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EXTREMAL LARGE DEVIATIONS IN CONTROLLED I.I.D. 
PROCESSES WITH APPLICATIONS TO HYPOTHESIS 
TESTING 

NAHUM SHIMKIN, * University of Minnesota 

Abstract 

We consider a controlled i.i.d. process, where several i.i.d. sources are sampled 
sequentially. At each time instant, a controller determines from which source to 
obtain the next sample. Any causal sampling policy, possibly history-dependent, may 
be employed. The purpose is to characterize the extremal large deviations of the 
sample mean, namely to obtain asymptotic rate bounds (similar to and extending 
Cram&r's theorem) which hold uniformly over all sampling policies. Lower and 
upper bounds are obtained, and it is shown that in many (but not all) cases stationary 
sampling policies are sufficient to obtain the extremal large deviations rates. These 
results are applied to a hypothesis testing problem, where data samples may be 
sequentially chosen from several i.i.d. sources (representing different types of 
experiments). The analysis provides asymptotic estimates for the error probabilities, 
corresponding both to optimal and to worst-case sampling policies. 
LARGE DEVIATIONS OF THE SAMPLE MEAN; EXTREMAL RATES; STATIONARY POLICIES; 

SEQUENTIAL DESIGN 

AMS 1991 SUBJECT CLASSIFICATION: PRIMARY 60FI0 

SECONDARY 52L05, 52M07, 90C40 

1. Introduction 

A basic result in large deviations (LD) theory is Cramer's theorem, which 

provides the exponential decay rates of the probabilities P{X,, F}, where F is a 
fixed set and X, is the sample mean of an i.i.d. (independent, identically distributed) 
sequence. For an exposition of this and other aspects of the theory and its 

application, see for example Deuschel and Stroock [7], Bucklew [2], Dembo and 
Zeitouni [6], and Shwartz and Weiss [11]. This paper concerns a generalization of 
the Cram6r-type theory to controlled i.i.d. processes. The main goal is to 
characterize the extremal decay rates, namely the minimal and maximal rates 
achievable by any sampling policy. 

The model consists of several different sources of i.i.d. sequences, which are being 
sequentially sampled by a controller. At each time instant n = 1, 2, - - - the 
controller may choose the source to be sampled next (hence choose the probability 
distribution of the next sample X,). While the value of the next sample is not known 
in advance, the controller does recall the values of past samples {X1, -- - , X,_) 
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876 NAHUM SHIMKIN 

and may use this information to direct his choice. A sampling policy is any causal 

sampling rule for the controller. 
The process described above may be viewed as a degenerate (one-state) version of 

a controlled Markov process (e.g. [10], [1]). We shall use here some terminology 
from this field. In particular, a stationary policy is a sampling policy in which choices 
do not depend on the time or on the process history. The use of randomized 
decisions is allowed, however, so that stationary policies can be either randomized 
or non-randomized ones. 

The exponential decay rate of P{X,, e F} obviously depends on the sampling 
policy. The problem addressed is to bound the extremal rates, i.e. the minimal and 
maximal rates which may be attained by any sampling policy, and furthermore find 

sampling policies which attain the extremal rates. 
It is important to note the following facts concerning stationary and non- 

stationary policies. Under a stationary sampling policy, the induced sequence {X, } 
is an i.i.d. sequence, so the standard Cramer-type theory applies. However, a large 
deviations principle need not hold for a general (non-stationary, history dependent) 
sampling policy. Such policies are an important part of our problem; indeed, for 
fixed n and F, the sampling policy which minimizes or maximizes P{X, E F} (and 
which may be computed by dynamic programming) is generally history-dependent 
(i.e. the optimal decision at the second stage depends on the value of X1, and so 
forth). Nonetheless, it will be shown that stationary policies do achieve the extremal 
decay rates in many (but not all) cases of interest. 

The main results may be summarized as follows, starting with the upper bounds 
on P{•X, E F}. Here we are interested in the smallest decay rate achievable by any 
sampling policy. A tight upper bound is established, which is exactly the same as the 
one supplied by Cramer's theorem over the stationary policies. Thus, the smallest 
decay rate may always be attained by stationary policies. Deterministic sampling 
schemes which may replace randomized stationary policies in achieving the bound 
are also considered. As we turn to the lower bound (corresponding to maximal rates 
of decay), the situation becomes somewhat more involved. For the case of a convex 
set F the results are similar to those just described, namely a tight lower bound is 
established which may be attained by a stationary policy. However, if F is 
non-convex, non-stationary policies may perform significantly better than any 
stationary one. For this general case a lower bound is provided which, although it 
recovers the Cramer lower bound for the uncontrolled case, may be non-tight in 
general. 

The problem considered in this paper corresponds to the simplest large deviations 

problem, namely large deviations of the sample mean for real (although vector- 
valued) i.i.d. random variables. Consideration of vector valued (rather than scalar) 
random variables serves to bring out the role of convexity in the proof of the lower 
bound. Further generalizations have been avoided here in the interest of 
emphasizing the main ideas involved in the controlled problem. By the same token, 
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finite moment generating functions are assumed throughout. This assumption may 
be weakened, using similar methods to those employed in the uncontrolled case (cf. 
[6]). 

As an application of these results, we shall consider a problem of (Bayesian) 
hypothesis testing, where the data is sequentially sampled from several available 
i.i.d. sources. This conforms to the situation where several types of experiments may 
be performed sequentially in order to test a common property. For the classical case 
of an i.i.d. data sequence, a well-known result of Chernoff provides the exponential 
rate at which the optimal error probability decays as the sample size increases. 
Bounds of similar type will be developed here for the controlled problem, in the 

two-hypotheses case. Decay rates are provided for the minimal and maximal (worst 
case) error probabilities over all sampling policies, and are shown to be achieved by 
stationary sampling policy. The multiple-hypothesis case is briefly considered, and it 
is argued that only the results for the maximal error probabilities (but not for the 
minimal ones) can be extended. 

