
510 IEEEIACM TRANSACTIONS ON NETWORKING, VOL. 1 ,  NO. 5, OCTOBER 1993 

Competitive Routing in Multiuser 
Communication Networks 

Ariel Orda, Member, IEEE, Raphael Rom, and Nahum Shimkin, Member, IEEE 

Abstract- We consider a communication network shared by 
several selfish users. Each user seeks to optimize its own per- 
formance by controlling the routing of its given flow demand, 
giving rise to a noncooperative game. We investigate the Nash 
equilibrium of such systems. For a two-node multiple links 
system, uniqueness of the Nash equilibrium is proven under 
reasonable convexity conditions. It is shown that this Nash equi- 
librium point possesses interesting monotonicity properties. For 
general networks, these convexity conditions are not sufficient 
for guaranteeing uniqueness, and a counterexample is presented. 
Nonetheless, uniqueness of the Nash equilibrium for general 
topologies is established under various assumptions. 

I. INTRODUCTION 
RADITIONAL computer networks were designed with T a single administrative domain in mind. That is, the 

network is designed and operated as a single entity with a 
single control objective. A single control objective does not 
mean that control is centralized but means that users are 
essentially passive and would quite often reduce their own 
performance for the good of the entire network. For example, 
many advanced network routing protocols attempt to optimize 
average network delay. 

In modem networking, a single administration is no longer 
a valid assumption. Internetworking, for example [l], [2], is a 
coalition of networks each belonging to a different admin- 
istration sharing gateways and sometimes intemal network 
resources. Another example is a set of different companies in 
the same neighborhood using wireless local area networks and 
sharing the same portion of the spectrum. It is evident, there- 
fore, that single control objectives cannot provide solutions in 
more modem environments. 

An altemative approach is to view the network as a re- 
source shared by a group of active users. Users may have 
completely different measures of performance and satisfaction 
and completely different demands which, at times, may be 
contradictory. One possible way of managing such a network 
is to let the individual users compete with one another in a 
way that allows each of them to reach its (subjective) optimal 
working state. In such an environment, users change their 
behavior based on the state of the network. The change in 
behavior of one user is likely to cause changes in other users’ 
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behavior, resulting in a dynamic system. Several questions 
need be asked in this context, such as whether there exists an 
equilibrium point of operation such that no user would find 
it beneficial to change its working parameters (i.e., a Nash 
equilibrium), whether such an equilibrium point is unique, 
and whether the dynamic system actually converges to the 
equilibrium point. These are fundamental questions in game 
theory VI, VI. 

Existing networks have avoided dealing with the previ- 
ously mentioned issues. The Intemet [5], [6], for exam- 
ple, uses a routing protocol that is based on topological 
considerations alone without regard to other optimization 
criteria. Recently, policy-based routing has been deliberated 
[7], but this approach does not accommodate general dynamics 
or individual user characteristics. This paper addresses the 
most basic networking problem-the routing problem-from a 
game theoretical standpoint, contributing to the understanding 
of the dynamics of modem networks. 

Most previous work in applying game theory and economic 
techniques to computer networks deals with flow control, 
whereas routing is assumed to be given or centrally managed. 
Kurose et al. [8] and Ferguson et al. [9] use economic 
pricing tools in order to deal with network resource allocation 
problems. More related to the present paper are the works 
of Bovopoulos and Lazar [lo] and Hsiao and Lazar [ l l ] ,  
where the Nash equilibrium is examined in the context of 
multicontroller network flow control problems. In particular, in 
[ 101 the uniqueness of the Nash equilibrium is established for 
a BCMP-type queuing network under a power-based criterion. 
A thorough study of competitive multiclass flow control to 
a single node (server) may be found in [12], [13] and the 
references cited therein. Yet another flow control analysis is 
given by Shenker [14], who considers an internetwork gateway 
problem. The approach there is to assume that users operate 
selfishly and that it is the task of the designer to set the gateway 
parameters such that overall network resources are used as 
efficiently as possible. In another paper, Shenker [ 151 discusses 
at some length game theoretical issues related to networking 
problems. 

The routing standpoint has been scarcely considered in 
the literature. Lee and Cohen [16] consider a set of parallel 
M/M/c queues (which, in our context, could represent parallel 
links connecting two nodes). The users control the amount of 
flow through each queue (making this a routing problem) and 
consider a linear combination of the average queue length and 
customer delay as performance criteria. They show that, in 
such a setting, at most one Nash equilibrium exists with the 
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property that each user ships positive flow through each queue. 
This result is employed in order to establish the uniqueness 
of the Nash equilibrium for the case of identical queues. 
They fall short, however, of establishing uniqueness in the 
general case. Indeed, for nonidentical queues (or communi- 
cations links) there do exist in general equilibrium points, 
where some users find it optimal to use only a subset of all 
available links (a simple example is given in Section 11-C). 
This uniqueness problem is completely resolved in the present 
work. Another game theoretic treatment of the routing problem 
was considered in [17], where existence and uniqueness of 
the Nash equilibrium was shown for the special case of 
two exponential servers working in parallel, and two users 
employing different cost functions (namely, average delay and 
blocking probability). Noncooperative games, in the context 
of routing, were also studied in the area of transportation 
networks. A fundamental result, due to Dafermos and Sparrow 
[18], shows that the game problem can be solved via a 
standard network optimization problem by a simple transform 
of the cost function. Nonetheless, the “user” considered in the 
context of transportation networks is one that controls just an 
infinitesimally small portion of the network flow (e.g.. a car 
on the road), whereas we are concerned with users that control 
nonnegligible portions of flow. 

In general, uniqueness (or even existence) of the Nash 
equilibrium is not guaranteed. A result due to Rosen [19] 
defines conditions for the existence, uniqueness, and stability 
of Nash equilibria in convex games. This result is the basis 
of several subsequent works, such as that of Bovopoulos 
and Lazar [lo]. Unfortunately, the specific requirements of 
Rosen’s uniqueness result (diagonal strict convexity) are not 
generally satisfied in the problem posed in this paper (see 
Section 111-B). Another result is that of Li and Basar [20], who 
describe a distributed (uncoordinated) environment in which 
the users play the game. They use contraction conditions to 
guarantee uniqueness and stability, but these conditions are too 
complicated to be verified in the problem we are interested 
in. 

