied, then lim sup,,, L?,(00) < oo. 

(ii) Thus, if C1 is satisfied, then the loss is bounded for every 00 E 0. 

PROOF. The idea of the proof is to upper-bound the loss by information content 
of the data (quantified by the information divergence) over the times when the MLE 
is different from the true parameter (see (4.6), (4.8) below). To bound the latter, we 
rely on the observation that large information steers the estimator towards the true 
parameter. 

Recalling (2.5), and noting that xt = x*(0t) under 5, it follows that for every 00 
and every strategy r of player 2: 

n 
(4.7) Lo' (00) = Eg' E ds(X*(do ) r)j 

t=l 

Consider a fixed 00 such that C1(0o) is satisfied. By optimality of x*(00) in G(00) 
we have doo(*(0o), j) < 0 for every j. Using this and (4.6) in (4.7) gives (with E 
standing for E,o ): 

n 

L,T(O0) = E E E doo(X*(), jt)1 = 0} 
t=l 0EO t=1 

n 

<E E E doo(X*(O),jt)l{0t 0) 
t=l 0600 

(4.8) 

M E EE Ioo o(*( 0), j)l{ = )0 
0-00 t=l 

n 
M E E E Io (x ,,j,)i0 = ). 

0?00 t=l 

Recall that A,,(90, 0) is the log-likelihood ratio (4.3). By (4.5) we have 

1{ t = 0} l {A( ( 00, 0) 0), 
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so that, noting that Ioo 0 > 0, 

00 

(4.10) Ln T(o) M E E Io, (xt, jt)lAtl( oo) < 0}. 
000o t=l 

We now proceed to upper-bound the expressions 
00 

(4.11) F'(O) E E I,o(t jx,){A-l( 0 j) )< 
t=l 

for each 0 060, by employing Lemma 3.3(i) and the correspondence indicated in 
Lemma 3.1. For that purpose two adjustments are required. First, we have to 
"replace" At_l(0, 0) with its truncated version At1(00, 0) (see (4.5)), in order to 
comply with the required correspondence. Second, we shall have to extend the 
strategy set of player 2 in order to comply with the "controlled i.i.d. model" of ?3. 

Note first that At_1(0, 0) < At_1(00, 0) by its definition, so that 

00 

(4.12) F( 0) < FT'(0) Eo T Ieo, (xt, jt)lt{At-(00, 0) < 0} 
t=l 

and it suffices to upper-bound F(0). Now, since the strategy of player 1 is fixed, 
player 2 can be regarded as a single controller (maximizer) in (4.12). However, since 
xt = x*(Ot) depends on the process history, then player 2 is not facing a "controlled 
i.i.d. process." Let us therefore extend the original set 5 of strategies available to 
player 2 by letting him choose at each stage t both j, as before, and also xt E 9(c). 
Denote this extended strategy set by II. Lemma 3.3(i) can now be applied, which 
gives 

(4.13) Fr(0) <FT(0) < supFT(0) < supFr(0) <Q(0) < 0, VreS. 

Combining (4.10), (4.11) and (4.13) yields 

L,(00) <M E Q(0) < oo, Vr,n, 
00 0 

and (i) is proved. Since (ii) follows immediately from (i), the proof is complete. o 

DISCUSSION. We conclude with a few remarks concerning the results of this 
section and their implications. 

Condition C1 is not strictly an identifiability condition, since it does not guarantee 
for player 1 the ability to identify (i.e., consistently estimate) the true parameter. For 
example, player 2 may still have a "nonrevealing" action jo under which all games are 
indistinguishable, i.e., Ioo0 (x, jo) = 0 for all x and 0. Condition C1 does not preclude 
such "information hiding," but guarantees that it will be compensated by large 
enough rewards. 

The proposed strategy & might perform poorly when condition C] is not satisfied. 
Let 0 be a parameter which violates C1(0o), which means that for some action j' we 
have 

(i) Aoo(x*(O), j') < v,). 
(4.14) 

(ii) Ioo, (x*(0),j) = O. 
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Assume that at some stage t the MLE t equals 0, so that xt = x*(O) by definition of 
5, and that player 2 chooses action j' thereafter. Then the MLE estimator may get 
"stuck" on 0, since by (ii) the likelihood ratio between o0 and 0 will not change. At 
the same time, (i) implies that the reward at each stage will be lower than the value 
v(00). This situation may thus persist, leading to an average reward lower than v(00) 
(equivalently, to a loss which increases as O(n)). 

