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On the Necessity of “Block Invariance” for the 
Convergence of Adaptive Pole-Placement 

Algorithm with Persistently 
Exciting Input 

NAHUM SHIMKIN AND ARIE FEUER 

Abstract-Global convergence of a number of discrete-time adaptive 
control algorithms with persistently exciting inputs has been established in 
the literature. A key element of the convergence proof is the “block- 
invariance” feature of the algorithm. Namely, while the parameters are 
estimated at every sample, the controller parameters remain invariant 
throughout a “block” of samples and are updated only at the end of each 
such block. The necessity of this “block-invariance’’ feature to guarantee 
convergence is established in this note by a counterexample. 

I. INTRODUCTION 

Persistency of excitation (PE) plays a key role in the convergence of 
some adaptive control schemes. The central problem in the analysis of 
these schemes is the PE property of the input to the controlled system. 
This input consists of an external input term which can be guaranteed to be 
PE and a time-varying feedback term which may destroy this property for 
the system input. 

For certain adaptive control algorithms, closed-loop stability can be 
established without recourse to parameter convergence. It has been shown 
that in this case, the PE of the external and system inputs are equivalent 
[SI, 191. In general, however, signal boundedness cannot be assumed a 
priori. Then, to ensure the PE property for the system input the following 
feature, sometimes referred to as “block-invariance,” was proposed. 
While the parameter estimates in these schemes are updated every sample 
unit, the controller parameters are updated once every ”block” of 
samples and kept constant in between. It has been established that with a 
PE external input, this feature, with a properly chosen block size, will 
guarantee the PE property for the system input. This, in turn, guarantees 
global parameter convergence and stability of the adaptive scheme. The 
block-invariance approach is applicable to various schemes but has been 
mostly associated with adaptive pole placement algorithms (e.g., [I], [3], 
[41, [lo], [111). 

In light of these results a key question remained open: is the block- 
invariance feature necessary for convergence? 

In this note, we provide a definite affirmative answer for the direct 
adaptive pole-placement algorithm by presenting a counterexample. The 
example is for a simple case but is clearly sufficient as a proof of the 
“block-invariance’’ necessity for global convergence. To support our 
analysis, we have run some simulations which are presented here. 

11. THE ADAPTIVE SYSTEM EQUATIONS 

Consider the following discrete-time, first-order system 
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a> 1. 

where 

We assume that the value of a is known while the value of b is unknown. 
The control law we want to design should place the closed loop pole at a* 
(with I U* I < 1). The nominal control law required to accomplish this is 
given by 

u* ( t )  = [ i] Aay( t )  + u ( t )  (2.2) 

where u ( t )  is the reference input and Aa  = a* - a. Simple substitution of 
(2.2) in (2.1) will confirm the desired result: 

y ( t  + 1) = a*y(t) + bu(t). (2.3) 

However, since b is not known, the control cannot be generated by (2.2). 
A direct adaptive controller will be used to accomplish the desired pole- 
placement. 

To get the adaptive control, let us first rewrite (2.1) in the form 

u(t)=L9*4(t) (2.4) 

where 

1 e*=-  
b 

Based on (2.4), a recursive least-squares (RLS) algorithm can be used to 
estimate O*; its equations are given (see, e.g., [l]) by 

(2.6) 
P ( t - I ) ~ ( t - I ) [ u ( t -  1)-4(t- l )e(f- l ) ]  

I + $J(f  - 1)2P(t - I )  e(t)=e(t-  I ) +  

P ( t -  1)24(t-  1)2  
1 + 4 ( f  - 1)2P(t - I )  P ( t )  = P(t  - I )  - (2.7) 

with initial conditions P(0) = Po, e(0) = 80. 

signal have been considered in the literature. The first, 
Two possible ways of using the estimate 8 ( t )  to generate the control 

and the second (termed sometimes “block-invariant feedback”) 

7 u(t)=p^(t- I)Aay(f)+ U ( t )  

I where 

i e ( t )  for t = k N ,  k=O, 1, 2, ... 
’(‘)= p^(t- 1) otherwise t 

and N an integer to be defined in the sequel. 
While the first control law (2.8) is a natural substitute for the nominal 

control (2.2), the second choice has been considered for the simple reason 
that convergence proofs could be derived for it. 

We will next outline the convergence results which exist for the above 
block-invariant feedback control. 

HI. CONVERGENCE WITH BLOCK-INVARIANT FEEDBACK 

Using existing results (see, e.g., 121, [3], 141, Ill]), the following 
convergence result can be proved for the system we consider. 

Lemma 3.1: Consider system (2.1), estimation algorithm (2.6), (2.7), 
and control (2.9) with N 2 4. Assume that the input u ( t )  is bounded and 
satisfies the persistency of excitation (PE) condition: 
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CZ): There exist positive E,  to such that for all t 2 to where 

ut 
Thenfor all initial conditions the parameter 8( t )  converges to e* = l / b  
and all signals are bounded. 

w ( t )  = b-’~‘’’ sin 

V( t )=Q( f )  [ S - b - l ]  +b-’ 
Proof Outline: 

We begin by constructing the associated signal system (ASS) for our 
estimation problem. 

Using PE results (e.g., [4], [6])  for LTI systems it then follows that there 
exists a 6 > 0 such that 

y( t )  =z( t )  

u(t )=w(t )  
(&+ I)N 

m 2 > s .  (3.3) B(t)=p(t) 
l = k N + I  

(4.3a) 

(4.3b) 

(4.3c) 

(4.3d) 

(4.3e) 

(4.4a) 

(4.4b) 

(4.4c) 

W) = Q(t)  (4.4d) 
The key in establishing (3.3) is the fact that because of the way u(t)  is 
defined in (2.9) it can be viewed as a constant state feedback control for 
the ASS system (3.2) for 1 E [kN + 1 ,  (k + 1)NI. 