The work presented here deals with routing, meaning that 
the network topology is known, each user knows its individual 
throughput demands, each user can measure the load on the 
network links, and routing is selected by each user so as to 
optimize a certain selfish criterion such as its own average 
delay. This paper addresses mainly the uniqueness problem, 
and also investigates properties of the flow traffic at the Nash 
equilibrium point. Also, the stability issue (i.e., convergence 
to the Nash equilibrium point) is addressed briefly. We note 
that the routing problem in a network with a single common 
(convex) objective can be solved in a fairly standard way using 
convex programming techniques. Centralized and distributed 
algorithms of that type have been described in the literature 
(e.g., [21], [22]). When the objective function is convex but 
not common to all users, the setting becomes that of a convex 
game. As mentioned previously and shown in the sequel, 
uniqueness of the Nash point cannot be derived directly from 
available results of convex game theory (such as [19]). This 
leads us to exploit the specific structure of our problem in 
order to prove uniqueness. 
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We analyze the routing problem in two phases. First, we 
consider a case of two nodes connected by a set of parallel 
links similar to the setting considered by Lee and Cohen [ 161, 
except that ours allows more general functions and not just 
those resulting from a queuing framework. This model is 
presented in Section 11. Existence and uniqueness of the Nash 
equilibrium is established under fairly weak convexity proper- 
ties, which are satisfied by standard network cost functions. We 
also derive characteristics of the equilibrium. In Section 111, we 
extend the discussion to a general network. We show, through 
an example, that these weak convexity conditions are not 
enough to guarantee the uniqueness of the Nash equilibrium. 
Nonetheless, we prove the uniqueness of the Nash equilibrium 
in several cases. First, sufficient conditions for uniqueness are 
derived based on [19], and their applicability is discussed. A 
second result establishes uniqueness for the case of symmetric 
users. Finally, we obtain a result similar to that of [16] but 
for the general network environment. Several conclusions and 
open problems are discussed in Section IV. 

11. A NETWORK OF PARALLEL LINKS 

A.  Model and Problem Formulation 

We are given a set Z = { 1,2,  . . . , I} of users, which share 
a set of parallel communication links L = { 1,2, . . . , L }  inter- 
connecting a common source node to a common destination 
node. We assume that users are selfish and do not cooperate 
in managing the communication links. Each user i E Z has 
a throughput demand, which is some ergodic process with 
average rate of r2.  Without loss of generality, we assume 
that r1 5 r2 5 5 r’. A user ships its demand by 
splitting it through the communication links L. A user is 
able to decide (at any time) how its demand is split among 
the links, i.e., user i decides what fraction of ri should be 
sent through each link. We denote by fi the expected flow 
of user i E Z on link t E L. Thus, user i can fix any 
value for f:, as long as f: 2 0 (nonnegativity constraint) 
and EIEL fi = r2  (demand constraint). Turning our attention 
to a link 1 E L, let fi be the total flow on that link i.e., 
fi = CiEz f;; also, denote by f1 the vector of all user flows on 
link Z E L, i.e., fl = (f: ,. ft , . . . , f;). The flow configuration 
f’ of user i is the vector f1 = (fi, fi, . . . , f ~ ) .  The systemflow 
configuration f is the vector of all user flow configurations 
f = (fl,  f2 ,  . . . , fl). We say that a user flow configuration is 
feasible if its components obey the nonnegativity and demand 
constraints, and we denote by F‘ the set of all feasible f”s. 
Similarly, a system configuration is feasible if it is composed 
of feasible user flow configurations. We denote by F the set 
of all feasible f’s. 

The performance measure of a user i E Z is given by cost 
function Ji(f). The aim of each user is to minimize its cost. 
Since the cost functions depend on the flow configuration of 
all users, it turns out that the optimal decision of each user 
depends on the decisions made by other users and, since users 
are selfish, we are faced with a noncooperative game [3], [4]. 
Thus, we are interested in the Nash solution of the game. In 
other words, we seek a system flow configuration such that no 
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user finds it beneficial to change its flow on Fy_"nk. Fo-rmally, 
a feasible system flow configuration f = (fl , f 2 ,  . . . , f') is a 
Nash Equilibrium Point (NEP) if, for all i E Z, the following 
condition holds: 

JyT) = J"f1,. . . , fi-1, r', f i+l , .  . . , P )  
= Fin, J' (f' , . . . , r'-' , f' , ii+' , . . . , f I )  (1) 

f'EF1 

We remark that the NEP concept is of special importance 
from a dynamic standpoint: in a practical scenario, a user 
changes its flow repeatedly in response to the varying load 
conditions. The stability points of such systems are exactly 
those in which no user finds it beneficial to change its flow, 
i.e., the NEP's. An interesting question is whether the system 
indeed converges to an NEP. 

The following general assumptions on the cost function 
5' of each user are imposed throughout the paper (some 
additional structural assumptions will be considered in the 
sequel): 

G1. J z  is the sum of link cost functions i.e.,J'(f) = 

G2. 5; : [0, 03)' + [0, m], a continuous function. 
G3. 51" is convex in ft. 
G4. Wherever finite, 5; is continuously differentiable in f: .  

cler. Jf(f1). Each 5; satisfies: 

We denote: K," = s. af; 
Note the inclusion of fcc in the range of 5,". which is useful 
to incorporate implicitly and compactly additional constraints 
such as link capacities (as in the type-C functions). We 
emphasize that only "gradual" constraints, where the cost 
function increases continuously to infinity, may be incor- 
porated; the addition of other ("abrupt") constraints would 
involve modification of the Kuhn-Tucker conditions and is 
not included in our analysis. 

An additional assumption conceming the entire model data 
is: 

G5. For every system flow configuration f ,  if not all costs 
are finite then at least one user with infinite cost 
( J z ( f )  = 03) can change its own flow configuration 
to make its cost finite. 

The last assumption immediately implies that, in any NEP, 
the costs of all users must be finite. This assumption can be 
simply restated (in the present two-node network) in the typical 
case where cost functions take infinite values only due to link 
capacity constraints (i.e., the cost for a user is infinite if and 
only if it uses a link on which the total flow exceeds the link's 
capacity). Assumption G5 is then equivalent to the sum of link 
capacities being greater than the sum of the users' demands. 

Under these assumptions, the routing game is equivalent to 
a convex game in the sense of [19] and, thus, the existence 
of an NEP is guaranteed [19, Th. 11. Since some semantic 
differences do exist, we briefly outline the proof. Consider the 
point-to-set mapping f E F + r ( f )  c F, defined by 

r( f )  = { I  E F : f' E arg Fin, Jz(f',.  . . , g i , .  . . , f ' )>.  
gLEF1 

r is an upper semicontinuous mapping (by the continuity 
assumption G2) which maps each point of the convex compact 
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set F into a closed (by G2) convex (by G3) subset of F. 
By the Kakutani Fixed Point Theorem, there exists a fixed 
point f E r(f) ,  and such a point is easily seen to be a Nash 
equilibrium. 

It also follows from our assumptions that the minimization 
in (1) is equivalent to the following Kuhn-Tucker conditions: 
for every i E Z, there exists a (Lagrange multiplier) X i  such 
that, for every link 1 E L, 

(2) f; > 0 + K,i(fi) = xi 
fi" = 0 -+ K,"(fi) 2 xz (3) 

In other words, the Kuhn-Tucker conditions constitute the 
necessary and sufficient conditions for a feasible system flow 
configuration to be an NEP. 