To remedy this problem, the following fact will be crucial: any parameter 0 which 
violates C1(00) must have a value lower than that of 00, i.e., v(0) < v(00). Indeed, let 
0 be such that (4.14) is satisfied. Then, 

(4.15) v( 0) < A(x*( 0), j') = Ao(X*( 0), j') < V( 00), 

where the equality follows from (4.14)(ii). 
To summarize: if condition C1 is not satisfied, then the MLE may get "stuck" on a 

wrong parameter 0, while the loss increases linearly. However, this is possible only if 
0 satisfies v(O) < v(o0). This observation holds the key to the improved strategy of 
the next section. 

5. Certainty equivalence: Value-biased MLE. In this section we introduce a class 
of strategies that guarantee a loss of O(log n) at most. Moreover, bounded loss is 
guaranteed here under weaker conditions than those of the previous section. These 
strategies are based on a modified estimator, which takes into account the reward 
structure of the model. The simple Certainty Equivalence structure is however 
maintained. 

As indicated at the end of the previous section, a basic problem of the MLE-based 
strategy is that the estimator may adhere to parameters with a lower value than that 
of the true parameter. To prevent that, a certain bias will be introduced in the 
estimator in favor of parameters with high value. Naturally, this bias has to be 
delicate enough so that the identification capability of the estimator will not be 
destroyed. 

The biasing method proposed here relies on the introduction of confidence levels 
in the estimator. Instead of just the MLE, which is the single parameter that 
maximizes the likelihood function, consider the set of parameters which nearly 
maximize the likelihood function (to within a prescribed time-varying threshold, or 
confidence level). We shall refer to this set as the likely parameters set. The estimator 
is then chosen as the member of this set which has the highest value. 

The value-biased scheme is closely related to the cost-biased MLE algorithm, 
introduced in Kumar and Becker (1982) in the context of adaptive control of Markov 
chains with the average cost criterion. There the bias is introduced by adding a 
cost-dependent term to the likelihood function; we shall comment on this biasing 
method at the end of the section. Several adaptive control algorithms have been 
proposed which incorporate confidence levels in the estimation scheme (e.g., Doshi 
and Shreve (1980), Borkar and Varaiya (1982), Lai and Robbins (1985), Agrawal et al. 
(1989a)), but not for the purpose of cost related biasing which is crucial here. 

Let {K,,, n > 1} be a sequence of positive numbers, such that 

(i) K,l Oo, K,>1, 

(5.1) (ii) logK,, = o(n), 
00 

(iii) E K1 < 00. 
n=l 
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A specific example, which gives the "lowest" rate in Theorem 5.1 below, is K,, = n1+e 
with e > 0. 

Let 0t be the MLE (4.1), and further define the likely parameters set: 

(5.2) (= 
O 

eO' At_-(0t 0) _ Alogt-l(0) < log Kt 

which is the set of parameters which bring the log-likelihood function to within log Kt 
of its maximum. The value-biased maximum likelihood estimator is given by: 

(5.3) t = arg max{v(0): 0 E )}; 

if there are several parameters with maximal value, we select among them one with 
maximal likelihood At,_(0). This is an important rule, which leads to the relation 
(5.6) below. 

The following strategy will be considered in this section. 

STRATEGY 5. xt = x*(0t), where Ot is the value-biased MLE (5.3). 

Before presenting the main results, we state some basic properties of the proposed 
estimator. By definition of 0t, the following implications hold (for every 00 E 0): 

(5.4) (e) > K (5,4) v(t) < v(0o) = 0o, t, A--, >(00) 

Furthermore, since 0t E Ot and At(0o, 0t) < At(0t, ), 

(5.5) At_l(00, o) < log Kt. 

Finally, by the tie-breaking rule for parameters with equal values, 

(5.6) vu(t) 
= U( 0) = 

At1(00, t) < 0. 

The following lemma, a consequence of (5.4), indicates that the biasing scheme 
indeed achieves its purpose. 

LEMMA 5.1. (i) E' Eot= 1{0o 60 0 } < Q1 for some finite constant Q1 and all o, r. 
(ii) Consequently, E ,TE {11(v(t) < V(00o)} Q1 for all o, r. 

