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Guaranteed Performance Regions in 
Markovian Systems with Competing 

Decision Makers 
Nahum Shimkin, Member, IEEE, and A d a m  Shwartz, Senior Member, IEEE 

Abstract-The paper addresses the problem of (long-term) 
multiobjective control under dynamic uncertainty, using a game 
theoretic framework. A decision maker faces a dynamic system, 
which is also affected by other decision makers (these may stand 
for other controllers, system users, or dynamic disturbances). 
He / she considers a vector of time-averaged performance mea- 
sures. Acceptable performance is defined through a set in the 
space of performance vectors. Can this decision maker guaran- 
tee a performance vector which asymptotically approaches this 
desired set? We consider the worst-case scenario, where other 
decision makers may try to exclude his / her vector from the 
desired set. For a controlled Markov model of the system, we 
give a sufficient condition for approachability, and construct 
appropriate control strategies. Under certain recurrence condi- 
tions, a complete characterization of approachability is then 
provided for convex sets. The mathematical formulation leads to 
a theory of approachability for “stochastic games with vector 
payoffs.” A simple queueing example is analyzed to illustrate 
this approach. 

I. INTRODUCTION 

ONSIDER a dynamic system which is influenced by C several independent decision makers, for example a 
multiuser computer system. We take the view of a single 
decision maker, say DM1. This may be a system user, a 
central system supervisor, etc. His/her objective is to 
guarantee acceptable performance according to some in- 
dividual performance measures, for example, a fast re- 
sponse time of the terminal, adequate computation speed, 
and reasonable delay at the printer queue. Naturally, a 
somewhat larger delay at the printer would be acceptable 
if we could gain in the response time. This tradeoff is 
modeled by defining a set in the performance space-in 
this example R3-which DM1 wishes to approach. 

We model the dynamics of the system as a controlled 
Markov chain, where each decision maker exerts some 
control. We make no assumptions on the behavior or 
objectives of the other decision makers in the system. The 
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question is: For a given set in the performance space, can 
DM1 guarantee that his/her time-averaged performance 
vector will converge to this set, even if the other decision 
makers are doing their best to obstruct him/her (worst 
case)? Or, can a group of malicious decision makers 
prevent (exclude) his/her performance vector from ap- 
proaching this set? 

Since we are considering a worst-case scenario, we may 
as well assume that DM1 is facing a single “opponent.” 
This framework can also be used to model a worst-case 
analysis (in terms of a performance vector) of a single- 
controller system, where any dynamic uncertainties or 
time variations are modeled as control variables chosen by 
nature. 

Similar questions were considered by Blackwell [4], in 
the context of the basic repeated matrix games model, 
where an “approachability-excludability” theory has been 
introduced for these games. A matrix game involves two 
players, where a payoff mi, is generated whenever player 
1 chooses action i while player 2 chooses action J .  Thus, 
in a repeated matrix game the players face exactly the 
same situation at each decision epoch. Blackwell’s model 
is therefore a special case of the controlled Markov model, 
where the state space is reduced to a single state. Let us 
briefly review the main ideas of Blackwell’s results. Con- 
sider a two-person matrix game, where the elements of 
the payoff matrix M = (mi , j )  are vectors in Rq, q 2 2. 
The following problem was addressed: If the game is 
repeated infinitely in time, with both players observing 
and recalling the evolution of the game, can player 1 
guarantee that the time-averaged payoff will asymptoti- 
cally approach a given set (in Rq), no matter what the 
other player may do? Conversely, can player 2 exclude the 
average payoff from this set? 

For an arbitrary (closed) set B,  a sufficient condition 
for approachability was given, based on the following idea. 
Player 1 monitors at each stage n the current average 
payoff. For each possible value E of the average payoff 
which is outside B, consider the hyperplane which passes 
through C, a closest point in B to E ,  and which is 
perpendicular to the line segment C - E.  Suppose that 
player 1 has a strategy (i.e., a randomized action) in the 
matrix game such that, for every possible strategy of 
player two, the expected one-stage payoff is separated 
from E by this hyperplane. Then, by using such a strategy 
whenever the average payoff is outside B, the average 
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payoff is constantly driven in the direction of B,  and 
finally converges to it. 

For convex sets, a complete solution was given. A set is 
obviously excludable by player 2 in the infinitely repeated 
game if it is excludable by him/her in the one-shot matrix 
game. In the convex case, this condition turns out to be 
both necessary and sufficient for excludability, and its 
negation is necessary and sufficient for approachability. 
Further results on approachability in repeated matrix 
games may be found in [14]-[16], [241, 1291. For some 
applications, mostly game theoretical, see [3], [51, [61, [121, 
1131, 1171, and [271. 

In this paper, the basic ideas of [4] are applied to obtain 
approachability results for a controlled Markov process 
with two decision makers and vector payoffs. In game- 
theoretical terms, this model may be referred to as a two- 
person stochastic game with vector payoffs. We consider 
the case of a countable state space, finite action spaces, 
and a (not necessarily bounded) vector payoff function; 
the formal setup is given in Section 11. A basic assumption 
which underlies the approach of this paper is the exis- 
tence of a fixed state, say state 0, for which certain 
uniform recurrence properties hold. It is then possible to 
obtain results which are similar to those described above 
for repeated matrix games, except that strategies in the 
one-shot matrix game are replaced by certain (stationary) 
substrategies which are employed between subsequent 
visits to state 0. Thus, a basic idea in the construction of 
approaching strategies is to use a fixed substrategy be- 
tween visits to state 0, and modify this substrategy accord- 
ing to the current average payoff whenever state 0 is 
reached. (See [l], [2] for a similar approach in Markov 
decisions problems.) 

The paper is organized as follows. The model is for- 
mally defined in Section 11. Section I11 contains the main 
theoretical results, followed by a discussion of computa- 
tional issues. The proof of the basic Theorem 3.1 is 
presented in Section IV. In Section V a simple queueing 
example is analyzed to illustrate the proposed approach, 
followed by some concluding remarks. 

Notation: I I, ( * ; ) and 4.; ) denote the Euclidean 
norm, inner product and metric in Rq. U denotes the set 
of unit vectors in Rq. 

11. THE MODEL 
Consider a controlled Markov process with two inde- 

pendent decision makers, DM1 and DM2. The model is 
specified by the following objects: a countable state-space 
S, finite action spaces A ,  and A, ,  a state transition law p ,  
and an Rq-valued payoff function r (where q 2 2). 