Given the existence of an NEP, we investigate its uniqueness 
as well as other interesting properties. We also discuss a simple 
dynamic system and prove its convergence. 

We shall mainly consider cost functions that comply with 
the following assumptions: 

Al. 5; is a function of two arguments, namely user i ' s  
flow on link 1 and the total flow on that link. In other 
words, J,"(fl) = Jl"(f;,fi). 

A2. 5; is increasing in each of its two arguments. 
A3. Note that Kt = K,"(f,", f i )  is now a function of 

two arguments. We assume that wherever 5; is finite, 
K,"(f,", f i )  is strictly increasing in each of its two 
arguments. 

Functions that comply with these assumptions shall be referred 
to as type-A functions. We point out that these assumptions 
encompass a large family of interesting cost functions, some 
of which are described in the sequel. In particular, we note 
that the first assumption relates the performance of a user on 
a link to both its amount of flow on that link, which measures 
its "investment" on that link, and to the total amount of flow 
through the link, which determines the link performance. In 
order to facilitate the presentation and by an (harmless) abuse 
of notation, whenever referring to cost functions of type-A we 
shall denote them as 5: (f; , f i )  (instead of jf (f; , fi)). 

Typically, the performance of a link 1 is manifested through 
some function Ti (fi) ,  which measures the cost per unit of flow 
on the link and depends on the link's total flow. Thus, it is of 
interest to consider cost functions of the following form (see, 
also, [ l l ] ,  [16]): 

€31. Jl"(fi",fi) = fi" . % ( f i b  
B2. E : [O,m) -+ (O,m]. 
B3. Z ( f l )  is positive, strictly increasing and convex. 
B4. Ti ( f i )  is continuously differentiable. 

Functions that comply with these assumptions shall be referred 
to as type-B functions. Note that a type-B function is a special 
case of type-A. Note, also, that if %(fi)  is the average delay 
per unit of flow, then the corresponding type-B function is the 
widely used average delay function (in our case, per user). We 
note that, for type-B functions, we have 

K," = f ;  . T[ + 
where qr = 3. 
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A special kind of type-B cost function is that which cor- 
responds to an M/M/l link model. In other words, suppose 
that: 

C1. J;(f i; ,  fi) fi; . Z(fi) is a type-B cost function. 

where Cl is the capacity of 

link 1. 
Functions that comply with these assumptions shall be 

referred to as type-C functions. Such delay functions are 
broadly used in modeling the behavior of links in computer 
communication networks [23], [24]. 

B.  Uniqueness of the Nash Equilibrium 
The following result establishes the uniqueness of the NEP 

for the parallel lines network. 
Theorem 1:  In a network of parallel links, where the cost 

function of each user is of type-A, the NEP 
P~oofi  Let f E F and i E F be two NEP's. As observed, 

f and f satisfy the Kuhn-Tucker conditions (2) and (3), which 
may be written as: 

is unique. 

~ ; ( f i ; , f i )  2 xi ; ~ i ; ( f ; , f i )  = xi if f j  > o v ~ , z .  (4) 

. 
~ ! ( j i ~ ,  ji) 2 ; ~ ; ( f i  , f i )  = 2 if jii > o vi, 1 .  ( 5 )  

These relations, and the fact that Kj(., .) is increasing in each 
of its arguments, will now be employed to establish that f = f, 
i.e. fi; = fi for every l , i .  

The first step is to establish that fi = fl for each line 1. 
To this end, we prove that for each 1 and i, the following 
relations hold 

..z 

(2 I xi, fi 2 fl} implies that flz 5 f; , (6)  

(2 2 X i , f i  I fi} implies that fii > fi; . (7) 

We shall only prove (6), since (7) is symmetric. Assume that 
fii I Ai andJ 2 fi for some 1 and i. Note that (6) holds 
trivially if fzZ = 0. Otherwise, if jiz > 0, then (4) and ( 5 )  
together with our assumption imply that: 

K;(j i i ,  h) = Ai I Xi I K;(ff,i, fi) I K!(fj, fi) , (8) 

where the last inequality follows from the monotonicity of K; 
in its second argument. Now, since Kj is nondecreasing in its 
first argument, this implies that fii I f;, and (6) is established. 

Let C1 = (1 : ji >,fi}. Also, denote Z, = (i : fii > X i } ,  
CS = L - L1 = (1 : fi 5 fi}. Assume that C1 is nonempty. 
Recalling that C1 hi = Cl fj = ri ,  it follows by (7) that for 
every i in I,, 

Noting that (6) implies that fii I f; for 1 E CI and i $! Za, 
it follows that: 

This inequality obviously contradicts our definition of C1, 
which implies that Li is an empty set. By symmetry, it may 
also be concluded that the set (1 : fi < fi} is empty. Thus, 
it has been established that: 

(11) 

We now proceed to show that Ai = Xi for each user i. To 

ji = fi for every z E C. 

this end, note that (4) may be strengthened as follows: 

{Ai < xi, fi  = fi)  implies that either 
- i  jii < f; or fi = f; = 0 .  (12) 

Indeed, if f i i  = 0, then the implication is trivial. %erwise, 
if jia > 0, it follows similarly to (8) that ~ i ; ( j i ' , f i )  < 
K;(fj, fi) so that .fii < fi; as required. 

Assume now that Ai < X i  for some i E Z. Since CIEL jii = 

r2 > 0, then jiZ > 0 for at least one link 1 and (12) implies that 

which contradicts the demand constraint for user i. We, 
therefore, conclude that fii < hi does not hold for ~y user 
i. A symmetric argument may be used to show that Az > X i  
cannot hold as well. Thus, fii = X i  for every z E Z. Combined 
with (1 l), this implies by (6) and (7) that !la = fi; for every 

0 1 , i, and uniqueness of the NEP is thus proved. 

C.  Properties of the Nash Equilibrium 
In this subsection, we derive several properties of the 

(unique) NEP for type-A cost functions that are identical for 
all users, i.e., all users use the same function: for all i E Z and 
1 E C J;( f;, fi) = Jz(ff, fi) (to which correspond Ki(ff, fi)). 
Note that type-B functions belong to this class. It should be 
observed that even though users use the same cost functions, 
they still have different objectives since they use different 
arguments (i.e., f f )  in these functions. All references to flow 
values are to those at the NEP. 

Lemma 1:  Suppose that f; > f/ holds for some link i and 
users i and j .  Then, fj > f/ for all I E L ; moreover, the last 
inequality is strict if fi > 0. 

Proofi Since cost functions are identical, then so are their 
derivatives, namely IT,"(., .) = Ki (., .). Recall that the latter 
are strictly increasing in their first argument, by our definition 
of class-A functions. 