PROOF. (i) Let o, T be arbitrary strategies. Then 

00 00 

Er0'E lE{o Ot} = E P{Oo At } 

t-i 

t=1 t=1 

< E EP{At_l()/At-1(00) >Kt}. 
0 Oo t=1 
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Now, as is well known, the likelihood ratio {At(0)/At(00)) is a positive martingale with 
expected value 1. It then follows by Markov's inequality that: 

(5.7) Eo E 1{0o t} < E E K 
t=l 00o0 t =l 

which is finite by the choice (5.1) of (Kt}. 
(ii) From (5.4) it follows that l{v(0t) < v(00)} < l{OQ E Ot}, and (ii) is therefore 

implied by (i). a 
Lemma 5.1 implies roughly that the biased estimator 0,, will equal a parameter with 

a value lower than that of the true parameter not more than a finite number of times. 
Thus, the effect of such parameters of lower value is no longer significant. Note 
however that the biasing scheme introduces a new potential problem: Since the 
estimator is biased towards parameters with higher value, it may favor those over the 
true parameter, even when the unbiased likelihood function is maximized by the true 
parameter. The main issue in following analysis will be to bound the loss associated 
with this effect. 

We are now in a position to present the first main result of this section. 

THEOREM 5.1. For every 00 E 0 there exists a constant P(0o) such that 

(5.8) limsup 1 L( 0) < (0o). log K,, n ---> oo 

Thus, under strategy 5 the worst-case loss is O(log K,,) at most. In particular, if we 
choose K,, = nl+6, with e > O, then the loss is O(log n) at most. 

The proof of Theorem 5.1 proceeds through some lemmas. We assume in the 
following that 00 is fixed. Define for future reference the following three sets which 
are, respectively, the set of parameters with value higher than 00, same value as 00, 
and the union of the first two: 

(5.9) H(00) = {0 E O: v(0) > (0)}, 

(5.10) S(00) = {0 E 0: 0 00, V(0) = V( 00)), 

(5.11) H0(00) = {0 E : 0 e 00, v(0) > V(00)}. 

LEMMA 5.2. There exists a constantM < oo such that do,(x*(0 ),j) < MIlo o(x*(O), j) 
holds for every j and every 0 E e which satisfies v( ) >2 (0o). 

PROOF. Since 0 and f are finite sets and Io,, is nonnegative, it is enough to 
show that v(0) > v(00) and Io (x*(), j) = 0 together imply doo(x*(), j) 0. 
Indeed, I, o(x*(O), j) = 0 implies that Ao0(x*(0), j) = AW(x*(), j) (cf. (2.10)), and 
since x*(0) is optimal in the game matrix Ao, we get 

(5.12) doo(x*(0),j) v(0o) -A0o(X.(0)'j) 

= v(00) -Ao(x*(O),j) < u(0o) - v(0) < 0. n 
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LEMMA 5.3. For every 0 with v( ) > v( 0): 

n 
lim sup l maxE'o E I,oo, (Xt, jt){A,_i(0, ) < log K,,} 

< 

1. 
n .- ooo ^o Av r ^ 

PROOF. Follows from Lemma 3.3(ii), by using exactly the same considerations that 
were used to bound (4.11). o 

PROOF OF THEOREM 5.1. By (2.5) and the definition of 5: 

in n 

(5.13) L,( ) = E; T doo(Xt jt) E doo(X(t)) 
t=l t=l 

Now, 

doo(x*(Ot),jt) - doo(x*(t), jt)[{v(Ot) < u( 0)} + l{u(0,) 2 u( o)}] 
t=l t=l 

(5.14) 

i ( 1{v(t) < v(0o)) + E E do0(X*( ), jt)i{t - , 
t= 1 OHo( o) t 1 

where D is an upper-bound on doo, Ho(Bo) is defined in (5.11), and do(x*(0o), ) < 0 
was used. We next bound the last term in (5.14). From Lemma 5.2, the control law 
x, = x*(0) and (5.5), it follows that for every 0 E HO(0), 

d00(X*( ), jt)1({ = oJ} MI00, o(X*(),I jt)l{Ot = 

(5.15) =MI00,, 0(x,, j)l{t = 0} 

< MIo,0 o(xt, jt)l{A_( 00, 0) < log Kt}. 