At each stage (time instant) n = 0,1,2,..., the current 
state s is observed, and then DM1 chooses an action 
a' E A , ,  and DM2 chooses simultaneously and indepen- 
dently an action a' E A, .  As a result, a payoff vector 
r ( s ,  a' ,a2)  is collected, and the next state s' is chosen 
according to the probability distribution p( . ( s ,  a', a') on 
S. The state and action pair at stage n will be denoted by 
s, and a, = ( a ~ , a ~ > ,  respectively. Let r,, = r(s, , ,a,)  be 

the payoff vector at stage n, and let 

1 n - 1  

It m=O 
F, = - r,,, (2.1) 

denote the time-averaged payoff vector up to stage n. 
Note that we have yet to specify the objectives of either 

decision maker. This will be done in the next section. For 
now, the payoff should just be considered as some vector 
which measures system performance. 

A (randomized, history-dependent) strategy 7ri for DMi 
(i = 1,2) is a sequence 

7ri = ( 7 r ~ , 7 r ~ , * * * ) ,  7rL: H, - + 9 ( A i )  

where 9 ( A J  is the set of probability vectors over Ai, and 
H, = S x ( A ,  X A ,  x SI" is the set of possible "histo- 
ries" up to stage n. Thus, given h, = (so; ao,sl;...; 
a,- s,), the action a i  is chosen according to the proba- 
bility vector 7rL(h,). Let IIi denote the class of all such 
strategies for DMi. A stationary strategy for DM1 is 
specified by a single function f: S + 9 ( A l ) ,  so that 
7r:(h,,) =f(s,), n 2 0. The class of stationary strategies 
for DM1 will be denoted by F ,  and that of DM2 (defined 
similarly) by G. 

Given the strategy pair 7r = (r,, T,) and an initial state 
so = s, the above description induces a unique probability 
measure P i  and expectation operator E; on the product 
space S x ( S  X A ,  XA,)". When so and 7r are deter- 
mined by the context, we just write P and E for the 
corresponding measure and expectation. 

Some definitions from game theory will be required in 
the sequel. For every vector U E R4 and initial state s, 
consider the case where at each stage, DM2 pays DM1 an 
amount which is specified by the scalar payoff function 
ru = ( r ,  U). If the objective of DM1 (respectively DM2) is 
to maximize (respectively minimize) the average expected 
payoff, then the model becomes a zero-sum stochastic 
game, which we will denote by T,(u). Stochastic games 
have been extensively studied; for a survey the reader is 
referred to [19]-1211. The connection between our model 
(with vector payoff) and this family of zero-sum stochastic 
game will be clarified below. We say that T,(u) has a value 
Val T,(u) if 

= inf sup limsupE;,,nZ((Fn,u)). (2.3) 
7f2 T, n + m  

A strategy 7r1 E II, [T, E II,] is optimal in T,(u) if it 
satisfies the sup in (2.2) [the inf in (2.3), respectively]. 

The basic assumptions made in this paper will involve 
recurrence conditions for some fixed state, which we de- 
note as state 0. Let T denote the first passage time to 
state 0: 

T = inf {n  2 I :  s, = O) ,  
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A strategy m1 E II, is said to be stable if there exist 
positive constants M ,  and R ,  such that: 

E2,,11,(72) 5 M2 v7~2 E IT,, (2.4) 

E:,,.;( :<lr,,l)2 5 R 2  Vm, E n,. (2.5) 

Note that (2.5) is redundant in case that the payoff 
function r is bounded. A set rI; c IT, is uniform& stable 
if (2.4) and (2.5) are satisfied for every m, E IT; with the 
same constants M2 and R , .  Stability of DM2's strategies 
is defined symmetrically. 

We introduce now some conditions on the model. Ref- 
erence to these conditions will be made explicitly when 
required. 

Cl)  For every unit vector U E U, the game To(u)  has a 
value, and DM1 has a stationary optimal strategy f * ( u )  in 
this game. Moreover, the set ( f * ( u ) :  U E U }  is uniformly 
stable. 

C2) Condition C1) holds. Furthermore, for each U E U 
DM2 has an optimal strategy g*(u) in To(u) which is 
stationary and stable. 

Existence of stationary optimal strategies is stochastic 
ganies has been well studied and established under vari- 
ous conditions (cf. [19], [201). Conditions which imply 
stability requirements similar to ours may be found, e.g., 
in [71. A particular set of conditions which imply both the 
existence of stationary strategies as well as all the stability 
requirements encountered in the sequel is specified in the 
following lemma. (Compare with [23, ch. 61, where similar 
assumptions were used in the context of Markov decision 
processes.) 

Lemma 2.1: Assume that: 
i) The payoff function r is bounded. 
ii) There exists a number M such that the mean 

first-passage time E ; , g ( ~ )  I M for every s E S and all 
staiionary nonrandomized strategies f E F ,  g E G.  

Then C1) and C2) are satisfied. Moreover, the entire 
strategy sets IT, and IT, are uniformly stable. 

Proof For each U E U, i) implies that the payoff 
function ru = ( r ,  U )  is bounded. Existence of optimal 
stationary strategies in stochastic games with bounded 
payoff functions under the recurrence condition ii) was 
established in [28] (and see also [91 for more general 
recurrence conditions which imply the same). It remains 
to establish the stability requirements, for which certain 
results on Markov decision processes will be utilized. Let 
IT denote the set of strategies which results when DM1 
and DM2 are combined into a single controller, i.e., are 
allowed to correlate randomized choices at each stage. 
Let FD denote the set of nonrandomized stationary 
strategies in F ,  and similarly for Go c G. Note that 
II, X II, may be considered a subset of II, and that the 
set I I D  of stationary nonrandomized strategies in IT coin- 
cides with FD X Go. By standard dynamic programming 
considerations, it follows from ii) that 

E i ( 7 )  I M ,  VT E II, s E S. (2.6) 

Indeed, for each a < I let J i ,  a := Ei(C;i',  ak), and note 
that E ; ~ ( T )  = lima ~ J i ,  a by monotone convergence. 
Standard results for discounted cost criteria ([23]) imply 
that J i ,  a is maximized by a stationary nonrandomized 
strategy in II,, so that 

where the last equality follows from ii), and (2.6) follows. 
Now, it was established in [7, p. 741, that (2.6) implies 

suprE E:(72)  < 00, so that IT,, 112 (and therefore any of 
U 

Remark: Lemma 2.1 is most useful in the case of a 
finite state space. Conditions i) and ii) then reduce to the 
simple requirement that state 0 is recurrent under any 
pair f, g of stationary nonrandomized strategies (which 
are now finitely numbered). This requirement may often 
be verified by a simple inspection of the transition struc- 
ture. 