Regarding notation, Rd is the d-dimensional Euclidean space, 
II" II and (-, - 

denote the corresponding norm and inner product. I' and F are the interior and 
closure of the set F c d, which is assumed to be Borel measurable throughout. 
1{A} denotes the indicator function of an event A. 

2. The controlled model 
Let {P,, u e 011} be a finite collection of probability distributions on Rd, d > 1 

indexed by a finite set of actions u e V. At each time instant n = 1, 2, - - the 
controller chooses an action un, 0e , and consequently a sample X, is obtained 
according to the distribution 

P,,n. 
Given u,, the random variable X, is independent 

of prior actions and samples. Let ' = n-', Xk denote the sample mean. 
A sampling policy is a causal rule for choosing actions, which may depend on the 

entire observed history of the process and may include randomized decisions. More 

formally, a policy .r is a sequence of maps 7r,:n -* A(V1), 
n- 

1, where Y, is the 
set of possible histories h, = (ul, X1, - - - , 

u,,_, 
X,,-), and A(11) is the set of 

probability vectors over 01. The action un is chosen according to the probability 
vector 7r,(h,) over V11. The maps r,, are assumed measurable so that the above 

description induces a well-defined stochastic process, i.e. a probability measure P' is 
induced on the canonical sample space X. endowed with the product u-field. Let H 
denote the set of all such sampling policies, and let E" denote the expectation 
operator corresponding to P" 

A sampling policy is said to be stationary if t,, q for every n _1, where q is a 
fixed probability vector. We shall use the notation q both for this probability vector 
and for the stationary policy it induces. Each q =(q,)e A(61) induces also a 
probability distribution over 1d, according to 

P,( 
)=- qPu( 

). 
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P, is just the probability distribution of the sample X, if the corresponding action u, 
is chosen randomly according to q. Let E, and Eq denote the expectations 
corresponding to P, and P,. With some abuse of notation, X, is also used to denote 
a canonical random variable with respect to the distribution P,. More precisely, 
P,{F} and Pq{Xl E F} will be used interchangeably, and Eq(f(Xi)) f Sf(x)P,(dx). 
The logarithmic moment generating function (m.g.f.) associated with P, is 

Aq(A) = log Eq(exp ((A, X, ))), A E Rd, 

and its Legendre transform is defined by 

(2.1) 
Aq(x) 

= sup {(A, x) - Aq(A)}, x E d. AERd 

The logarithmic m.g.f. and Legendre transform associated with P, are defined 

similarly and denoted by A,(A) and A*(x). 
The main technical assumption, assumed to hold throughout this paper, is the 

following. 

Assumption A. A, is finite for every u e 0, i.e. A,(A) < oo for all A. 

This is easily seen to imply that Aq is finite for every q e A(U). Note however that 
AZ and A* may assume infinite values. 

3. Preliminaries 

This section presents the basic large-deviations results for i.i.d. sequences, in the 
form relevant to this paper, as well as some properties of the associated rate 
functions. 

Consider a fixed probability vector q E A(V), which corresponds to a stationary 
sampling policy ar q. The sampled sequence {Xk} induced by this policy is clearly 
i.i.d., with marginal distribution P, = Eq,P,. Recall that A* is the Legendre 
transform of the logarithmic m.g.f. associated with Pq, and that Assumption A is in 
effect. Applying the multidimensional version of Cram6r's theorem yields the 

following LD bounds. 

Theorem 3.1. For any set F c d, the following upper and lower bounds hold: 

lim sup - log Pq 
{X, 

E aF} : - inf 

A*q(x), 
n-,- n xEr 

lim inf-1 log Pq 
l{X, 

F} = 
- inf A (x). n--,• n xere 

In particular, if the two bounds coincide then an exact decay rate is obtained: 

lim 1 log PF {X, e A} = -inf AZ(x). n--.= n r 
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Some useful properties of the functions A and A* are next summarized. The 
following are well known (e.g. [6], [7]). 

Lemma 3.1. For every q e A(1U), 
(i) Aq( -) is non-negative and convex. 
(ii) A( -) is non-negative, convex and lower semi-continuous. 
(iii) Assume d = 1 (scalar case). Then 

Aq(x)= supAo={Ax 
- Aq(A)} for all x _ 

Eq(X1), and 
Aq(x) 

is non-decreasing in that range. 

The following properties, where q is considered a variable, will also be required. 

Lemma 3.2 

(i) For every A e 1Rd, Aq(A) is concave in q e A(0I). 
(ii) Aq(x) is jointly convex in (x, q) Rd x A(0d). 

Proof. Recall that Aq(x) = log Eq(exp ((A, X,))), where the expectation opera- 
tor Eq is linear in q E A(91t), i.e. Eq = Ej jEqj if q = E 

atjqj. 
Since log( ) is a 

concave function then (i) follows by Jensen's inequality. It now follows that the 

function fq(x, q):= [(A, x) - Aq(A)] is jointly convex in (x, q) for each fixed A, so 
that 

Aq(x) 
is a pointwise supremum of a convex function, hence convex. 