Therefore 

E do(X*(t)it) < D E l{vt) < (0B) 
t=- t=l 

(5.16) 
+ M E E Io,(xt, jt)l{At-(0o, 0) < log K}. 

0OHo(0o) t=1 

The proof now follows by taking the expectation and applying Lemma 5.1(ii) and 
Lemma 5.3. o 

The proof supports the following heuristic explanation for Theorem 5.1. As already 
noted, Lemma 5.1 implies that the effect of parameters with lower value than vu(O) 
on the loss may be ignored. Consider then the effect of parameters with a higher 
value than v(00). The biased estimator would prefer such parameters over 00, unless 
the observations provide sufficient statistical information to overcome the bias. Let 0 
be a parameter with v(0) > v(00), and assume that t = 0 at some stage, so that 
xt x*(0). Now, the basic information-loss relation of Lemma 5.2 implies that any 
(positive) loss incurred at that stage is accompanied by a proportional information for 
discriminating between 00 and 0. Thus, if the loss over the times {t < n: Ot = 0} 
builds up to O(log K,), so does the information for discriminating 00 and 0, and this 
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information is just sufficient to overcome the bias so that 0 is ruled out by the 
estimator. Consequently, this loss cannot exceed O(log K,,). 

We turn now to formulate conditions under which the strategy aF guarantees a 
bounded loss. Essentially, an additional information-loss relation will be required to 
hold under the optimal action x*(00); this provides an additional "source of informa- 
tion" for discriminating between 00 and parameters with higher value. 

Recall that H(0) - {0': v(0') > v(0)}. For each 00 E 0, define 

CONDITION C2(0o). For every 0 with v(O) = v(00), the following condition C3(0) 
holds: 

C3(0): For each j EO, either (i) A(x*(0), j) > v(O), or (ii) o, 0,(x*(), j) > 0, for 
every O' E H(). 

CONDITION C2. Condition C2(00) holds for every 00 e 0. 

Note that condition C2 is equivalent to: C3(0) holds for all 0. 

THEOREM 5.2. Assume that player 1 uses strategy S. 
(i) If C2(00) is satisfied, then 

(5.17) limsupL,5(00) < o. 
n -- 0oo 

(ii) Consequently, if C2 is satisfied, then the worst-case loss is bounded for every 
, E o. 

The proof of this result is presented in the next section. Here we compare 
condition C2 with condition C1 of the previous section. It should first be noted that 
for a given 00, conditions C1(0o) and C2(00) are not comparable, since the first 
pertains to parameters with lower value than that of 00, while the second to 
parameters with higher value. However, it will next be established that the global 
condition C2 is weaker than C1, thus implying that strategy r guarantees a bounded 
loss under weaker conditions than those required for 5. 

LEMMA 5.4. C1 implies C2. 

PROOF. We shall prove that if C2 is not satisfied, then C1 is not satisfied; more 
specifically, if C2(00) is not satisfied for some 00, then C1(O') is not satisfied for some 
O' E H(0o). Assume then that C2(00) is not satisfied. This means that for some 0 
with v(O) = v(00), j ej and 0' E H(O) = H(0o), we have (i') A(x*(O), j) = (), 
and (ii') Io, ,(x*(), j) = 0, which imply that 

(5.18) Ao^(x*(0),j) =Ao(x*(0),j) = v(O) < v(0'). 
But (5.18) and (ii') together imply that C1(0') is not satisfied. n 

An alternative biasing scheme. We now consider briefly an alternative biasing 
method, where the estimator is the maximizer of a biased likelihood function. A 
similar method was employed in Kumar and Becker (1982). 

Let {w(0): 0 E 0} be a set of real numbers which are increasing in v(O), i.e., 
w(0) > w(0') if and only if v(0) > v(0'). Let 8 = min{lw(0) - w(0')j: w(0) * w(0')} 
denote the minimal separation between these numbers, and let {k,,} be a positive 
sequence such that (compare 5.1)): (i) k,, oo, (ii) log k,, = o(n), (iii) E,lk,1 < oo. 
The value-biased MLE is now defined as 

(5.19) P = argmax(kt)W() At1_( 0) 
0eO 
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where At_l(0) is the likelihood function (4.2). The Certainty Equivalence strategy 
based on this estimator is xt = x*(Ot). 