In addition to conditions Cl)-C2), some additional sta- 
bility conditions for specific sets of strategies will be 
encountered in the following. It should be emphasized 
that all these conditions are satisfied automatically under 
the conditions of Lemma 2.1. 

their subsets) are uniformly stable. 

111. APPROACHABILITY: DEFINITIONS AND RESULTS 
Let us define first the concept of uniform almost sure 

(as.) convergence which will be used here. Let {X,, n 2 0) 
be a sequence of random variables over some measurable 
space (fl,F), and let (PA, h E A} be a collection of 
probability measures on (fl,F). It is well known ([261) 
that, for a fixed h E A, X,, -+ 0 PA-as. is equivalent to 

Now, we say that X,, --f 0 PA-as., at a uniform rate over A, 
if convergence in (3.1) is uniform over A, that is 

lim sup pA sup IX,I > e )  = 0. (3.2) 
N + x A E A  ( n z , v  

The basic concepts of this paper, namely approachabil- 
ity and the dual concept of excludability, are introduced in 
the following definition. Here and below, d(r ,  B )  denoted 
the Euclidean point-to-set distance, i.e., d(r ,  B )  = 

inf, E d(r ,  p )  where d(r ,  p )  = Ir - p I. 
Definition 3.1: Let the initial state s be B e d .  A set 

B c Rq is approachable (from s by DM1) if there exists a 
B-approaching strategy T ;  E IT, such that 

d(F,, B )  + 0 P-as .  for every 7 ~ ,  E II, 

at a uniform rate over IT,. B is excludable (from s by 
DM2) if there exists a B-excluding strategy 7i-; E n, such 
that, for some 6 > 0 

d(F,, B,") -+ 0 P-as .  for every n-, E IT, 

at a uniform rate over n,, where B," = { p E Rq: d( p, B )  
2 61. 
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Remarks: 
1) The convergence d(F,, Bt)  + 0 in the definition of 

excludability may be equivalently written as: lim 
inf, d(F,, B) 2 6. Thus, loosely speaking, a set B is ap- 
proachable if DM1 can guarantee (irrespective of the 
other’s strategy) that the long-term average payoff vector 
is in B, and B is excludable if DM2 can guarantee 
(irrespective of DMl’s strategy) that the long-term aver- 
age payoff is at least a distance 6 > 0 away from B. 

2) It is obvious that approachability and excludability 
are contradictory, in the sense that a given set cannot be 
both approachable by DM1 and excludable by DM2. 
However, these concepts are not exact opposites of each 
other. Indeed, it was demonstrated in [41 that even in 
repeated matrix games, some (nonconvex) sets may be 
neither approachable nor excludable. 

3) In the sequel, it will be convenient to assume that 
the set B is closed. This involves no loss of generality, 
since approachability (and excludability) of a set and its 
closure are plainly the same. 

4) An important aspect of the definition is the uniform 
rate of convergence. This requirement is essential if the 
infinite stage model is considered as an approximation to 
the model with very long, but finite, time horizon. 

We proceed to formulate the key technical result, which 
presents a sufficient condition for approachability. To this 
end, let 

denote the averaged payoff per “cycle” from state 0 and 
back. Note that 4(r l ,  r2 )  is well defined if either r1  or 
r2  is a stable strategy. Let +(7rI,II2) := {+(n-, , r2) :  n2 
E H,}. We say that a strategy rl E KI, is started ut stage 
T if at stage n = T (possibly random) DM1 resets an 
internal clock to 0 and starts using T, as if the state sT is 
the initial state. 

Let B be a closed set in Rq. For any point p E B let C, 
denote a closest point in B to p. Let H, be the hyper- 
plane through C, which is perpendicular to (C, - p),  and 
let up be a unit vector in the direction of (C,  - p )  (see 
Fig. 1). 

Theorem 3.1: Assume that the following condition is 
satisfied: 

SC1) For every p 6 B, there exists a stable strategy 
v l ( p )  E II, such that 

(equivalently, +(rl( p) ,  II,) is weakly separated by H, 
from p).  Furthermore, the set {r l(  p): p B} is uniformly 
stable. 
Then B is approachable from state 0 by DM1, and a 
B-approaching strategy is given as follows. Let 0 < T(1) 
< T(2) < ... be the subsequent arrival instants to state 

- 
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Fig. 1. Geometric interpretation of SC1). 

0. Let n-; be some fixed stable strategy for DM1. Then: 

0 at stages 0 2 n < T(1): use m i .  

at stages T ( k )  I n < T ( k  + 11, k 2 1: 
if 
if F T ( k )  E B, then use m-i, started at T ( k ) .  

E B, then use r l ( F T ( k ) ) ,  started at T ( k ) .  

The proof of this theorem is presented in the next section. 
Remark: In the approaching strategy presented above, 

we have specified for simplicity a single strategy mi which 
is employed whenever F,(,, E B. More generally, given a 
uniformly stable set II; of DMl’s strategies, the results 
remain valid if an arbitrary T; E II; is chosen whenever 
this condition is encountered; indeed, the proof of Theo- 
rem 3.1 is given for this more general case. This added 
freedom may be utilized by DM1 to attend other (sec- 
ondary) objectives whenever the current average payoff is 
already in B. 

The sufficient condition SCl) and the approaching 
strategy of Theorem 3.1 admit an intuitively appealing 
geometric interpretation ([41, [17]). As already noted, (3.4) 
simply means that Hp separates p from the set 
4(rl(  p) ,  II,) (cf. Fig. 1). Consider then the approaching 
strategy suggested above: whenever state 0 is reached and 
the average payoff ? is outside B, DM1 employs T ~ ( F )  for 
the next cycle (i.e., up to the next time when 0 is reached). 
Thus, the averaged payoff in that cycle, as defined in (3.3), 
will belong to the set +(n- , (F) , I I , ) ,  and will therefore 
cause the average payoff T. to advance towards that set (in 
some probabilistic sense). Now, the stability conditions 
imposed on { r , ( p ) }  imply that, as time progresses, the 
effect of any one cycle on the average payoff becomes 
small; therefore, the average payoff actually moves closer 
to B on each cycle. This suggests that the average payoff 
will converge to B in the long run. 

In Theorem 3.1 it was assumed that the initial state is 0. 
If not, the conditions of Theorem 3.1 may still be applied 
provided DM1 can guarantee that state 0 is reached “fast 
enough.” In particular, the proof of Theorem 3.1 applies 
without modification to the following result: 

Corollary 3.2: Assume that condition SC1) of Theorem 
3.1 is satisfied. In addition, assume that for some strategy 
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U E  n, R ( f , g )  = lim Efq,(F,>, f~ F (3.11) 

supE:,,2(r2) a (3.5) is well defined, and (as noted in the proof of Corollary 
572 3.3) equals +(f, g) .  Further define the following bounded 

n + m  

Then B is approachable from state s by DM1. An ap- 
proaching strategy is given as in Theorem 3.1, except that 
up to time r = T(1) the strategy (T is used. 