Choose an arbitrary link 1. The claim holds trivially for 
f/ = 0. Assume, then, that f/ > 0. From the Kuhn-Tucker 
conditions, we have that: 

m ; 7  fi) I q f ; ,  fi) 
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Since f /  > f i j  implies f i  > 0, we have Since f i  > f j ,  it follows that either Ti(fi) < q ( f i )  or 
T[(fi) < q’(fi). Since f i  > f : ,  we have that either Ti(fi) < 
Z ( f i )  or q(fi) < q’(fi). However, the assumption made 
in the lemma implies that both of the last two inequalities 
hold (since each implies the other). Now, since f ;  > 0, we 
similarly have 

qf;, f i )  I K W  fi) 

Thus, we have 

K;(f; ,  fi) I K { ( f { ,  f i )  = K!(fij,  f i )  

qui) + fij . T[(fi) 2 Z(f2) + f/ . m f i )  
< Kf(fi, f i )  I mi;, fi) = K,j(f,”, fi) 

i.e., K ; ( f / ,  f i )  < K!(f: ,  f i )  which implies f /  < f j .  0 
Theorem 2:  Consider a network of parallel links with iden- 

tical type-A cost functions. For any pair of users i and j ,  
ri 2 ~j implies that f i ;  2 f ;  for all E E C. Moreover, if 
yi > ~ j ,  then equality holds only for f :  = f; = 0. 

Proof: Assume T~ 2 ~ j .  If T~ > T?, then there must be at 
least one line E for which f i  > f /  and the required conclusions 
follow directly from the last lemma. Consider the case fi = rj 
and assume, by contradiction, that fi < f /  for some E .  Then, 
by the last lemma, we have fi.5 f ;  on all other lines, which 
upon summation yields T~ < TJ, contradicting ri = ~ j .  0 

This theorem shows that, for identical type-A cost functions, 
there is a monotonicity among users in their use of links: a 
user with a higher demand uses more of each and every link. 
We conclude that: 

Corollary, I :  For users a and j such that T~ = ~ j ,  it holds 
0 

In particular, if all users have the same demand i.e., rz T 

for all i E 2, then, for all 1 E C and i E 2, we have f; = f i / I .  
Consider two users, say i and j ,  such that ri 2 rj  (i.e., 

7 > j ) .  Suppose that, at the NEP, user i refrains from using 
link E .  It follows,from Theorem 2 that so does user j ,  i.e., 
fi = 0 implies f ;  = 0. Thus, at equilibrium we can partition 
the set of links into a sequence of sets C1, C2, ..., CI such 
that C, C C for 1 I n I I and C, is the set of links 
that is used exclusively by users n, n + 1, ..., I .  We have that 
C, 3 &+I;  also, since each user (including the one with the 
smallest demand) should use some link, we have that C1 # 0 
(other sets may be empty). 

We observe a nice monotonic partition of users among links: 
a user with a higher demand uses more links, and uses more 
of each link. There is another monotonic property that can be 
derived, regarding the order of preference of links as seen by 
each user. Suppose that a user, say i, prefers link 1 over link 
1. i.e., f :  2 f i .  Does this relation between links E and 1 hold 
for all users? The following lemma shows that this property 
holds for some types of Type-B cost functions. 

Lemma 2: Assume that, for links 1 ,  E E C, the following 
condition holds: 

that f i ;  = f ;  for all E E L. 

Z( f i )  > q u i )  * G’(fd > qui) 
Then, f ;  > f f  implies f i  2 f /  for all j E Z and if f /  > 0 
then f ;  > f ; .  

Proof: Assume f i  > f : .  Since the claims hold trivially 
for f ;  = 0, we may further assume that f /  > 0. By our first 
assumption, f i  > 0 so that the Kuhn-Tucker conditions imply: 

q f i )  + f ;  . q f i )  I Z(fi) + f i ;  . T,/( f l )  

Since it has just been established that q ( f i )  < Ti(fi) and 
0 

We note that the type-C function complies with the condition 
of the last lemma. Thus, we have: 

Theorem 3: In a network of parallel links where the cost 
function of each user is of type-C, Ci > Cl implies f i  2 f :  
for all i E Z and if f ;  > 0 then f i  > f j .  

Pro08 The claim holds trivially for f i  = 0. Assume, 
then, that fj > 0. From the Kuhn-Tucker conditions, we have 
that: 

q( f i )  < q’( fi), we conclude that fi > f ;  . 

%(fi) + fi; . W i )  5 qui) + f i  . q u i )  (13) 

By contradiction, assume that f /  I f t .  Since the type-C 
function complies with the condition of Lemma 2, it follows 
that f /  5 f ;  for all j E 2 and, thus, f i  5 f i .  Since 
Ci > Ci and Ti / ( f i / )  = & for 1’ E {l,i}, we have that 
q(fi) < q ( f i )  and q ( f i )  I q ’ ( f i ) .  Since, by assumption, 

0 
The last theorem, together with Theorem 2, show that with 

type-C cost functions we get a partition of users among links 
at NEP. Starting with a link with minimal capacity and moving 
toward links with higher capacities, we observe more and more 
users joining the links, and each user increasing its usage on 
the next link. 

The property described in Lemma 2 does not hold for 
general average delay cost functions, as the following example 
shows. Consider two users (1 = {1,2}) sharing two links 
(C = { 1,2}). Suppose that their cost functions are average 
delay ones and that, for E E { 1,2}, Z = f i  + & where Ci 
is a parameter of link 1 (its capacity). Assume that C1 = 201, 
C2 = 100, T~ = 9.53, and T~ = 290. It can be verified (e.g., 
by substituting in the Kuhn-Tucker conditions) that the NEP 
is f j  = 0, f i  M 9.53, f f  M 200.0, and f ;  = 90.0, which 
contradicts the property described in Lemma 2. This is because 
the property relies deeply on the assumption made in Lemma 
2, and the counter example described shows why that property 
may not hold for general average delay cost functions: a user 
with a low demand seeks links with small delay, whereas one 
with a high demand seeks links with small delay derivatives. 

f i  5 f f ,  we have a contradiction to (13). 

D. Simple Convergence Result 
In this subsection, we consider briefly the stability of the 

NEP. A reasonable dynamic model for users’ behavior in 
nonequilibrium is suggested, and convergence of the flow 
configuration to the NEP is demonstrated. Only the special 
case of two users and a two-link network is considered. We 
point out that this convergence result is not readily extendible 
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to more general cases; however, it may shed some light onto 
the important stability issue. 

Consider a system of two users (1 = {1,2}) sharing two 
links (C = (1,2}). The system starts with some (nonequi- 
librium) flow configuration f(0). From time to time, each 
user measures the current load on each link, and (after per- 
forming the necessary calculations) adjusts its own flows to 
minimize its cost function. We assume that exact minimization 
is achieved at each stage, and that the sequences of operation 
(measuring, calculating, and adjusting) are done instantly. We 
shall refer to this as the Elementary Stepwise System (ESS). 
Essentially, the system can be modeled as a sequence of steps 
in which each user updates its routing decisions; we use the 
notation fi(n) to denote a user’s i flow on link 1 at the 
completion of step n. A similar dynamic scheme has been 
considered, e.g., in [20]. 