4. Extremal large deviations-upper bound 

We return now to the controlled i.i.d. model of Section 2, with the general set H 
of sampling policies. In this section we establish the upper bound, which 
corresponds to the minimal exponential decay rate of PW{X, e F} over all policies in 

H. 
Let F be a measurable set in lRd. Note first that for a stationary policy q e A(1) 

the upper bound of Theorem 3.1 applies. This immediately implies the following 
uniform bound over all stationary policies: 

(4.1) lim sup- log Pq 
{X•, 

e F} - inf inf A*(x). 
n---oon qenA(VU) xeF 

It will next be established that the same bound holds for all sampling policies, 
stationary or not. 

Theorem 4.1. For every set F c Rd 

1 
lim sup sup - log PW{fX), E F)} - inf inf 

Aq(x). n-oo JrEfn n qEA(0t) xEr 

Before proving this theorem, we state and prove a slightly stronger version for the 
scalar case with F = [a, o). This result, which will be used in the proof of Theorem 
4.1, is also of some independent interest, and admits a simple direct proof which 
already contains the main ideas relevant to the controlled case. 
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Proposition 4.1. Assume d = 1 (scalar case), and let a 
_ max, E,(X ). Then for 

every n = 1 and r E I, 

1 
log P"{Xn > a} 5- inf A (a). n qEA(CU) 

Remark. Only a _2max, E,(X,) need be considered, since otherwise the event 

{X,',=a} 
becomes 'non-rare' under appropriate policies. Indeed, the repeated 

choice of any action u for which E,(X,) > a obtains P{X, _ a} -1. 

Proof. Fix a in the required range. For every Jr e I, n > 1 and A 0 Chebycheff's 
inequality implies 

(4.2) P"`{X, 
? a} < E(exp (An(Xn - a))) = exp (-Ana)E '(exp (AS,)), 

where S, = nX, = En=, X,. Now, a sequential argument (in the spirit of dynamic 
programming) may be used to establish 

(4.3) E'(exp (AS,)) [5 max E,(exp (AX,))]. 

Indeed, this follows by iterating the inequality: 

E"(exp (AS,)) = E"{E "(exp (AS,) I h,, u,)} 

(4.4) 
= E'{exp (AlS,_,)E"(exp (AX,) I u,)} 
E=E'(exp (AS,_,)) max Eq(exp (AX,)). 

qEA(Ct) 

(Note that maxqEq(exp (AX1)) may be simplified to maxE,(exp(AX1)), since 

Eq = ,, q,E,. The former expression will however be useful for the minimax 
equality below.) Since (4.2) and (4.3) hold for every A 0, then 

1log W{P"{ a a) inf Aa +log max Eq(exp(AX)) 
(4.5) n A--oq iA(fa) 

= sup min {Aa - A,(A)}. 
A?:() qEA() 

We now use a minimax equality in the last expression. From Lemma 3.1(i) and 
Lemma 3.2(i) it follows that the function f(q, A):= {Aa - A,(A)} is convex in q and 
concave in A. The set A(Q0) is obviously convex and compact, while [0, 00) is closed 
convex. Thus, by a standard minimax theorem ([9], Corollary 37.3.2), 

(4.6) sup min {Aa - Aq(A)} = inf sup {Aa - Aq(A)} = inf 
Aq(a), A>O qEAE(•) qEAQ(') A-O qE•A(0U) 

where the last equality follows by Lemma 3.1(iii). The required upper bound follows 
by substituting (4.6) in (4.5). 
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Proof of Theorem 4.1. We shall use here a result from de Acosta [5], which is a 
somewhat strengthened version of the Gairtner-Ellis upper bound. It is readily 
verified by a dynamic programming argument, similarly to (4.3), that 

1 
(4.7) -logsup E 

exp((S,,x))-) 
sup Aq(x), ni_1. n JrEH qEA(qt) 

By Theorem 2.1(i) in [5], this implies that for every compact F, 

(4.8) lim sup - log sup P{X'E, E F} 
- 

- inf I(x), n--oo n nEn xEr 

where 

(4.9) I(x)= sup (A,dx)- sup Aq(x)}. 

Using the minimax theorem it follows as in (4.6) that 

(4.10) I(x)= sup inf {(A,x)-Aq(x)}= inf Aq(x), 
AER'" qEA(') qE A(6&) 

which establishes the required upper bound for compact sets. The extension to any 
closed set follows readily from the following uniform exponential tightness property 
(cf. [5], Theorem 2.1(ii)): 

(4.11) lim lim sup sup - log P"{ I•1X 
> p} = 

-oo p--+o n--+ Jrn n 
The latter may be deduced from Proposition 4.1. Indeed, for every .r and n, 

(4.12) P"I{X, > 

p-} 
Pn{> 1 

,jX1jl 

> 
p}. 

Now { jXkll} may be considered a (scalar-valued) controlled i.i.d. sequence. It is 
readily verified that Assumption A is satisfied, and the upper bound of Proposition 
4.1 applies. It is also easily verified that the corresponding rate function A*(p)--- oo 
as p -- oo ([7], Lemma 2.2.20), and (4.11) follows. 

Remarks 

1. The results just established provide a bound on the decay rate of P'"{X,, F} 
for any fixed policy _r. Moreover, noting that the supremum over H is taken 
before the limit in n, these results provide bounds on the maximized 
probabilities max,. PW{X, E F}, where the maximizing policy is generally 
different for each time horizon n. 

2. Note that AZ(x) is convex in (q, x) (Lemma 3.2), which may facilitate the 
computation of the bound. 
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3. The upper bound is tight, up to certain continuity gaps which are inherent in 
most large deviations results. Indeed, assume that the supremum in the upper 
bound is achieved at some qo E A(jUt), and that F is a lower continuity set of 

Aq0(- ) (i.e. the infima over 1" and f are equal). Then Theorem 3.1 implies 
that the upper bound is attained by the stationary policy qo. 