We note, in passing, that when the set B or the payoff 
function r are bounded, a similar result may easily be 
established if the equivalents of (3.5) and (3.6) hold only 
for first (instead of second) moments. From here on, we 
shall always assume that the initial state is 0, while keep- 
ing in mind that the results may be extended to other 
initial states provided that similar conditions to those of 
Corollary 3.2 are satisfied. 

Under assumption C1) (defined in Section II), the suf- 
ficient condition of Theorem 3.1 may be expressed in 
terms the values of the games T,(u). Furthermore, the 
implied approaching strategy is “piecewise stationary,” as 
specified in the following corollary. 

Corollary 3.3: Assume Cl). Let B ,  p,  C, and up be as in 
Theorem 3.1. Then B is approachable from state 0 if 

Val rob,) 2 <C,,u,>, Vp P B .  (3.7) 

An approaching strategy is then as specified in Theorem 
3.1, with rl( p )  A f*(u,>, the stationary T,(u,)-optimal 
strategy specified in Cl). 

Proofi It suffices to show that (3.7) implies condition 
SC1) of Theorem 3.1, with r1( p )  = f*(u,). Let p P B be 
k e d ,  and write U, f *, and C for up,  f * ( U , )  and C,. Since 
f* is optimal in To(u), then 

liminfE;,,,2(F,l, U )  2 val r&) 2 (C ,  U ) ,  
n + m  

V r ,  E n2. (3.8) 

For each r2 E n2, let Z2 E n2 be the strategy which 
starts according to r2 but regenerates (restarts) whenever 
state 0 is reached. Since f* is stable, it follows from the 
theory of renewal reward processes (cf. [23, sections 111-1. 
and VII-C.]) that 

vr, E n2. (3.9) 
Thus, from (3.8) 

(+(f*, 7 ~ 2 1 ,  U> = lim Ef*,%JFn, U >  2 (C,  U > ,  
n + m  

V r 2  E 112 (3.10) 
0 

We consider next the important special case where the 
set B is convex. It is then possible to obtain [under C2)] a 
complete characterization of approachability. Some addi- 
tional notation is introduced first. 

For every stable g E G, the long-run average expected 
payoff 

which is exactly the required inequality (3.4). 

R ( F ,  g )  = convR(F, g )  (3.12) 
where “conv” denotes the closed convex hull. (In fact, it 
may be established as in [2] or [8, p. 951 that R ( F , g )  is 
convex, so that R(F, g )  is just its closure. Moreover, if the 
state space is finite then R(F, g )  is just the convex hull of 
the finite set (R(f, g ) :  f E FD} where FD are the nonrun- 
domized strategies in F.) Note that boundedness of 
R(F, g )  follows from property (2.5) in the definition of a 
stable strategy. The sets R(f, G) and R(f, G) are similarly 
defined for any stable f E F ,  and the same comments 
apply. Finally, for each convex set B in [Wq define the 
following set of unit vectors: 

U ( B )  = (U, E U :  p P B } .  

This set represents all directions in which a point outside 
B might be projected onto B (cf. Fig. 1). Note that 
U(B)  = U if B is bounded. 

Theorem 3.4: Assume C2). Let B be a closed convex set 
in Rq, and let the initial state so = 0. 

i) B is approachable if and only if either one of the 
following equivalent conditions are satisfied: 

NSCl: There exists a uniformly stable set ( f ( u ) :  U E 
U(B)}  of stationary strategies for DM1 such that: every 
p P B is separated from R(f(u,), G) by H,, i.e., 

NSC2: The separation condition in NSCl holds for 
f ( u )  A f * ( u ) ,  the optimal strategy of DM1 in T,(u), u E 

U@). 
( p, U )  for every U E U(B).  

ii) If B is not approachable, then it is excludable by 
DM2 with a stationary strategy. 

Proofi We first establish the equivalence of 
NSC1-NSC4, and then prove that NSC3 is necessary and 
sufficient for B to be approachable. 

a) Equivalence of NSCl and NSC2: Since the set ( f* (u ) :  
U E U(B)}  is uniformly stable by C2), then NSC2 trivially 
implies NSC1. Conversely, by C2) and (3.11) we have for 
every p E B 

NSC3: Val T,(u) 2 minp E 

NSC4: R ( F ,  g )  intersects B for every stable g E G. 

= min( R ( f * ( u , ) ,  g ) ,  U P > .  (3.14) 
g=G 

Thus NSCl implies NSC2. 

and closed, 
b) Equivalence of NSC2 and NSC3: Since B is convex 

p P B .  (3.15) 

The required equivalence follows from this and the last 
equality in (3.14). 

(C,, up> = min ( p ,  u p ) ,  
P E B  
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c) Equivalence of NSC3 and NSC4: Assume first that 
NSC4 holds. By C2) it follows that for every U E U ( B )  

Val r,(u) = max (N f ,  g*(u)) ,  U) 2 min ( p ,  U )  (3.16) 
f E F  P E B  

where the last inequality follows since R ( F ,  g*(u)) inter- 
sects B by our assumption. Thus, NSC3 is satisfied. 
Assume, conversely, that R(F,  g’) n B = 0 for some sta- 
ble g’  E G. Since both these sets are closed convex and 
R ( F ,  g’) is bounded, then they are strongly separated 
([22]), i.e., there exists a vector U’ E U such that 

max ( r , u ’ >  < min( p , ~ ’ ) .  (3.17) 

Furthermore U‘ is necessarily in U ( B )  since, as may be 
easily verified, inf, E ( p, U )  = - m for U P U(B).  Since 
by C2) there exists an f * (u ’ )  E F which is optimal (maxi- 
min) in r,(u’), it follows that 

val r,,<u’) 5 ( R ( f * ( u ’ ) ,  g ’ ) ,  U’) < min ( p ,  U’) (3.18) 

which contradicts NSC3. Thus, equivalence of NSC3 and 
NSC4 is proved. 

d) Sufficiency of NSC3: Follows directly by Corollary 3.3 
and (3.15). 

e) Necessity of NSC2: Assume that NSC3 is not satis- 
fied, so that (3.18) holds for some U’ E U(B).  Let g’ 
g*(u ’ )  be the stable optimal strategy of DM2 in r,,(u‘), 
and define 

r E R ( F ,  g’) pea 

- 
+(IIl ,g’)  a conv{+(.rr,,g’): .rrl E II,}. (3.19) 

It follows now from (3.18) (cf. the proof of Corollary 3.3) 
that d($(II , ,g’) ,  B )  2 6’.  But this implies that B is 
excludable by DM2 (with his stationary strategy g’). To 
show this, simply apply Theorem 3.1, with the roles of 
DM1 - and DM2 interchanged, to establish that B ‘  = 

+NIl, g ’1 is approachable by DM2 using g’. Thus, neces- 
sity is established. 