Let an ESS be initialized with a system configuration 
denoted by: 

f(O) = (f’(O>,f2(0>) = ((fi l(O),  f m ?  ( f m  f m )  
Relabel the users so that user 1 is the first to adjust its 

flow. The resulting flow configuration after this first step is 
denoted by f(1) = (f1(1),f2(1)), where f2(1) = f2(0) and 
f1 ( I) is the optimal flow for user 1 against f (0). Since exact 
optimization is performed at each step, then the two users 
altemate in updating their flows. Thus, user 2 next updates its 
flow to yield f(2). Proceeding in this manner, user 1 updates 
its flow at each odd step n and user 2 updates its flow at each 
even step n, with the resulting system flow denoted by f (n) 
in each case. It is our purpose to show that f(n) converges 
to the NEP. The proof will be based on the following simple 
observation: 

Lemma 3: Let f’, and f1 be two feasible flows for user 
1, and let f2  (retp. f2) be an optimal feasibie flow of user 2 
against f1  (resp. f ’). For 1 E { 1,2}, if f: 2 f: , then ff 5 f,”. 

Proof: Assume, to the contrary, that ff 2 f; and 
f: > ff hold for some link 1. Denoting the other link by m, 
this implies that f; 5 f;, f; < f;, fi > fi, and fm < fm. 
The Kuhn-Tucker conditions (2) and (3) for user 2, together 
with the monotonicity properties of the marginal costs Ki, 
now lead to the following contradiction: 

K;(f:, fm) 

= i2 I K;& f i )  < K;(f:, f i )  

= x2 I K;(f:, fm) < K;(f:, fm) , 
and the conclusion follows. 0 

Proposition I: Assume that the ESS is initialized with a 
feasible system configuration f (0). The system :onfiguration 
then converges over time to the (unique) NEP f ,  i.e., 

lim f(n) = f 
7L” 

Proofi We first establish that each component of f(n) 
increases or decreases monotonically in n. Let I be a link for 
which ff(1) 5 ff(3). Noting that, by its definition, f2(2) 
is optimal for user 2 against f’(1) and similarly that f2(4) is 
optimal against f ’ (3), it follows from the previous lemma that 

ff(2) 2 ff(4). A symmetric argument can now be employed 
to establish that f:(3) 5 f:(5). Proceeding inductively, and 
recalling that user 1’s flows remain fixed at each even step, it 
follows that for each odd n 

and, similarly, for each even n: 

f?(n) = f,”b + 1) L f,”b + 2). 

Since the flows are bounded, this implies that #(n)  and 
ff(n) converge as n 4 00. Since the sum of flows on both 
links is constant, this obviously implies similar convergence 
for the flows on the second link, so that f(n) converges to 
some flow vector f = (f1,f2).  Due to the continuity of the 
cost functions, it follows that f is optimal for user 1 against 
f2  and f2  is optimal for user 2 against f l ,  so that f is the 
NEP. 0 

111. GENERAL NETWORKS 

A .  Model ana‘ Problem Formulation 
We consider a network O(V, C), where V is a finite set of 

nodes and C V x V is a set of directed links. For simplicity of 
notation, we assume that at most one link exists between each 
pair of nodes (in each direction). This assumption involves 
no loss of generality, since any network can be reduced to 
this form by introducing fictitious nodes. For a link 1 E C, we 
denote by S(1) the identity of the node at the starting point of 1. 
D(1) is the node at the ending point. We shall, at times, denote 
a link 1 as (U, v), where U = S(Z), v = D(1). Considering a 
node w E V ,  we denote by In(w) (corresponding Out(w)) the 
set of node U ’ S  ingoing links (corresponding outgoing links), 
i.e., In(w) = {1)D(1) = v} (Out(,) = {ZlS(Z) = v}). 

As before, we are given a set Z = { 1,2, . . . , I} of selfish 
users, which now share the network 9. With each user z, we 
associate a unique pair of source node s( i ) ,  destination node 
t ( i ) ,  and a throughput demand, which is some ergodic process 
with an average rate of ri. (In Sections 111-C and 111-D, we 
shall specialize to the case where all users have the same 
sources and destinations.) 

A user ships its demand [from s ( i )  to t(i)] by splitting it 
through the various paths connecting the source to the desti- 
nation. This is the essence of the routing operation performed 
by users. A user is able to decide (at any time) how to route 
its demand, i.e., user i decides what fraction of ri should 
be sent through each path. We note that routing decisions 
can also be interpreted at the nodal level, i.e., a user decides 
(perhaps distributedly) what amount of the flow entering into 
each node should be sent through each outgoing link. We 
denote by f j  = f:v the expected flow of user i E Z on link 
I = (U,  w) E C. User i can fix any value for f; as long as: 

F1. For all 1 E L, f; 2 0 (nonnegativity constraint). . .  
F2. For all v E V ,  CiEOut(v) f j  = &n(v) f;+r:. where 

ri . = r’, ri(i) = -rz,  and r: = 0 for w # s ( i ) , t ( i )  
(conservation constraint). 
4 2 )  
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Tuming our attention to link 1 = (U, U) E C, let fi = fu2)  be 
the total flow on that link, i.e., f i  = CiEZfj .  As before, the 
flow configuration f' of user i is the vector of all ft (i.e., 
for all 1 E C), and the system flow configuration f is the 
vector of all user flow configurations. Feasible user and system 
flow configurations are defined as before (but considering 
constraints Fl-F2) and denoted correspondingly as F' and F. 

The G Assumptions of Section I1 are now assumed to hold 
for the general network model. In particular, cost function 
Ji of user i is the sum (over all network links) of link cost 
functions, i.e., Ji = J:. The definition of K: is as 
before. 

We face a noncooperative game played by users on a 
network, and investigate the properties of the corresponding 
NEP(s). We note that the existence of an NEP in the network 
environment is guaranteed for the same reasons as in the 
parallel links environment. The Kuhn-Tucker conditions now 
take the following form: for every i E Z, there exists a set 
of (Lagrange multipliers) such that, for every link 
( U , V )  E e: 

The investigation of NEP's in network environments proves 
to be a much harder task than in the previous environment. In 
the Appendix, we present an example of a four-node network 
with two users and type-A functions for which the NEP 
is not unique. Nonetheless, in the following we prove the 
uniqueness of the NEP under further conditions. We note that 
the properties of NEP's, derived in the previous section for 
certain classes of cost functions, may not hold in the network 
environment. In particular, in the Appendix we present an 
example of a four-node network with two users and type- 
B functions, in which the properties indicated in Lemma 1 
and Corollary 1 do not hold. These, indeed, point out the 
complexity of the network environment. 