4. If the infimum over A(91) is not attained, then only E-optimal stationary 
policies may exist. Noting however that Aq(x) is a convex function, hence 
smooth (except for possible jumps to infinity), the latter case seems the 
exception rather than the rule. 

5. An interesting observation is that the stationary policy qo which attains the 
upper bound may be strictly randomized. This implies, in particular, that a 
(randomized) mixing of two or more actions can perform better (in the sense 
of approaching the upper bound) than any single one. The following example 
illustrates this fact. Let the action set Ol = (1, 2} correspond to distributions 
P, = N(0, 1) and P2 = N(-40, 81) (the normal distribution with mean m = -40 
and variance a2 = 81). Let us examine the exponential decay rate of P{X, 

= 4}. The rate function for a normal random variable is A*(x) = (x - m)2/2a2. If 
u = 1 is chosen at all times (corresponding to the stationary strategy q = 

(1, 0)), the resulting rate from Cramer's theorem is Aj*(4) = 42/2= 8, while 
always choosing u = 2 results in A* (4) = 442/162 = 11-95. However, some 
calculation shows that the upper bound in Proposition 4.1 is minq A*(4)= 3-5, 
with the minimum uniquely achieved at qo= (0 , ). Thus, the policy of 
choosing 

Pl 
with probability 39/40 and P2 with probability 1/40 at each step 

results in a rate which is significantly lower than that obtained by either P, or 
P2 alone. 

As the last example demonstrates, randomized decisions may be necessary in 
order to attain the upper bound via a stationary policy. Since randomizations may 
sometimes be undesirable in an actual decision rule, it is of interest to find 
non-randomized policies which also achieve the bound. We conclude this section by 
briefly considering such sampling schemes. 

Given a probability vector q e A(0U), let .r(q) denote a policy which pre-specifies 
deterministically the action sequence {u,}, so that the relative frequencies of these 
actions converge to q. For example, for q = (?, 3) one can choose u = 1 every fourth 
time. Observe first that the sample means {XJ( obey a large-deviations principle 
under this policy. Indeed, the following limit exists: 

Aq(A) limj- logE (q) exp 
((, 

Xk 
n--,• n k = 1 

(4.13) = lim - 1 logEU,(exp ((A, X,))) 
n-- 

n k = 1 
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and it follows by the Girtner-Ellis theorem ([8], Theorem 11.2) that a so-called 
large-deviations principle is satisfied with rate function 

A*q (the Legendre transform 
of Aq), which means that the bounds in Theorem 3.1 are satisfied with A* replacing 

Aq. The following lemma compares the two rate functions A* (corresponding to 
randomized stationary policies) and A^f (corresponding to deterministic sampling 
schemes). 

Lemma 4.1. For every x E Rd, 
(i) A *(x) 5 A*(x) for every q e A(l/I). 

(ii) infq AF(x) = infq A*'(x). 
(iii) Any qo which minimizes A*(x) also minimizes 

A/f(x). 
Proof. (i) By concavity of 

Aq(A) in q we have 
A,(A)__ 

•, q,A,(A)= A 
q(A), which implies that the opposite inequality holds for the respective Legendre 

transforms. 
(ii) By the minimax equality (4.10) and its counterpart for A^*, and by Equation 

(4.13) and the concavity of Aq(A), 

inf A*(x) = sup min { (A, x) - Aq()}= sup min { (A, x) - A,(A)} q A q Au 

(4.14) =sup min { (A, x) - 
•q(A)} 

= inf sup {(A, x) - Aq(A)} A q q A 

= 
infi•A 

(x). q 

(iii) Assume that qo minimizes 
Aft(x). 

Then 

Aq,,(x) 
= sup { (A, x) - 

Aq,,(A)} 

(4.15) sup min { (A, ) - Aq(A)} = inf Aq(x) = A,(x), A q q 

where the next-to-last equality is taken from the proof of (ii). Combined with part 
(i) of this lemma, this implies that qo minimizes 

A^q(x). 
Lemma 4.1 has the following consequences. By part (i), the decay rate 

associated with stationary policies dominates from below the rate associated with 
deterministic sampling policies. Nonetheless, parts (ii) and (iii) imply that the 
minimal rates achievable by either class of policies are equal, namely infq inf Aq = 
infq inf1 

Aq; moreover, if a stationary policy qo achieves the minimal rate then so 
does 3r(qo). 

5. Extremal large deviations-lower bounds 

Our purpose in this section is to provide asymptotic lower bounds for P{X,(, e F}, 
which delimit the maximal rate of decay achievable by any sampling policy. The 
lower-bound part of Theorem 3.1 implies that for any stationary policy q the 
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following holds: 

lim inf log PQ {X, F} - sup inf A (x). 
n---.= n q EA 

xV'),x 
E q 

A reasonable conjecture, motivated by the results of the previous section, would be 
that this lower bound is valid for any policy .r. The next sample shows that this is 
false. 

Example 5.1. Let 01 = (1, 2} with P, and P2 the following Bernoulli distributions: 

P, = 0-96_, + 
0"16,, 

P2 = 
0"16_, 

+ 
0"961, 

where ,a is the probability measure concentrated at a. Note that the expected value 
equals 0 in both cases. Suppose we wish to minimize the probabilities P"{ IX,I > 2}, 
which correspond to the set F = (-o, -2) U (2, oo). Restrict attention first to 

stationary policies. Since P, = qiP + q2P2, then for every q e A(I) either 
Pq({-9}) 0-05 or Pq,({9}) 

- 
0-05, implying that P({IXXj > 2} (0-05).o Consider 

now the following non-stationary 'steering' policy .r': let u, = 1 if X, < 0, and u, = 2 
if X1, > 0. Simple algebraic calculation shows that now P"'(IX{ ,, > 2} = 0 for every 
n 8. 