Finally, note that ii) has already been established in e) 
0 

Remarks: The following comments point out some con- 
sequences of the last theorem. 

1) Part ii) of the theorem implies that every convex 
set is either approachable by DM1 or excludable by DM2. 
As observed in [41, this dichotomy may be considered a 
generalization of the minimax theorem for the corre- 
sponding game model with scalar payoffs (in the present 
case, a zero-sum stochastic game). 

2) An excludable convex set B may always be ex- 
cluded by a stationary strategy of DM2. Thus, an exclud- 
able convex set will remain so even if DM2 is restricted to 
stationary strategies only (or any superset thereof). Such 
restriction may be natural in certain cases, particularly if 
DM2 is not actually a conscious decision maker, but is 
incorporated in the model to facilitate a worst-case analy- 
sis with respect to system uncertainties or state-dependent 
noise. 

above, and the proof is complete. 

3) The excluding strategy may always be chosen as 
the (stable and stationary) strategy g*(u’), where U ’  satis- 
fies (3.18). Moreover, any strategy g which violates NSC4, 
i.e., for which R ( F , g )  and B are disjoint, is obviously a 
candidate for an excluding strategy. (However, for this to 
be true in general it is also required that &IIl, g) = 

R ( F , g ) .  This equality is satisfied in the case of a finite 
state space, as may be inferred from [S, ch. 71, as well as 
under the conditions of Lemma 2.1. Other (fairly mild) 
conditions which imply this equality may be found, e.g., in 

4) The approachability conditions in NSC1-3 are 
required to hold only for a certain subset of all unit 
vectors, namely U(B). This may be interpreted as follows. 
The set U ( B )  is a proper subset of U if and only if B is 
unbounded, and U’ P U(B)  is equivalent to info,. 
( p, U ‘ )  = --oo (i.e., --U’ is in the recession cone ([22]) of 
B).  Thus, the average payoff vector may become unbound- 
edly small (negative) in the direction of U’ without leaving 
B,  and as far as approaching B is concerned DM1 need 
not be concerned with “pushing” the payoff in that direc- 
tion. 

In fact, for Theorem 3.4 to hold, condition C2) may be 
somewhat weakened by requiring that it should hold only 
over U(B);  i.e., existence and stability of stationary opti- 
mal strategies in r,,(u) may be required only for U E U(B) ,  
without affecting the conclusions or proof. This may be 
significant when existence and stability depend on proper- 
ties of the payoff functions, such as positiveness or one- 
side boundedness; cf. [18] and also, e.g., [2], [251 for some 
relevant results in the single controller case. 

Computation and Implementation Issues: We close this 
section with a brief discussion of certain issues related to 
the verification of the above approachability conditions 
and the implementation of approaching strategies. We 
focus on the case of a finite state space. This case is 
obviously more tractable computationally than the count- 
able state case; fortunately, it seems that most practical 
problems with discrete state space are basically of a finite 
nature, and may be analyzed as such when convenient. 
This applies, for example, to queueing systems, where the 
queue length is always bounded in practice. 

1) As noted in Section 11, conditions C1 and C2, as well 
as all other stability conditions mentioned in this section, 
are satisfied under the conditions of Lemma 2.1. For a 
finite state space, the latter reduce to the recurrence of 
state 0 under every pair of stationary nonrandomized 
strategies. 

2) One may distinguish two stages in the possible appli- 
cation of the above results for a given model. The first 
would be the performance evaluation stage, where the 
approachable sets are identified and feasible control ob- 
jectives are accordingly determined (as demonstrated in 
the next section). The second is the computation of an 
appropriate strategy to implement these objectives, i.e., to 
approach the desired set in the performance space. The 
following comments address these two issues in that or- 
der. 

[21.) 



90 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 38, NO. 1, JANUARY 1993 

3) In order to verify approachability of a given set, inequality 
condition NSC3 of Theorem 3.4 (for convex sets) or 
Corollary 3.3 (for general sets) require the computation of 
the values of the zero-sum stochastic games ro(u),  u E 

U(B) .  In practice, it would be sufficient to compute these 
values for a "sufficiently dense" set of unit vectors. More- 
over, one may concentrate on computing lower bounds on 
the values. Indeed, if lower bounds are substituted instead 
of the actual values, the conditions above are still sufJi- 
cient for approachability. The associated loss in accuracy 
depends of course on the tightness of the bounds. 

4) In general, the value of a zero-sum stochastic game is 
not computable by a finite algorithm. This remains true 
even under the recurrence conditions of Lemma 2.1. 
However, under these conditions there exist recursive 
algorithms which converge to the value, and stopping 
rules for obtaining €-approximations to the value (and 
c-optimal strategies) ([lo]). Finite algorithms for the exact 
calculation of the value do exist for various special classes 
of stochastic games, see [20] for a review. This is the case, 
for example, in stochastic games with perfect information, 
where at each state (or stage) only one player may choose 
an action. These games are also distinguished by always 
having nonrundomized optimal strategies, and seem ap- 
propriate for engineering applications where the simulta- 
neous choice of actions is not an essential part of the 
problem. 

5 )  Note that the set of values {T,(u), U E U )  does not 
depend on the specific set B. Thus, these values (or their 

holds for some fi. Note that the computation of J(f,., U )  is 
a standard Markov decision problem (with respect to the 
scalar cost function ( r ,  U ) ) .  Now, a reasonably dense grid 
of unit vectors has to be chosen in U(B) ,  and the above 
condition checked over this grid. (A reasonable approach 
would be to compute J ( f i , u )  only for those f, which 
correspond to vectors ui that are close to u.) If it holds, 
then the set B may be (approximately) approached by an 
approaching strategy which is comprised of the set {fi). 
Otherwise, the set B needs to be expanded in the direc- 
tions where the condition fails, until it is achieved. Obvi- 
ously, we may or may not be content with the resulting set 
B,  and accordingly may want to reconsider the constraint 
of N strategies. 