The main results of this section, viz. Theorems 5.1 and 5.2, remain valid under this 
strategy (with log K,, replaced by log k,,). This is easily verified by noting that this 
estimator satisfies properties similar to (5.4)-(5.5), which are the key properties of the 
estimator O. 

We note, however, that the two biasing schemes are not completely equivalent. The 
estimator 0t effectively provides a uniform bias to all the parameters in H(00), while 
in the estimator 6t the bias necessarily increases with v(O). The uniform biasing 
property will prove to be of critical importance in Shimkin and Shwartz (1996), where 
an "asymptotically optimal" strategy is constructed based on the estimator Ot. 

6. Proof of Theorem 5.2. We now present the proof of Theorem 5.2. First we 
summarize the basic information-loss relations required here, in addition to those of 
Lemma 5.2. 

LEMMA 6.1. There exist positive constants M, 8 such that, for every 00 E 0 and 
j Ef: 

(i) doox*(), j) < - + MI0, o(x*(O), j) for every 0 e H(00) := {0: v(0) > 
v( 0)). 

(ii) If C2(00) holds then doo(*(o), j) < - 8 + M mino,' E(0) Io, o(x*(0), j). 
(iii) For every 0, if v(0) equals v(00) and C2(0) is satisfied, then 

do(x*(0),j) -8+MI, (x*(O),j) +M min I ,(x*(0),j). 
0' EH( 0) 

PROOF. Since Ioo 0(x, j)- 0, then (ii) is a special case of (iii) for 0 = 00. It is 
therefore only required to prove (i) and (iii). Since 0 and / are finite sets and 
Io,, (x, j) > 0 for all 0, x, j, it is sufficient to establish the following claims (i') and 
(iii'): 

(i') For every 0 E H(00), Io, o(x*(O), j) = 0 implies d,o(x*(O), j) < 0. 
(iii') If v(O) = v(00) and C2(0) holds, then Ioo, (x*(), j) = 

mino,-(O0) 
0, 0,(x*(W), j) = 0 implies d(x*(O), j) < 0. 
Claim (i') follows exactly as in the proof of Lemma 5.2, where in the last line the 

strict inequality v(00) - v(o) < 0 may now be used. To establish (iii'), we assume 
that the assertions there are satisfied, and show that doo(x*(), j) < 0. Noting (2.10), 
Io, (x*(O), j) = 0 implies that Ioo o,(x*(0), j) = Io ,(x*(), j) for all 0', and in 
particular for all 0' E H(00). Note that H(0) = H(00) since v(0) = v(00). Therefore 

(6.1) min Io,o,(x*(0),j) = min Io ,(x*(0),j) = O. 
O' JH(0) 0' eH(OO) 

By C2(0) this implies that A(x*(O), j) > v(0), so that 

(6.2) do( x*(), j) v(0A) -Ao(x*(O),j) = v(O) -A,(x*(O),j) < . [O 

REMARK. Lemma 6.1 reflects the following relations between one-stage loss and 
information. Item (i) implies that for x,, = x*() with 0 E H(0o), player 1 obtains 
either positive I0o, -information (i.e., information for discriminating between 00 and 
0), or a negative loss (i.e., expected reward higher than v(0o)). Item (ii) means that 
for x,, = x*(00), player 1 obtains either positive Ioo, -information for eery 0 E H(00), or a negative loss. Item (iii) may be interpreted similarly. 
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Consider henceforth a fixed 00 E O and a fixed strategy r of player 2. Let 
H(00), Ho(00) be defined as in (5.9), (5.11). Recall from (5.13) and (5.14) that 

(6.3) 
n n 

La,' (00) ?< DE'T E l((0t) < u(00)} + E', T E do0(X*(Ot), j)l{v(ot) >2 V(o)} 
t=l t=l 

Since the first term on the right-hand side is bounded by Lemma 5.1(ii), it remains to 
bound the last term. To this end, define for every n > 1, 

n 

(6.4) l, = E doo(x*(Qt),jt)l{v(t) ? )(00)}, 
t=1 

(6.5) Ai, = l, - 1,1 = doo(x*(0,), jn)l{v(0,l) > (), 

with 10o 0. The required upper-bound is established in the following lemmas, where 
the basic idea is that (the expected value of) l,, cannot increase "too much" over those 
time instants when l,, is positive. 

LEMMA 6.2. 
(i) 1,, < D + Et-l (A/lt+)+1 {lt 0} for every n > 1. 