Although false in general, the above-mentioned conjecture does hold for convex 
sets. 

Theorem 5.1. Let F be a convex set in Rd . Then 

1 
lim inf inf - log P"{X,, e F} 

= 

- max inf 

Aq(x) 
n-boo Ern n qEA(W) xEUo 

= -max inf A*(x). 

Proof. We first establish the last equality. Since 
Aq(x) 

is jointly convex in (q, x) 
(Lemma 3.2) and V0 is a convex set, it follows that info) A* is a convex function of q. 
Hence it achieves its maximal value at one of the vertices of (the convex set) A(0U), 
which correspond to the action set 011. 

To prove the bound, let {y, e 0), u e 011} be an arbitrary set of points in the 
interior of F. We proceed to establish that 

(5.1) lim inf inf - log 
P"{X,, 

F} E - max A*(y,). 
n--oo JEn n UEV 

Since the points {y,} are arbitrary, this clearly implies the bound of the theorem. 
The inequality (5.1) will first be established under the following assumption, to be 
removed later. 

Assumption B. For every u e 01 there exists 
,, 

e Rd such that y, = VA,(A,). 



Extremal large deviations 885 

Here VA, denotes the gradient of A,. It follows that A, is a maximizer in the 
definition of A*(yu), namely 

(5.2) At(yu) = (A, Y y ) - A,(A,). 

Given {A,•} as specified in Assumption B, define for each u E O a probability 
measure Pu via the exponential change of measure: 

(5.3) 

"P(dx)A= 

exp((Au, x)) 
P,(dx) = exp 

{(A(, 
x) - A,(A,))}P(dx). 

By (5.2), 

(5.4) Pu(dx) = exp {(Au, x - y,) + A*(yu)}P,(dx). 

Also, the definition of A (and the dominated convergence theorem) imply that 

(5.5) 
F. 

(X,) a xP u(dx) = VAu.(A.) = 
y.. 

For any policy r T H, let P' denote the measure which is defined similarly to P', 
except that the modified measures {P ,} replace {P, } as the conditional marginal 
distributions of the samples. Let E' denote the corresponding expectation. Then for 
any n - 1 and any random variable Z, = f(X, ... , X), 

E'J(Z,) = 'E Z,( fI exp { - Ak(y,) - (A 4U, Xk - 
y &k 

(5.6)k= 

> exp -n max 
A,(y,) 

E 
Z,, exp{ - 

(Ak, 
Xk -yu)). 

u k=l1 

In particular, for Z, = 
1{X' 

e F} this yields 

1 1 
(5.7) - log 

P"{X,, 
F} - max A*(yu) + - log E'(V,), n u n 

where 

(5.8) Vn, 
= 

1{fnEF}exp (- (Ak, Xk - yUk 

Thus, to prove (5.1) it remains to show that 

1 ' 
(5.9) lim inf inf log E"(V,) 

- 
0. 

To this end, define the random variables 

in 

(5.10) Wk =(Ak, Xk - yk, 
W = 

1 Wk. 
n k=l 
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Note that for any 6 > 0, 

(5.11) V, = 1{X,, a F} exp (-nW,,) i{X,, E F, IWI < 6} exp (-6n), 

so that 

(5.12) E 
(V,,) -exp (-6n)({X, 

T F, IF,I < 6}. 

We proceed to show that the last probability converges to 1 uniformly over .r e H. 
(Convergence may actually be deduced from the weak law of large numbers for 
martingales. A direct proof will be provided here to establish uniform convergence.) 
Let Jwk, k 1, denote the o-algebra generated by the random variables 

({u, X, * , Uk, Xk}. By (5.5) and (5.10) it follows that 

-E(Wk 
I jk-1)= 0, which 

in turn implies that e"(Wk W) = 0 for k f I. Furthermore, 

(5.13) E'(W2) 
- 

max IliA, I2 u(JJX, 
- 

yu112) A C2 < oo 

(Finiteness of the moment generating function for P, implies the same for 
P,, 

so that 
the second moments on the right-hand side are indeed finite.) It can now be 
concluded that 

1 C2 
(5.14) E(Wn) 

= 
n2 k = (W2) k-n n 

k=l n 

and by Chebycheff's inequality 

1 C2 
(5.15) p"{I1< 6}< 1-_6-2r(Wi2)? 

1 _- 

Consider next the part of (5.12) which involves X,. Recall that y, is interior to F, 
so there exists a 6' > 0 such that, for every u, the ball B(y,, 6') of radius 6' around 

y, is contained in F. Since F is convex by assumption, it follows that B(yq, 6')c F 
for any convex combination yq = q,y, of {y,). Thus, 

t1 n<C 1(C')2 

(5.16) 
P{XA'k F}-Er 

-i> 
P 

1E (Xk- 

yk•) 
' 1 

1C2 
nk=l n ' 

where the last inequality follows similarly to (5.15), with C' = max, E IIX, - y,112. 
Now (5.15) and (5.16) together imply that 

(5.17) lim inf inf "{P , E , r F, I < 6} = 1, 
n---?- oo JrEn 

and by (5.12) 

(5.18) lim inf inf - log EJ(V,) 

= 

- 6. 
n--* Feln n 
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Since this holds for any 6 > 0, then (5.9) follows. This concludes the proof of the 
bound under Assumption B. 