I v .  PROOF OF THEOREM 3.1 
The following martingale-related convergence result will 

be required. 
Proposition 4.2: Let { X n 7 z 7  n 2 0) be a stochastic 

sequence on some probability space (Cl,F, P);  that is, {x) is an increasing sequence of cT-fields and X,, is z- 
measurable. Assume that X ,  = 0, and that there exists a 
positive constant Q such that 

E(X:+l 1x1 I X," + W,' (P-ax) ,  n 2 0 (4.1) 

approximation) need to be computed Only Once, and may where W, is an %-measurable random variable such that 
then be applied to any set B. 

comments concern the computation Of 

an approaching strategy. Such a strategy would consist of 
a collection of (stationary) strategies, which are switched 
at state 0 according to the current average payoff vector. 

E(W?) 5 Q. Then X,,/n + 0 as., and the rate of conver- 
gence depends only on the constant Q. More precisely, for 
every E > 0 and 8 > 0 there exists an integer N = 

N ( E ,  

6, The 

such that: 

7) It should be emphasized that this collection of strate- 
gies need not contain all the optimal strategies f * (u ) .  
Indeed, concentrating on the convex case, any set of 
strategies which satisfies NSCl is appropriate. Moreover, 
the number of different strategies in this set need not 
necessarily be large, since a single strategy may satisfy the 
required inequality in NSCl for a set of adjacent unit 
vectors. The required cardinality depends on how ambi- 
tious we are in setting the control goals, as reflected by 
the set B to be approached, and may be reduced by 
expanding this set. 

8) To elucidate the last point, we outline a reasonable 
procedure for the computation of an approaching strat- 
egy. Assume that one starts with a given convex set B ,  and 
because of memory limitations the number of different 
stationary strategies which comprise the approaching 
strategy is restricted to a certain number N .  Assume also 
that the conditions of Lemma 2.1 hold. One may then 
choose N unit vectors which are equally spaced in the set 
U ( B ) ,  and compute for each such vector ui an optimal or 
c-optimal strategy fi in To(ui) (see Remark 4 above re- 
garding this computation). Noting (3.19, then NSCl will 
be satisfied if the following holds: for every U E U(B) ,  the 

(4.2) 

Pro08 Note first that (4.1) implies 

E ( X 2 )  5 n e ,  n 2 0 (4.3) 

(which, incidentally, implies that X n / n  + 0 in the mean- 
square sense). 

Let N 2 1 be some fixed integer. Define 

where 

w,' 
V , =  c , n 2 N  

m = N  (m + o2 
and VN- l  2 0. Note that {V,) is a positive increasing 
sequence, and 
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Now, by (4.4) and (4.1) 

so that { Z , , z ;  n 2 NI is a supermartingale. Denoting 
Z; = max{O, -Z,), it follows by a standard supermartin- 
gale inequality ([26, p. 4751) that, for every E ’  > 0: 

2 E ‘ )  I E ( Z N )  + supE(2,) 
n z N  

2Q 
N 

+ E(V, )  2 - (4.6) 

where (4.3) and (4.5) were used in the last step. Together 
with (4.51, this implies that 

IX,I 
sup - 2 € }  = P (  sup(Z,  + K - l )  2 € 2  
n > ~  n n > N  

I P  s u p z , 2 -  + P E > -  

4Q 2 6Q 
< - + ,E(V,) 4 -. 
- c 2 N  E E 2 N  

{ n > N  { ‘zz) 
(4.7) 

Thus, (4.2) follows for any N 2 6Q/Se2. 0 
Proof of Theorem 3.1: Assume that condition SCl) of 

the theorem is satisfied. Let DM1 employ the specified 
approaching strategy (denoted T:), and DM2 any T, E 
II,. In the sequel, all relations between random variables 
are assumed to hold almost surely with respect to the 
measure induced by these strategies and the initial state 
so = 0. 

Recall that 

T ( k )  = inf { n  > T ( k  - 1): s, = O} (4.8) 

where T(0)  p 0. By definition of 7 ~ 7  and (2.4) it follows 
that the T(kYs are all finite (except maybe on a set of 
measure 0, which we will henceforth ignore). Let be 
the a-algebra generated by the history sequence h, .  Obvi- 
ously, each T ( k )  is a stopping time with respect to {%}. 

The following abbreviated notation will be useful: 

c, 4 CF,, the closest point in B to F, 
d, A d(F,, B )  = IF, - c,I 
T k + 1  = T ( k  + 1) - T ( k )  

T ( k +  1)-1 

n = T ( k )  
uk+l  r,, = T ( k  + 1 ) ~ ~ ( ~ + ~ )  - T(~)F , ( , , .  (4.9) 

Note that the set of strategies {r1( p ) )  U II; (which was 
used to define .rrt; note that we allow for the more 
general strategy discussed in the remark which follows the 
theorem) is uniformly stable by assumption. Since on each 
interval [ T ( k ) , T ( k  + 1) - 11 one of these strategies is 

- 
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used, it follows by (2.4), (2.5) that 

(4.11) 

for some constants M,, R,, and every k 2 0. Further- 
more, since Tk 2 k 

k 

lFT(k)l  I i/ ‘m 1 
m = l  

and it follows easily by (4.11) that 

E(lFT(kJz) I R,, k 2 0. (4.12) 

It is our purpose to prove that d, -+ 0. We proceed in 
three steps: First, the properties of the approaching strat- 
egy are used to obtain some bounds on the “sampled” 
distance sequence {dT(k)} .  Convergence of d T ( k )  (as k + 

is next established, and finally extended to the whole 
sequence {d,). 

i) The Basic Bounds: We set out to establish that 

E ( T ( k  + l )2d&k+l)  I%+)) I T ( k ) 2 d & k ,  + W;, (4.13) 

where 
E(W,’) I Q, (4.14) 

for some constant Q independent of DM2’s strategy. 
For every k 2 0, if dT(k)  > 0 (i.e., F T ( k )  G B) ,  then DM1 

is using T ~ ( F ~ ( ~ ) )  on [ T ( k ) ,  T ( k  + 1) - 1). It follows then 
by (3.3), (3.4) and (4.9) that on { d T ( k )  > 0) 

Note that (4.15) holds trivially on { d T ( k )  = 01, since then 
c ~ ( ~ )  - = 0. Thus, rearranging terms in (4.15) gives 

E ( ( u k + l - T k + l C T ( k ) , C T ( k ) - T T ( k ) )  l 3 y k ) )  2 0. (4.16) 

d T ( k + l )  = l G ( k + l )  - C T ( k + l ) I  I l h ( k + l )  - C T ( k ) l  (4.17) 

Now 

T ( k ) F T ( k )  + %+ 1 
= /  T ( k +  1) - ‘ T ( k )  
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If B is a bounded set, then c ~ ( ~ )  E B is uniformly bounded 
and so is W:. However, in th6 general case we still have 
to bound E(Ic~(~)I~). Let P be some fixed point in B. 
Since + ( k )  is closest in B to F T ( k , ,  then I T T ( k ,  - c ~ ( ~ , I  s 