(ii) Consequently, there exists a finite constant Q3 such that 

00 

Eo1 ,Q3 +i Dl P {lt> 0, t+E H( 00)}. 
t=1 

PROOF. (i) Fix n > 1, and let m = max{0 t < n - 1: It< O). Note that A/l < 

D. Then 

n-I 

l < l,-m < E (Alt ) + 
t=mo 

n-1 n-1 

(6.6) < D + E (t+l) += + E (Alt+) + t > } 
t=mo+l t=mo+l 

n-1 

</+ E (A/lt+,) l{1t>O}. 
t=l 

(ii) Recalling the definitions in (5.9) and (5.11) of H(00) and S(0o), (6.5) may be 
rewritten as 

(6.7) A= 
do0(x*(Ot), j)l{0t G {00} U H(o) U S(00)}. 

Noting that doo(x*(0o), j) < 0 and d,o(x*(), j) < D for 0 E H(0o), and using Lemma 
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5.2 for 0 E S(0o), we get 

(6.8) (A/t) <{t E H(0o)} +M E Ioo,( x(0), t)l{t = 0}. 
oES(0o) 

Therefore, by (i), 

n-1 

(6.9) , < D + D E l{lt > O, Otl E H(0o)} 
t=1 

n-i 

+M E E I0o,e(X*(0), t+1)l1({,t+ 01. 
OeS(0o) t-l 

Extending the summations to +oo and taking expectation gives 
00 

EOl' ^ E P'W'{l > 00t+ E H(0o)} Eo O1, < D + oo D E H(00)} 
t=l 

(6.10) 
+M , ET Io0,o (x*( 0), t+1 )lOt+ = 0. 

0ES(0o) t=1 

It remains to bound the last term. Let 0 e S( 0). Since v(O) = v(0), it follows from 
(5.6) that 

00 

(6.11) E " E I o o0(x*( 0), jt){ite = 

00 

< EOu E Ioo,0((Xt jt)il{At_ (00 0) < 0). 
t=l 

The latter term can now be bounded exactly in the same way that Fr(0) of (4.11) was 
bounded. a 

LEMMA 6.3. Assume that C2(0o) is satisfied. Assume that player 1 employs strategy 
c, and player 2 is using any strategy r. Then there exists a constant q > 0 such that, for 
every n > 1: if 1,l > 0, then at least one of the following events 11(n)-nl3(n) holds: 

il(n) E l{u( t) < V(0o)} > n. 
t=l 

n 

t=l 

n 

f3(n): min EIo,(xt, jt) > n. 
OEH(00) t=-1 

PROOF. Similarly to (6.7), we have 

(6.12) l, =E E doo(x*(), jt)l{i t 0 
E {0} t S (0o) u H(00)}. 

t=l e0O 
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Now, using the appropriate bounds from Lemma 6.1 for each 0 in the above sum 
gives 

1,,l< ? -- + M min Io, o(x*( o), jt) l{t = 0o} 
t=l OEH(0o) 

+ -5 + MI0o, (x*(0),jt) + M min I,, o,(x*(0),it) l{it = 0} 
OeS(0o) . e'eH(0) 

+ E [-8 + MI0o, ,(x*( ),ij)]l{t = 

(6.13) 0'EH(0o) 

n _ n 

n 

= -s8E1{v(O,) - (o)} + M E E IOo,0(x,,jI)1{t= o} 
t=l t=l O~Ho(0o) 

+ME min I,,0 (xt,t)l{0t E {0o} US(00o) 
t=1 OeH0(00) 

n n 

-8n + E l{v(0,) <v(O,)} +M E E , (xt,j)l{= 0 
t=1 OHo(0o) t=1 

+M min EIo,o(xt' t), 
0EH(0o) t-1 

where in the last steps we used the facts that xt = x*(t) under a, and that Ioo o > 0. 
Defining 77 = /(8 + MIOI), it follows from the last inequality that 1,, will be 

negative unless one of f1(n)-13(n) is satisfied. o 
LEMMA 6.4. Let flj(n)-f3(n) be defined as in the previous lemma. Then, for some 

Q2 < oc and every r e , 
(ij) E- 1 p' T{Di(n) } < Q2, 

(ii) = ,P' tW2(n) < Q2,, 
(iii) =l,,P P,(O {n3(n), 0, e H(00)} < Q2. 