B .  Uniqueness of the NEP under Diagonal Strict Convexity 
Uniqueness of the NEP for convex games has been estab- 

lished in [19], under certain convexity-like conditions on the 
cost functions which were termed diagonal strict convexity 
(DSC) conditions. In the present subsection, this result is 
applied to the network flow game. We first introduce the DSC 
conditions for our problem. Since these conditions may be 
hard to verify directly, we derive sufficient conditions on the 
line cost functions, which guarantee DSC and the uniqueness 
of the NEP. Some examples will be presented to illustrate the 
applicability of these results; these examples indicate that the 
derived conditions are quite useful for lightly loaded networks, 
but may fail to hold otherwise. 

Following [19], the following notation will be used. Let 
V; JZ(f) denote the gradient of Ji(f) with respect to f', i.e., 
the column vector 

* *  

d Ji 
df' 

V; Ji(f) = -(f) = 

Let p E !RI be a fixed positive vector (pi > 0, i E Z). Define 
the weighted sum 

a(f, P) = piJi(f) 7 

i E I  

and the associated pseudogradient vector 

P1 v1 J1 (f) 

PIVIJ'(~) 
S(f,P) = [ i ] 

(Note that p; represents a positive scaling of the cost function 
for user i, and that such scaling does not affect the NEP's.) 
The function a(-, p) : F + !R is called diagonally strictly 
convex (DSC) if, for every f ,  f E F, it holds that: 

(16) 

Theorem 4 [19]: Ifa(f, p) is DSC for some p > 0, then the 
NEP system flow configuration is unique. 

Note that constraints F on the flows of each user are 
independent of the others' flows, as required in [19, Th. 21. We 
also note that allowing infinite values for the cost functions 
causes no problem since, by Assumption G5, the costs are 
finite at each NEP and the uniqueness proof of [19] goes 
through without modification. 

We proceed to formulate the sufficient conditions for DSC, 
which may be verified for each link separately. For every 
link 1, let F1 denote the set of feasible flow vectors fl = 
(f; , . . . , f;) on that link for which the link costs Jj(f1) are all 
finite. Note that F1 has the simple form FI = {fl : mf 5 ff 5 
Mi ,  Jj(f1) < CO, i E I}, where mi and Mt are, respectively, 
the minimal and maximal values that f j  may take in any 
feasible flow configuration of user i. For each 0 < p E !RI, 
define the pseudo-Jacobian for link 1 as the following I x I 
matrix: 

(f - f )  ( 9 6  PI - df, PI) > 0 * 

The following terminology shall be used: a square matrix M is 
said to be positive definite (denoted M > 0) if the symmetric 
matrix (M+M')  is positive definite, namely all eigenvalues of 
the latter are strictly positive. Here, M' denotes the transpose 
of M. 

Corollury2: Assume that for some positive p E RI, the 
matrix Gl(f1,p) is positive definite for every fl E F1 and 
1 E C. Therefore, the NEP is unique. 

Proof: As shown in [19, Th. 61, a sufficient condition for 
a(f, p) to be DSC over F is that G(f, p) > 0 for every f E F, 
where G(f,p) is the (LI) x ( L I )  Jacobian matrix of g(f,p) 
with respect to f .  It may be easily seen that, up to reindexing 
of rows and columns, G(f,p) equals diag{Gl(fl,p), 1 E C}, 
and the required conclusion follows. 0 

In the conditions of the last corollary, the 
system flow constraints are manifested only through their 
projection on each of the links. While this makes them easier to 
verify, it also implies that these conditions are stronger (more 
demanding) than DSC condition (16), where the system flow 
constraints are fully taken into account. 

Remark: 
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We now present a few examples and observations to illus- 
trate the conditions of Corollary 2. For simplicity, only the 
case of two users is considered, namely Z = { 1,2}. 

Consider a link 1 E L with type-C cost functions, namely 

Proofi Assume, by contradiction, that there is a link 
i E L and a user i E Z such that f; # 3. It follows that 
there is another user j E Z such that f; # f;. Without loss 
of generality, assume that f; > -fi. We construct a directed 
network G’(V’, L’), whose set of nodes is identical to that of B 
(i.e., V’ = V) and the set of links L’ is constructed as follows: 

fii (17) Ji(f1) = - - , i = 172, 

for fi < Cl. The following facts may now be easily verified: 
(i) Let F1 = {fl : 0 5 fii 5 xi, i = 1,2}, where (x1,x2) 

are constants which satisfy x1 + x 2  < Cl. Then, for 
p = (x2,x1), Gl(f1,p) > 0 over F1. 

(ii) Let F1 = {fl : fi 2 0, f: + f; < Cl}. Then, no vector 
p > 0 exists for which Gl(f1,p) > 0 over FI. Indeed, 
for any fixed p the matrix GI (f1, p)  will not be positive 
definite if (say) f: is close enough to Cl. 

As a consequence of fact (z), the following result is evident. 
Consider a network with two users, cost functions (17) on each 
link, and flow requirements (r1,r2)  such that r1 + r2 5 Cz 
for every 1 E C. Then, the NEP is unique. 

It is evident from fact (ii) that a similar result cannot be 
deduced from Corollary 2 if r1 + r2 > CI for some link 1. 
Thus, the usefulness of Corollary 2 is limited in this case to 
lightly loaded networks. 

To further illustrate this point, consider cost functions of 
the form 

For each link 1 = (u,w) E L such that ff 2 f;, we have 
a link 1’ = (u,v) E L‘; to such a link l’, we assign a 
(flow) value 211 = fii - 1;. 
For each link 1 = (U, w) E L such that fi < f/, we have 
a link I’ = ( w , ~ )  E 6’; to such a link Z’, we assign a 
(flow) value 2 1 1  = f; - f;. 

In other words, we redirect links according to the relation 
between f j  and f;. It is easy to verify that the values xp 
constitute a nonnegative directed flow in the network. Since 
symmetrical users have the same demand (i.e., ri - rj = 0), 
this flow has no sources (the total flow into each node equals 
the total flow out of that node, i.e., it is a circulation). Thus, 
either xll G 0 or there is a cycle C of links jn G’ such that 
xp > O for all 1’ E C’. Since for the link 1, f; > fj?, we 
have that xp > 0. We conclude that a cycle C, as described 
previously, exists. 