The extension to the case where Assumption B does not hold may be performed 
exactly as in the standard i.i.d. case. For example, it is possible to employ the 
regularization procedure in [6] (proof of Theorem 2.2.30), where small Gaussian 
random variables are added to the original ones to ensure that Assumption B is 
satisfied. This method applies here without modification, so that further details may 
be omitted. 

Remarks. The following remarks apply to the last theorem and its proof. 
1. Contrary to the usual proof method for Cramer's theorem, the proof above 

could not proceed by first establishing the bound for small balls. Such an 
approach would lead to the bound of Corollary 5.1 below, which is weaker 
than the one just established. 

2. Convexity of F enters critically in the convergence "'{Xn 
e F} --- 1 (cf. 

Equation (5.16)). 
3. The bound is tight, in the sense discussed in relation with the upper bound, 

and implies that stationary policies are sufficient to obtain the maximal decay 
rate. 

4. Moreover, as the last equality in the bound implies, the maximal rate is always 
achieved on the vertices of A(V). This means that non-randomized stationary 
policies (choosing the same action u at all times) are sufficient to achieve the 
maximal rate. 

If F is a non-convex set the results above do not apply, as demonstrated in 
Example 5.1. The problem of establishing a tight lower bound and 'optimal' policies 
is not resolved in the present paper. Obviously, some lower bounds may be inferred 
from the convex result simply by applying it to convex subsets of F. In particular, if 

applied to small balls in F, the following bound is obtained. 

Corollary 5.1. For any F c Rd, 
1 

(5.19) lim inf inf - log 
P~{X, 

E F} - inf max AZ (x). n - oc Jr En n XE[' 
u•U 

Proof. For every x F, let Bx be an open ball around x contained in F. By 
Theorem 5.1, 

(5.20) lim inf inf 1 log P'~{(X, Bx} 
> 

-max inf A*(x') E - max A*(x), n- - n u X'EB,x 

and since P"{X, F} E P{ E Bx} the corollary follows. 

We remark that the bound of Corollary 5.1 is tight if the inf and the max on the 

right-hand side can be interchanged, i.e. if infxr, max, A*(x)= infxtr Ai,(x) for 
some u' E -/. In particular, this will be satisfied if the same u' maximizes A,(x) for 
all x 

E• 
. The bound can then be attained by always choosing u'. Note also that the 
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bound of Corollary 5.1 reduces to the standard Cramer lower bound when Vi is a 
singleton. However, the bound is not tight in general, and does not even coincide 
with the (tight) lower bound of Theorem 5.1 for the convex case. This is explicitly 
illustrated by the following example. 

Example 5.2. Let O = {1, 2}, P, = N(-1, a2), P2= N(1, a2) and let F be an open 
interval which contains the interval [-1, 1]. Obviously lim,,-. Pl{X,, e F} = 1 for 
every rtEn H, so that the maximal exponential decay rate is 0. Indeed, since 

AI(x) = (x + 1)2/202 and A2(X))=(x - 1)2/2U2, the rate bound of Theorem 5.1 
equals max,=1,2 {infxEr A*(x)} = 0. However, the rate bound of Corollary 5.1 in this 
case is 

(1x + 1)2 1 inf max AZ(x) = inf + 1)2 1 
Er u= 1,2 xEr 202 2U2' 

which can be arbitrarily large. 

Remark. The results of the last two sections apply also in a slightly more general 
scenario (which may arise in certain applications, as the next section shows). Let 
{ Yk, 

Uk}k:I 
be a controlled i.i.d. process of the type considered so far (with Yk 

replacing Xk), and define a new random sequence Xk =f(Yk, uk). We are interested 
in the extremal values (over all policies) of the probabilities P{X, E F}. We claim 
that for the purpose of computing (or bounding) these extremal rates, the new 
model may be reduced to the original one; namely, we may eliminate {Yk } and 
consider the process {Xk, Uk } as a controlled i.i.d. process with conditional marginal 
distributions given by (X u) - (f(Y, u) I u). The point to notice is that the class of 
policies in the new scenario is larger than the one considered in the original model, 
in that policies may depend on past values of (Yk, Uk) and not only on their 
functions (Xk, Uk). However, it turns out that this additional 'information' is not 
relevant to the problem of extremizing P{X,, e F}, so that the proposed reduction is 
justified. More precisely, let Hy denote the class of policies 7r = {1r,},,1I where 7,, 
may depend on (uI, Y1, ... , u,,, Y,,_), 

and let H denote the subclass of policies 
where tr is allowed to depend on (u, X1, ... , u,,_, X,,n) only. Then 

maxEn, P"{X, E F} = maxEn P"({Xt F} (and similarly for the min). To see that, 
consider any tr Hy. Define a policy 7r' En by r',(u, X*... u,,_, X,,_ ):= 

P'f{u, = I u1, X1... u,,-1, X,,_). 
It is then straightforward to verify that 7r' induces 

the same probability distribution as n on the sequence {u, X,... }, and in 

particular attains the same value for P{X', e F}. 

6. Controlled hypothesis testing 

One of the classical results related to large deviations theory is Chernoff's 
theorem, concerning the error probabilities in statistical hypothesis testing using an 
i.i.d. data sequence. The preceding results will now be applied to the generalized 
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situation where samples may be chosen sequentially from several i.i.d. sources. 
Tight asymptotic bounds will be obtained for the minimal and maximal error 
probabilities, which may be achieved by appropriate sampling policies. The case of 
two (simple) hypotheses will be considered, followed by a discussion of the multiple 
hypothesis case. As it turns out, some of the main results do not carry over to the 
latter case. 