’Iherefore 

“ 1  6 

k = k ,  

large enough, which may be chosen to satisfy k ,  2 k ,  [cf. 
(4.22)]. Finally, for some N = N ( k , ,  6) large enough, it E(w:) I 2R2 + 4(4Rz + ‘ P 1 2 ) M z  ‘ (4.21) 
follows by (4.10) that and (4.13) and (4.14) are established. 

ii) Convergence of dT(k,: By (4.13) and (4.141, and 1 
Proposition 4.1 it follows that P ( T ( k 1 )  > N )  I - -E(T(k , ) )  N 

1 
k - t x  k 
lim -T(k)d,(,, = 0 a s .  (4.26) klM2 6 

I- < -. 
N - 4  

and the rate of convergence depends on Q only. Since 
Tk 2 k ,  the same follows for d,(,,, i.e., dT(k) + 0 as .  at a 
uniform rate. 

has just been established in ii) that there exists an integer 
k ,  = k,(E, 6, Q) such that 

NOW, (4.22), (4.25), and (4.26) imply that 

6 6 6  
P (  supd, > E )  I - + - + - = S .  

iii) Convergence of d,: Let E > 0 and 6 > 0 be fixed. It n r N  2 4 4  
Noting that E and 
not depend on DM2’s strategy, the proof is complete. 

are arbitrary and 

V. A QUEUEING EXAMPLE 
In this section, we apply the previous results to a simple 

discrete-time queueing system. Dynamic control of admis- 
sion, routing and service in queueing systems has been 
extensively studied in the past decade; see, e.g., [301 and 

= N t ( E ,  does 
U 

P SUP dT(,, 2 2 I 2. (4.22) i k r k ,  € 1  
We proceed to bound E ( D i ) ,  where 

Dk SUp{ld,, - dT(k) l :  T ( k )  I It < T ( k  + I)}. 

It follows from the definition of d, and the triangle 
inequality that, for every n, m: 

d, - d, I IF,, - c,I - IF, - c,I I If,, - ?,I. 
Thus, for n 2 m 

1 1  n-1 I 
Id, - d m (  I IF, - F,l = I (4.23) 

l = m  m 

Noting that T ( k )  2 k ,  this implies that 

+ 
T(k+ 1)- c 

I =  T(k) 

1 

IrA] 

its references. Here we consider the case of service-rate 
control (by DMl), while the arrival process is not com- 
pletely specified (or, alternatively, controlled by ‘DM2’). 
The basic problem is maintaining adequate service quality 
to attract customers, while keeping service costs down. 
For illustrative purposes, the model was simplified as 
much as possible so that, while not being trivial, it lends 
itself to a simple analytic treatment. 

Consider the queueing system illustrated in Fig. 2. The 
time axis is divided into “slots” n = 0,1,2, ... . Only one 
customer may arrive during each time slot, and the arrival 
probability is A. If the queue is empty, he joins the queue 
and then enters service at the beginning of the next time 
slot. Otherwise, he may choose either to join the queue, 
or to leave the system and never return. 

Service is applied to one customer at each time slot 
(provided the queue is not empty at the beginning of the 
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DM2 DMI 

P =  Pc or Pf "I 

Fig. 2. The queueing system. 

slot). The server (DM1) may choose between a slow 
service mode, where the probability of successful service 
on each time slot is p,, and a fast service mode with 
success probability p,, where 1 2 p, > pl > A. If the 
service is successful the customer leaves the system, oth- 
erwise he remains for (at least) another try. We assume 
that the server may switch service mode only when the 
queue is empty. A fixed cost (which is assumed for conve- 
nience to be of p, units) is incurred for each service 
attempt in the fast mode, while slow service is costless. 

To  fit the model of the previous sections, we may regard 
all arrival decisions as being made by DM2. The system 
may be formally described as follows. Let the state s = 

( x ,  M ) ,  where x E {0,1, - 0 -  ) is the number of customers in 
the queue at the beginning of a time slot and M E {slow, 
fast, empty} is the service mode in that slot. Thus, 

: if x ,  = 0 
x ,  + A n a :  - U, : if x, > 0 

empty : if x , + ,  = 0 
: 

: 

if x,,+~ > 0, x, > 0 
if x , + ~  > 0, x, = 0 

i", 
Mn+, = (2 

X n + l  = 

where U :  E {slow, fast} and U: E {0,1} are DMl's and 
DM2's choices, A,, - Bern(A) (i.e., A,, = 1 w.p. A and 
A ,  = 0 otherwise), U,l(M, = slow) N Bern ( p,) and 
U,I(M, = fast) - Bern(pf) .  

Note that the transition structure described above cor- 
responds to a stochastic game with pe$ect information 
([ll]), which means that in each state one of the players 
(decision makers) is restricted to a single action. It is well 
known that in zero sum, finite-state stochastic games with 
perfect information the players have optimal nonrandom- 
ized stationary strategies (Ell], [91); it will be argued below 
that the same holds in the present (countable state) case. 
For now, we note that DM1 has only two such strategies, 
which we denote by py) and py): in the former, slow 
service mode is always chosen, and the latter chooses fast 
service always. 

The performance measures which will be considered 
are the throughput x (rate of successfully served cus- 
tomers) and the average service cost C ,  i.e., 

1 n - 1  

We first identify explicitly (in Proposition 5.1 below) the 
set of approachable convex sets in the resulting perfor- 
mance space R2. Examples of such sets which are of 

-particular interest will then be discussed. 
We note first that conditions Cl )  and C2) of Section I1 

are satisfied: since p, > A, it is easily seen that the entire 
strategy set of either decision maker is uniformly stable 
(with s = (0,empty) defined as the '0' state). Next, note 
that DMl's effective decisions are made only in state 0, 
and the model is of perfect information; it then follows by 
elementary considerations that either p?) or py) is opti- 
mal in each game T,(u), u E R2. Now, given that DM1 
employs or py) in To(u), DM2 is facing a Markov 
decision process, and by standard results (see, e.g., [2l, 
[25]) there exist optimal stationary strategies (which mini- 
mize the average expected cost), say 8;" and gf* ,  in either 
case. It follows that an optimal strategy for DM2 in T,(u) 
is to employ g;" if M ,  = slow, and g* if M, = fast. 

Let us now calculate the sets R( ,U{), G )  and R( ,U?), G )  
[defined below (3.12)], i.e., the range of the expected 
average payoff which is induced by pr )  or py). 