Consider now a link I’ = (u,v) E L’ for which 21‘ > 0. 
Clearly, therefore, either ft, > fi, or fi, > fiu. ~n the case 
where f:, > fi, 2 0, we have that 

A; - A: = fc, (fL fuv) 
= Ki, (fL, f,,) > Ki, (fi,, fu,) 2 Aj, - Aj, 

(19) 

J;(fl) = fiPm(f1), 2 = 1 , 2  
where the first transition follows from the Kuhn-Tucker con- 

(18) 

where P, is a monk polynomial of degree m L 1. Let Fi be 
the positive quadrant. It may then be verified that Gi(f1) > 0 
over fl E F1 if m 5 7, but not if m 2 8. Thus, if the cost 
functions on each line of a two-user network are of the form 
(1 8) with m 5 7, then uniqueness of the NEP is guaranteed 
without any restrictions on the flow requirements of the users. 
Both this and the “lightly loaded network” condition alluded 

ditions for f;, > 0, the second is because all users have 
the same cost functions, the third is due to the assumption 
f:, > fi,, and the fourth is again due to the Kuhn-Tucker 
conditions. In the second case (i.e., fi,, > fi, 2 O ) ,  we have 
by symmetry that 

Aj, - Aj, > A: - A: (20) 
to can be interpretedas requiring that the cost functions will 
not increase “too steeply” as the load on the line increases. 

C .  Symmetrical Users 

Suppose that all users have the same demands (in particular, 
the same source and destination nodes) and use the same 
type-A cost functions, i.e., for all i,j E Z ra = ri ,  and for 
all i E Z and 1 E L Ji(fi,fl) = Jl(f;,fl). We call such 
users symmetrical. We recall that even though symmetrical 
users use the same cost functions, they still have different 
objectives. Note that, for symmetrical users, we also have 
IT;(., e )  = K:( . ,  .) for all i,j E 2. 

L e ” a 4 :  In a network with symmetrical users, the flow 
values at an NEP are such that 

for all i E Z and 1 E L. 

Note that the results of (19) and (20) are in fact identical. 
Denote AA, = A: - A$ (for all w E V). From (19) and 

(20), we conclude that for 1’ = (U, w), xp > 0 implies that 
AA, > AA,. This means that along the cycle C described pre- 
viously, we would have a monotonically increasing sequence 
of AA’s, which is a contradiction. 

We conclude that, for all i,j E Z and all 1 E L, we have 
0 

Theorem 5: A network with symmetrical users has a unique 
NEP. 

Proofi Suppose by contradiction that there are two 
NEP’s, and denote by f;, fl the flow values of one NEP 
and by fli, f~ those of the other NEP. Also, A, and A, are, 
respectively, the Lagrange multipliers at a node U E V in the 
two NEP’s. Since the two NEI”%afe different, there are some 
i E Z and E L such that ff; # ff. Without loss of generality, 
assume thatff; > f:. We construct a directed network G’ in 

fi; = f;.  his means that fii = 9. 
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the same way as in the proof of Lemma 4; only now we 
consider the relation between f: and fia. In other words, the 
set of links L’ is constructed as follows: 

For each link 1 = (U, w )  E C such that fi 2 fi , we have 
a link 1’ = ( z L , ~ )  E L’; to such a link l’, we assign a 
(flow) value xi! = f i;  - fit. 
For each link 1 = (U, w )  E L such that f :  < fii, we have 
a link 1’ = (w,u) E C‘; to such a link l’, we assign a 
(flow) value xi’ = f i  - f;. 

Again, it is easy to verify that the values xi) constitute a 
nonnegative directed flow in the network. Since user i has 
the same demand ri at both, NEP’s, this flow has no sources. 
This, together with f f  > fi, mean that there is a cycle C of 
links in 0‘ such that xi‘ > 0 for all 1‘ E L‘. 

From the proof of Lemma 4, we have that,for all j E Z and 
1 E L, f !  = 4 and fi’ = 4. Thus, f/ > fi’ implies fi > fi. 

Consider now any link 1’ = (u ,v)  E L’ for which xi! > 0. 
We have that either fAu > fiv or ftu > f;,. In the first case 
(i.e., fLu > f;,, 2 0), we have that: 

- i  

..a . 

A .  

A; - A; = Kiv(fiv, fuu)  > Kiu(jjv, fuv) 2 1; - A; 
where the first transition is due to the Kuhn-Tucker conditions 
(for the first NEP and for fAV > 0), the second is due to the 
the assumption f: > f: (which implies fi > ti), and the third 
is again due to the Kuhn-Tucker, conditions (for the second 
NEP). In the second case (i.e.. f A u  > ftu 2 0), we have by 
symmetry that: 

Denote AA, = A: - i: (for all w E V) .  The contradiction 
0 

Corollary 3: If all users have the same demand (ri = r j )  

and the cost functions are of type B, then there is a unique 
NEP. The flow values at the NEP are such that f; 4 for 
all i E Z and 1 E L. 

Proof: Follows directly from the last lemma and theo- 
rem, since the cost functions of type B are identical for all 
users. 0 

follows as in the proof of Lemma 4. 

D. Uniqueness of NEP’s with All-Positive Flows 

In this subsection, we prove a result which implies, in 
particular, that at most one NEP exists with the property that all 
users have strictly positive flows on each link of the network. 
Note that this all-positive assumption makes sense only when 
all users have the same source and destination nodes, which 
will be assumed in this subsection. A similar result has been 
established in [ 161, for the special case of the two-node parallel 
lines network. 

be 
two NEP’s such that there exists a set of links L1 c L 
such that { f ;  > 0 and fiz > 0, i E Z} for 1 E L1, and 
{ f i ;  = jii = 0, i E xj for 1 9 ~ 1 .  Then, f = 2. 

The theorem defines certain classes of flow configurations, 
each characterized by a set of links such that every user ships 
flow only through each of these links. The theorem states that, 

Theorem 6: Assume type-B cost functions. Let f and 

within each class, at most one NEP may exist. Obviously, 
to deduce global uniqueness of the NEP, one needs to verify 
independently that an NEP may exist within exactly one of 
these classes. This latter fact is not true in general, e.g., see 
the end of Section II-C for an example in which the unique 
NEP is not within any such class (one user uses a link not 
used by the other). 