The following is a standard Bayesian hypothesis testing problem. Based on n 
measurements {Y,, - - - , Y}, assumed to originate from an i.i.d. source with 
marginal distribution P E {p~, P2}, we have to decide between the two hypotheses 
H1:Py = and H2:P =YP2 (to which some non-trivial prior probabilities are 
assigned). It is well known'that the probability of error is minimized by a likelihood 
ratio test. It was established in Chernoff [3] that these minimal probabilities 
converge to zero exponentially as the sample size increases, at the following rate. 
Let P,(e I Hi) denotes the error probability based on n samples, given that Hj is true 
and using the optimal likelihood ratio test. Then 

(6.1) lim - log P,(e I H) = -1, j = 1, 2. 
n-*mo n 

Here I is the Chernoff information: 

(6.2)= 
=I(P,, P2)= -log inf 

f1(y)f2(y)'-Ap(dy), 

where p is any measure which dominates both p, and P2, and f is the density of pj 
with respect to p. Note that the same rate applies to the two conditional errors, 
hence also to the unconditional error probability P,(e). 

Consider now the generalized problem, where the data sequence { Y,, * , Y, } is 
obtained by sampling sequentially from several i.i.d. sources. Assume that two 
hypotheses H, and H2 need to be tested. A set V of different types of experiments is 
available, where the probability distribution for (the result of) experiment u under 
hypothesis Hj is p•', with corresponding density function fj(. I u) (all densities are 
with respect to some fixed measure ii). It is assumed that •" : ". At each stage 
k = 1, - - - , n, exactly one of these experiments Uk is chosen, and Yk is its result. 
Independent repetitions of the same type of experiment are allowed. 

Since experiments are performed sequentially, choice of the next one may depend 
on the previous results. Indeed, if experiments are chosen with the purpose of 
minimizing the error probability, then as new data arrives our estimation of the true 
state of nature (the true hypothesis) improves, which puts us in a better position to 
make further decisions. The model considered here and other related models have 
been studied within the framework of statistical sequential design (see for example 
[4] and references therein), where the emphasis is on obtaining an optimal balance 
between the total experiment cost (length) and the error probability. Here we 
concentrate on choice of experiments, with the sample size not being a decision 
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variable. Thus, either n is fixed at some large value, or the experiment continues 
indefinitely with the best current estimates of the true hypothesis needed at each 
stage. 

The overall decision problem has two components. The first is the sampling policy 
,r. The set of possible policies H is defined as in Section 2: uk may depend on the 
whole history {ul, 

Y1,. ., uk-1, 
Yk-l}, and randomizations may be used. The 

second component is the rule for choosing between the hypotheses H1 and H2 based 
on available data. Given the data {ul, Y1, ..., u,, Y)}, the decision rule which 
minimizes the error probability is still a likelihood ratio test. It can be written as 

(6.3) accept H, if L, < a,, and accept H2 otherwise 

where L, is the normalized log-likelihood ratio: 

1 n 
f2(Yk Uk) 

L,,o= 
- 

glog 
nk= l f(Yk Uk) 

and { c,,} is a sequence converging to 0. (In the optimal test this sequence is 
determined by the prior probabilities, but for our asymptotic analysis it is enough 
that ca,--*0.) This rule is assumed fixed throughout the following, leaving only the 
sampling policy yet undetermined. 

6.1. Minimal error probabilities. We first consider sampling policies which 
minimize the error probability. Some definitions and technical assumptions will be 
required. 

Let u e V be fixed. Let X be a random variable with distribution P, specified by 

(6.4) X = 
logf2(Yu) 

where Y - 
•". 

f,(Y 
u), We identify this distribution with P, from Section 2, and apply the related notation. 

In particular, A, denotes the logarithmic m.g.f.: 

(6.5) A,,(A) log E,(exp (AX)) = 
logff2(Y I u)'(y I u)- d. 

The following will be assumed. 

Assumption C. A,(A) is finite for all A ER and u e 11. 

This assumption implies that, for each u, the probability measures Yu and uY are 

equivalent (assign non-zero probabilities to the same events), and is then satisfied if 
the ratio f2(Y u)/f(y u) as well as its inverse are bounded in y. We mention that 
Assumption C may probably be weakened without affecting the results (e.g. by 
assuming finiteness of A, in a neighborhood of the origin only); however, this will 
take us outside the general assumptions of this paper, and is therefore not pursued 
here. 
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Theorem 6.1. Assume C. Let P(e I n, 7r) denote the n-stage error probability 
given the sampling policy .r (and the likelihood ratio test (6.3)). Then 

lim inf inf 
1 

log P(e I n, xr) 

= 
- max I, 

n--oo ;r n U E V 

where I, = I(pu, pu), as defined in (6.2). Furthermore, equality may be obtained by 
choosing at each stage the same action (experiment) u*, a maximizer of I,. 

Proof. By Bayes' rule, the error probability is the weighted sum of the two 
conditional error probabilities: 

(6.6) P(e In, 7r) = p(H,)P(L a n, r, H,) + p(H2)P(Ln < n In, ,r, H2). 

We proceed to bound the first term on the right-hand side. Define 

f2(Yk Uk) 
Xk = logf ) 

so that X, (the corresponding sample mean) coincides with Ln. 
Au, 

the logarithmic 
m.g.f. corresponding to Xk conditioned on Uk = u, was specified in (6.5). Before 
applying the lower bounds of Section 5, we note that Eu(X) 0 (by Jensen's 
inequality), and further that A*(x) (the Legendre transform of A,) is finite and 
continuous at x = 0. To establish the latter it is enough to show that (the convex 
function) A*(x) is finite in some neighborhood of zero. Indeed, if 

p• 4*~p (as 
assumed) then X obtains both negative and positive values, namely P,(X > 0) 

-E and P,(X < 0) i E for some E > 0. This implies that A,(A) i log (E exp (IAIE)), so 
that for every x e [-E, E]: 

Au(x) > sup (Ixl IA - log - IAl) - log E < oo. 