Assume that py) is employed. Obviously, the service 
cost is identically zero, i.e., c,, = 0. Now, the maximal 
throughput is clearly A, while the minimal is achieved 
when the customers never choose to join the system 
(unless they have to, when the queue is empty). By consid- 
ering the induced Markov chain (with the state space 
reduced to the two states x = 0 and x = l), this minimal 
throughput is easily seen to be 

and thus 

R(I)  R( py) ,G)  = { ( x , 0 ) :  A, I 5 A}. 

Assume now that p7) is used. It follows similarly that 
the throughput is in [A,, A], where 

Moreover, noting that a cost of pf units is incurred for 
each service attempt, it follows that the average expected 
cost equals the throughput; thus 

Let JK be the line segment between the points J = 

(A,, A,) and K = (A,,O), and let LM be the line seg- 
ment between L = ( A ,  A) and M = ( A ,  o), (see Fig. 3). We 
then have the following result. 

Proposition 5.1: A convex set B c R2 is approachable 
by DM1 if and only if it intersects both line segments JK 
and L M ;  otherwise it is excludable by DM2. 

Proof Recalling that f * ( U )  E { p?), py)} for every 
u E U, the proof follows from Theorem 3.4, conditions 
NSCl and NSC2, by simple geometric considerations as 
outlined below. 
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c (Cost) + 
L 

Fig. 3. The performance space, and two approachable sets. 

Assume that B satisfies the requirements. It is easily 
seen that for any p E B, either R(1) or R(f) is separated 
from p by H,. Thus, by NSC1, B is approachable. 

Conversely, if B does not intersect either JK or L M ,  it 
may be easily verified that there exists a point p E B such 
that the required separation does not occur neither for 
R(1) nor for R(f). Thus, by NSC2 B is not approachable, 

0 
We now discuss two specific examples of approachable 

sets. 
Example 1: A reasonable objective for the server is to 

guarantee a throughput above a certain threshold while 
keeping the average cost below a certain threshold. Thus, 
we consider the set 

and by Theorem 3.44) is therefore excludable. 

B, = {(X,C) E R2 : X 2 A,,  C I CO) 

where (A,, ,  C O )  are threshold levels to be determined. It 
follows immediately by Proposition 5.1 that B, is ap- 
proachable if and only if it intersects the line segment JK. 
Thus, the line segment JK represents the set of Pareto- 
optimal (undominated) performance vectors (A,),  CO) 
which may be secured by the server. 

Example 2: Let P be a point on JK, and let M = ( A ,  0). 
Then, by Proposition 5.1, the set B, 4 {the line segment 
P M }  is approachable by DM1. We note that this set is 
minimal, in the sense that no proper convex subset thereof 
is approachable. This may seem somewhat peculiar at first 
glance, since the cost on PM is decreasing with increasing 
throughput. However, this dependence actually reveals an 
“adaptive” property inherent in the associated approach- 
ing strategy. To clarify this point, consider the extreme 
case where the customers always decide to join the queue. 
The throughput will obviously be A, independently of the 
service mode. Thus, the approaching strategy adapts to 
this situation (without prior knowledge of the arrival 
policy) by adhering to the slow service mode, thereby 
reducing the service cost to 0 (the point M 1. 

In both these examples, the approaching strategy sug- 
gested by Theorem 3.1 is obviously nonstationary, since it 

switches between slow and fast service modes (when in 
state 0) according to the current average payoff vector. It 
is important to note that there does not exist a stationary 
approaching strategy in either case, so that dependence 
on the history is crucial. 

VI. CONCLUDING REMARKS 
The purpose of this paper is to provide an analytic tool 

for the evaluation of guaranteed performance, from a 
single controller’s viewpoint, in systems where dynamic 
uncertainty (caused by the actions of other decision mak- 
ers or disturbances of similar nature) is significant. Our 
approach is characterized by a worst case viewpoint, and 
by the explicit consideration of several performance mea- 
sures, rather than the single “figure of merit” approach 
which is usually employed in dynamic optimization prob- 
lems. 

The worst-case approach should be contrasted with the 
“statistical” approach, where a certain (statistical, and 
usually simplified) model is imposed on the behavior of 
other decision makers, thus incorporating their actions 
into the system dynamics. While each approach has its 
advantages, it is important to realize that the two may be 
combined by imposing only partial statistical assumptions 
to yield a more realistic model. 

The main results of this paper are Theorem 3.1 and its 
Corollary 3.3, which give a sufficient condition for any 
given set to be approachable, and Theorem 3.4 which 
gives necessary and sufficient conditions for approachabil- 
ity of a concex set; in either case, the approaching strat- 
egy is specified. These results depend in an essential way 
on certain recurrence properties of a single fixed state. 
The verification of the approachability conditions and 
computation of approaching strategies pose some non- 
trivial computational problems, tractability of which has 
been discussed at the end of Section 111. 

The proposed approaching strategies essentially require 
our decision maker to monitor system performance (em- 
bodied by the current average payoff), in addition to the 
basic system state, and modify his strategies accordingly. 
Heuristically, this seems quite reasonable in uncertain 
dynamic decision problems. It should be stressed that 
strategy adjustment here is not directly related to learning 
(as in adaptive control), but rather is required as a re- 
sponse to dynamically changing uncertainties. However, 
some relations with adaptive behavior were noted at the 
end of Section V (and see also Remark 2 following 
Theorem 3.4), and should perhaps be further studied. 

We conclude with a few comments regarding possible 
extensions of these results. 

The approaching strategies which were considered here 
are adapted to the history of the process (i.e., to the 
relative position of the average payoff compared to the set 
to be approached) only when the fixed recurrent state is 
hit. While this is convenient for analysis and easy to 
implement, it may have the undesirable effect of increas- 
ing the “variance” of the payoff if these recurrence times 
are far apart. It should therefore be of interest to con- 
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struct approaching strategies which adapt to the current 
payoff more frequently. 

It is quite obvious that some recurrence conditions are 
required to preserve the basic approach and results of this 
paper. However, the ones assumed here (namely recur- 
rence of a single fixed state for all relevant strategies) are 
not the only possibility. Specifically, it is conjectured that 
the basic results hold under the various recurrence condi- 
tions considered in [9] (e.g,. when the recurrent state is 
allowed to depend on the strategies, within a finite set of 
states). 

An interesting problem which has not been directly 
touched upon is that of partial state information. How- 
ever, it should be noted that as long as the average reward 
vector is available, the basic sufficient condition in Theo- 
rem 3.1 remains valid even if the strategy set II, of DM1 
is limited, either by partial state information or otherwise. 

Finally, we note that the main definitions and results of 
this paper may be straightforwardly generalized to semi- 
Markov models. 
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