Proofi We start by rewriting the Kuhn-Tucker conditions 
(14) and (15) for f and f over the set of links C1. Note 
that, since all flows are strictly positive on these links, then 
equality condition (14) holds. Recall also that for type-B cost 
functions, i.e.,J; = ft Z(fi), we have K; = f; Tf + Z. Thus, 
there exist constants {A:} and {A;) such that, for every link 
1 = (u ,v)  E L1 and i E Z, 

f:JL(fuv) + ~uu(fuv) = k - A: 7 

f;,~;,(fuv) + L ( f u ? J )  = A: - A: . 
Summing each of these equations over i, we get: 

A A A  

A 
Su,(fi) = fu?JT;v(tuv) + I * TutJ(LJ) = L - L (21) 

S u v ( f i )  = fuvT:,(fuv) + 1. T,v(fuw) = A, - A, (22) 
- A  A where A, = C,i: and A, = C,A:. From the last two 

equations, combined with the conservation constraints F2, it 
will now be deduced that fi = f i  for every 1 E L1. (Note 
that these equations are very similar to the Kuhn-Tucker 
conditions for a single-user optimization problem of link flows, 
with respect to a modified (convex) link cost function with 
derivatives Si(fi)). Thus, the uniqueness of their solution 
is actually a consequence of standard convex programming 
results. However, a direct pfoof is provided.) Subtracting (22) 
from (21), multiplyingby (fi-fi) ,  summing over (U,  w) E L1, 
and noting that fi = fi = 0 for 1 6 C1, we get 

c ( f u v  - fuv)(Suv(fuv) - SV,v(fuv)) 

(U ,V)EL 

= (fuv - fuv)[(L - A,) - (L - A 4  . (23) 
( .n ,V)€L 

By the properties of type-B cost functions, it follows that each 
function Suv(.) is strictly increasing. This implies that each 
term in the sum on the left-hand side of (23) is nonnegative, 
and equals zero only if f i  = fi for every 1. However, the 
right-hand side of this equation sums up to 0. Indeed, chang- 
ing summation variables and applying the flow conservation 
constraints to f and f separately yields 

( W J ) € L  

r 1 

= o .  
It has thus been established that fi = f i  for every 1 E L. 
Proceeding exactly as in the proof of Theorem 1 [starting from 
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(1 l)]: it may now be inferred that f! = f; for every i and 1, 
i.e., f = f. 0 

IV. CONCLUSION 

This paper considered the fundamental problem of routing 
in an environment composed of several selfish users. The 
problem was posed as a noncooperative game, for which the 
Nash equilibrium was investigated. 

The main thrust of the analysis was to establish the unique- 
ness of the NEP under conditions that comply with a rea- 
sonable petwork environment, and in particular encompass 
performance criteria commonly employed for routing. The 
investigation of NEP’s in network routing problems seems 
to be complicated by the fact that each user is faced with 
a multivariable decision. As was shown, standard theory on 
convex games fails to yield satisfactory results even for simple 
networks. 

Problem-specific analysis yielded a complete uniqueness 
result for the parallel links case. Moreover, we presented 
monotonicity properties of the Nash flows that characterize 
the NEP in an intuitively appealing way. General network 
topologies prove to be considerably harder to tackle. This 
is indicated by the fact that the type-A assumptions are not 
sufficient in order to guarantee uniqueness of the NEP and that 
“intuitive” properties that hold in the parallel links case fail to 
hold in general. Nonetheless, we presented several uniqueness 
results for various network conditions. 

This paper presented initial steps toward the understanding 
of multiuser routing games. Several questions for further 
research stem from the present work. At this point it is not 
clear if and how the strong uniqueness result obtained for 
parallel links can be extended to a general network. The 
counterexample presented in this paper shows that such an 
extension is not possible for type-A functions, however more 
restricted classes (e.g., type-B functions) might guarantee the 
uniqueness of the NEP. Another major issue is the stability 
of the NEP. A preliminary result in this vein was presented. 
The uniqueness results obtained in this paper encourage further 
investigation on the stability issue. 

Several other open questions of practical value deserve 
attention. For example, in many networks users are restricted 
to route their flow along a single path (with strict rules of 
changing them). Under such circumstances, an NEP may not 
exist at all and complicated oscillatory behavior is likely to 
arise. Another example is that of the delay encountered by 
measuring and adjusting network flows, which will affect the 
convergence rate and might affect convergence altogether. 

v. APPENDIX 

Nonunique NEP Example for General Topologies 
Consider the network of Figs. 1 and 2, having four nodes 

and two users with demands T’ = r2 = 40 between source 
node 1 and destination node 4. Figs. 1 and 2 describe the flow 
values at two different NEP’s; each pair of numbers adjacent 
to a link are the flow values of the two users on that link at the 
corresponding NEP (the left value corresponds to user 1 and 

5 19 

10,12 

Fig. 1. First NEP. 

1 8 , 5  

Fig. 2. Second NEP. 

the right value to user 2). Let the values of the Ki functions 
be as follows: 

For the first user and the first NEP: 
K&(22,40) = 102; Ki3(10, 22) = 109; Ki4(8,18) = 201; 

Ki4(24, 38) = 92. 
For the first user and the second NEP: 
K&(20,43) = 100; K113(18, 23) = 110; 
Ki3(4, 17) = 10; Ki4(16,26) = 100; 
Ki4(22,40) = 90. 
For the second user and the first NEP: 
K?z(18,40) = 20; K,2,(12,22) = 30; K124(10, 18) = 120; 
Ki3(2, 16) = 10; Kz4(16, 24) = 100; 
Ki4(14,38) = 90. 
For the second user and the second NEP: 
K&(23,43) = 30; K123(5, 23) = 50; Kf4(12, 14) = 150; 
Ki3(€3, 17) = 20; K;4(10, 26) = 120; 
Ki4(l8,4O) = 100. 

K;3(14,16) = 7; Ki4(8,24) = 99; 

14) = 200; 
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We now present a scheme for constructing proper K;" 
functions to which these values correspond. We denote by 
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and 

(F)". w&$ 1 
Kf(f1 ,fr) bZ = tR"" . K;(fiz, fl) . 

(fi"" - (h"" 
- t  

For a large enough n, we have (k)" > K;tEr",Jr). thus, 

Suppose now that fl' 5 f l z .  Then, we must have fl > f l .  

fr Kf t f~  ', fr ) ' 
hf > 0. 

We repeat these only that now we choose 

Kf(f,", fi) = 4 . (f,")l/" + bl. . ( f l ) "  

and we get a symmetrical solution for ai and bj .  In each of the 
two cases, we have a function K: that is continuous and strictly 
increasing in each of its two arguments. The corresponding 
cost function is: 

for the first case and 

for the second case. In either case, we have a proper type-A 
cost function. 
Nonmonotonous NEP Example for General Topologies 

Consider the network of Fig. 3, having four nodes and two 
users with type-B cost functions and with demands r1 = 7, 
T~ = 4 between source node 1, and destination node 4. Each 
pair of numbers adjacent to a link are the flow values of the 
two users on that link at the NEP (the left value corresponds 
to user 1 and the right value to user 2) .  Let the values of the 
Z and Ti' functions be as follows: 

T&(7) = 5, Tab(7) = 4, 
TLC(4) = 2, Ta,(4) = 20, 
T,',(3) = 1, Tbc(3)  = 1, 
T&(4) = 2 ,  T*d(4) = 21, 
Tf,(7) = 5 ,  Tbd(7) = 5 .  

Fig. 3. Nonmonotonous NEP. 

It can be verified that, for every link, there are positive 
values Cl and dl such that Tl(fl) = & + dl satisfies the 
NEP values of E and E'. Clearly, such functions comply with 
the requirements of type-B cost functions. 
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