By Assumption C and the remark at the end of the last section, the lower bound 
of Theorem 5.1 is applicable. Recalling that anr 

- 0 and that A*(x) is non-decreasing 
for 

x- 
0 (Lemma 3.1) and continuous at x =0 (as just established), this lower 

bound implies 

(6.7) lim inf inf-1 log P(L, _ a, I n, r, H) = - max A*(0) = -max I(p~, 2"), n ->= n U U 

where the last equality follows by direct calculation or by comparison with 
(6.1)-(6.2). Turning to the second term in (6.6), a symmetric argument yields 

lim inf inf 1 log P(L, < 
ao, 

In, ir, H1) = -max I(Ci", y"), 

which together with (6.6) and (6.7) yields the lower bound part of the theorem. 
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Furthermore, observe that equality in the above lower bounds for the two 
conditional errors may be attained by the same sampling policy, e.g. the stationary 
policy u,, u*. It follows that this policy attains the lower bound also for the 
unconditional error, which completes the proof. 

The result has two implications. First, it supplies an asymptotic estimate for the 
error probability under the optimal sampling policy (for fixed n). It also implies that 
the simple policy of repeating a single 'best' experiment is asymptotically com- 
parable to any other, in terms of the exponential decay rates. 

As noted in the proof, a key fact is that two conditional errors are simultaneously 
minimized by the same sampling policy. This is a fortunate consequence of using the 
optimal likelihood ratio test, whose optimality depends on balancing the two 
conditional errors. 

6.2. Maximal error probabilities. We next consider sampling policies which 
maximize the probability of error. This problem may be of interest when the choice 
of experiments is not controlled by the statistical decision-maker (who is still 
interested in minimizing errors, and continues to use the likelihood ratio test). 
Indeed, it may be 'controlled' by nature, in which case we are performing worst-case 
error analysis; or it may be controlled by another decision-maker with opposing 
interests (e.g. an airplane seeking to avoid detection or identification by a radar). 
Depending on the situation, it may or may not be reasonable to allow here for 
dependence of the sampling policy on the true hypothesis; interestingly enough, the 
following result holds in both cases. 

Theorem 6.2. Assume C. Then 

lim sup sup P(e I n, jr) min 
A,(0), n---oo 7r qEA(V) 

and equality is obtained by the (possibly randomized) stationary sampling policy q, 
where q is a minimizer of A (0). 

The proof is similar to the previous one, and follows from the upper bound of 
Proposition 4.1. As before, this result implies that the extremal decay rate 
(corresponding here to maximized error probabilities) can be obtained by simple 
sampling policies which do not make use of observations from past experiments. 
However, the use of more than one type of experiment may now be required. This 
may be performed by a stationary randomized policy, or by the deterministic 
alternative outlined in Lemma 4.1. 

6.3. Multiple hypotheses. We briefly consider the possible generalization to the 
multiple-hypotheses case. The problem is the same, except that there are J> 2 
hypotheses denoted {H,, 

? ? ?, 
H,}. Thus, each hypothesis Hi corresponds to a collec 

tion of probability densities {fJ( . I u), u e '/}. Assume for simplicity that the prior 
probabilities are equal. Given the data sequence {u1, Y,, ... , u,, Y,}, the optimal 
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decision rule is to choose the hypothesis j* which maximizes the likelihood function. 
This may be written, similarly to the two-hypothesis case, as: j* = arg maxj Ln(j), 
where 

1 " fn(Ykluk) 
Ln(j) = - 1, 

0 
u) nk=1 fi(Yk I uk) 

(Note that L,(1) 0.) Let us consider the probability of error given that HI is the 
true hypothesis, and the sampling policy is ;r. Denoting by P' the corresponding 
probability measure, we have 

P(e I n, 7, H,) 
= 

P,{max L,(j)> 0} 
= 

P{IL(j) 
eo), 

where L = (L,(2), ..- , L,(J)) and Fo= {x RJ-':maxjxj>0}. As in the two- 
hypotheses case, one may consider L, as the sample mean of a (vector-valued) 
controlled i.i.d. process, and attempt to apply the general bounds from the previous 
sections. In the case of the upper bound (maximum error probabilities), this 
approach indeed yields the analogue of Theorem 6.2. However, when the lower 
bound is considered (minimal error probabilities), a crucial observation is that the 
set Fo is no longer convex for J > 2. Thus Theorem 5.1 is not applicable, and the gap 
noted in Section 5 between stationary and non-stationary (history-dependent) 
sampling policies exists. In other words, in the multiple-hypotheses case, planning 
future experiments according to the results of previous ones may significantly 
improve the asymptotic error probabilities. Computation of the decay rate for the 
minimized error probabilities remains in this case an interesting open problem, 
which is closely related to the non-convex lower bound problem of Section 5. 

7. Concluding remarks 

We mention here some problems for further research. Investigations of the lower 
bound for non-convex sets (Section 5) has not been exhausted here, and tight 
bounds for this case (as well as non-stationary policies which attain them) are yet to 
be derived. The problem considered in this paper, namely extremal large deviations 
for controlled processes, may be generalized in several directions. These include 
higher-level large deviations (e.g. large deviations of the empirical distribution), as 
well as more general controlled processes (e.g. controlled Markov processes). 
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