PROOF. (i) Recall from (5.4) that u(t) < v(00) implies At,_1(t, 00)= 
At_l(0t)/At_I(0o) > Kt. Therefore (denoting P := P,~7), 

P{Il(n)}. < Pt E l(A,_l(0t, 0o) > 
Kt} 

> Tn 

< P{At_-(O, 00) > Kt for some t >2 rn} 

(6.14) 
< P( sup At-l(0t, o) > K[ZI] 

< E P(supAt_l(0, 00) > Kt}, 
0eo t>l ) 
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where [rnn] is the integer part of -rn. Now, since the likelihood ratio {At(0, 00)} is a 
positive Martingale with expected value 1, it follows by Doob's inequality that 
P{Sl(n)} < IOI(K,,1l)l. Since {KT1} is summable by (5.1), this implies 

00 00 

(6.15) E P{fl(n)} < 101 E K41?, < o.0 
n-1 n=l 

(ii) Using the union bound and (5.5), 

P{2(I)} E p E Ioo o(Xt t)1{t = 0) rin} 
OHo((oQ) t=l 

(6.16) 
< E eE 1O. 0 (X, jt)l{At-1(00, 0) < log K,} > ,7n 

0EHo(0o) t=l 

Now, using the same procedure as in the proof of Theorem 4.1 (i.e., player 2 is 
allowed to choose (xt, jt), and At_1 is replaced by its truncated version At- ), it 
follows by Lemmas 3.1 and 3.3(iv) (with p,, = log K,) that, for every T e ,; 

00 

(6.17) E P{f2(n)} < E Q(O) < 
n= l OHo(00) 

(iii) Similarly to the proof of (ii), it follows that 

P(nf3(n), ,+1 E H(0o)} E IOH() ,(xt, j) rn, n+l =- 0 
0EH(00) t=- 1 

(6.18) 

-< E P{( E o o ( xt , Jt, ) > nn A, 00, 0) < log K,, + 
OH(0o) t=l 1 

The bound now follows exactly as in (ii), except that Lemma 3.3(iii) is used in place of 
Lemma 3.3(iv). u 

We are now ready to conclude the proof of Theorem 5.2. By (6.3), (6.4), Lemma 
5.1(ii) and Lemma 6.2(ii), it follows that for every r E 7and n > 1: 

(6.19) L' ( 00) < DQ, + E.l 
00 

< DQ1 + Q3 + D E P{(l > O, t+ E H(00)}. 
t=1 

Moreover, by Lemmas 6.3 and 6.4, 
00 00 

EfPlt >0, , + E H(0o)} < E P{f(t)} 
t-= t=l 

(6.20) o00 

(6.20a ) t+ E P{(2(t)} + E P(3(t), t+l > 00} 
t=l t-1 

< 3Q2 < o, 

so that L,(00) < DQ1 + Q + 3Q2 < oo for every n > 1. o 
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7. Concluding remarks. This paper examined the long-term performance of 
Certainty Equivalence strategies in an uncertain dynamic game situation. It was 
shown that these strategies potentially suffer from closed-loop identification prob- 
lems, similar to those found in comparable adaptive control models, and that these 
problems can be essentially eliminated by properly modifying the estimator. In 
particular, Theorem 5.1 established that the worst-case loss can be kept down to 
O(log n) by using the value-biased Maximum Likelihood Estimator. 

While the latter result seems quite satisfactory, it is still natural to ask whether this 
is the best that can be attained in general. In the sequel paper (Shimkin and Shwartz 
(1996)) it will be established that an increase rate of O(log n) is in fact the best that 
can be guaranteed by any strategy; furthermore, the optimal coefficient associated 
with this increase rate (i.e., the smallest possible coefficient 3(00) in Theorem 5.1) 
will be characterized, and a strategy which attains this "asymptotically optimal" 
performance will be constructed. 

The basic model of this paper may be extended in several directions. Here we 
studied the case of finite parameter and actions sets; more general sets may be of 
interest. It should also be of interest to consider systems with nontrivial dynamics, 
e.g., controlled Markov processes (leading to stochastic game models). More ideas 
and methods from the field of adaptive control may prove applicable to such models. 
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nesota, in a postdoctoral position. The kind hospitality of this institute is gratefully 
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