Equation (3.3), in turn, is a sufficient condition for the convergence of 
algorithm (2.6), (2.7) to the correct parameter. Signal boundedness then 
follows readily. 

is the corresponding state of (4.1) with initial conditions 

y(0)=a-(a2+y2)-’y2, u(O)=O 

(4.5) 
b-I 

1-a2’ B ( O ) = -  P(O)=l. 

IV. THE NECESSITY OF THE BLOCK INVARIANCE 

With the convergence result established in Section III, an obvious 
question arises: is the “block invariance” necessary? The main result of 
our note is the answer to this question. 

The control law we investigate is given in (2.8). We first note (see [5 ] )  
that the sequence { b ( t ) }  generated by (2.6) and (2.7) converges, for any 
u(t), to a constant. Denoting this constant by a,, we may rewrite (2.8) in 
the form 

u(t)=B, * Aa . y(t)+u(t)+[8(1-1)-B,]A~ * y( t ) .  (4.1) 

In the framework of the ASS (3.2), this can be viewed as the sum of a 
constant feedback term, the reference input and a time-varying feedback 
term with diminishing gain. The problem is how to deal with the time- 
varying term. If one could assure that {y ( t ) }  is bounded, this term would 
decay to zero and, for large enough t, u(t)  would become PE. However, 
for an unbounded { y ( t ) }  the time-varying term can potentially prevent 
u( t )  from being PE even if u ( t )  is. The example we present here shows 
that this does in fact happen, in which case the parameter estimate does 
not converge to its correct value. 

Consider the system which consists of (2.1), (2.5), (2.6), (2.7), and 
(2.8): 

y(t)=ay(t-  l)+bu(t-l) (4.la) 

u(t)=tqt- 1) . Aa . y(t )+ u ( t )  (4.lb) 

+ ( t -  l )=y( t ) -ay( t -  1) (4 .1~)  

The proof of this proposition is accomplished by verifying that (4.4) does 
satisfy (4.1) with u ( t )  given by (4.2) and (4.3). This had been done in the 
Appendix for the skeptical reader. 

Let us now observe the significance of the particular solution presented 
in (4.4). First, we concentrate on U@). Since we chose a < 1 it follows 
from (4.3e) that 0 < y < 1 and y 2 a  = 1 .  This can be used in (4.2) to 
show that 

c -l 

(4.6) 1 a + l  a-1 
-+-COS 2 2  ut +E(t) 

where E(t) is a linear combination of exponentially decaying terms. The 
details are again differed to the Appendix. 

Two properties of u(t) can be observed from (4.6).  1) u(t) is bounded, 
and 2) u ( t )  ispersistently exciting (PE), namely, satisfies (3.1). The last 
property follows from results in the literature (e.g., [6]) and the fact that 
u( t )  has two spectral lines at w = 0 and w = u. Next, we turn our attention 
to the solution (4.4) corresponding to the particular initial conditions and 
input. From (4.4) and (A.3) in the Appendix it follows readily that 

lim y ( t )  = 00 (4.7a) 
1-m 

a - 1  lim P(t) = 7 (4.7b) 
1-00 

(4.7c) 

lim u( t )  = 0. (4.7d) 

This means that despite the two observed properties of u ( t )  the adaptive 

1-00 

(4.ld) -111.- -, 7 , -  -,- J-1)I 
+ +(f - 1)2P(t- 1) 

P(t -  1)2+(t- 1) system is neither globally stable nor does it converge globally to the 
correct parameter. In light of the results regarding Nussbaum’s gain (see, 
e.g., [7]), it is not surprising that the boundedness of u(t) does not 
guarantee stability. However, the fact that the PE property of does 
not guarantee convergence of the parameter estimation algorithm is new. 
The conclusion we draw from the example considered here is that “block 
invariance” is necessary to guarantee global convergence in direct 

P(t)  = P(t - 1) - (4.14 

This is clearly a nonlinear system with ~ ( t )  as its input. Now, we state the 
following. 

1 +b(t-  1)2P(t- 1) . 

Proposition 4.1: Let 

u ( t ) = w ( t ) - A a  . ~ ( t -  l)z(t) (tZ1) (4.2) adaptive pole placement with PE input. 
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-5.0 
I " ' " " " I  " " " " I " " " " ' ~ . " ' . - ' " ~ - ' ~ " ' '  

0 20 40  60 BO 100 120 1 4 0  

T I M E  

External input (simple RLS). Fig. 1. 

Remark: The example was constructed by first choosing y ( t )  and then 
calculating the remaining variable accordingly. By replacing the choice in 
(4.4) byy(t) = a'+' - y'+' g( t )  whereg(t)isany sumofsinusoids, the 
resulting u ( t )  will asymptotically resemble g(t)2.  Hence, u ( t )  can be 
made as "rich" as one desires (namely, with arbitrarily many spectral 
lines) and still not guarantee convergence. Similarly, examples can be 
constructed for more complicated systems (higher dimension) and 
algorithms. 

Replacing the simple RLS in the system we considered by "RLS with 
covariance resetting" results in a new adaptive system. A similar 
counterexample has been constructed for this system too-its simulation 
results are presented in the next section. 

V. SIMULATION RESULTS 

To verify the results of the previous sections, we have simulated the 
adaptive system on a digital computer. The results with the choice a = 
1.1, a* = 0.5 and b = 1 are presented in the sequel. In Fig. 1, we see the 
shape of U([), which clearly agrees with (4.6). In Figs. 2 and 3, we show 
the results of four experiments. In the first one, the nominal initial 
conditions of Proposition 4.1 were used and the results clearly agree with 
our analysis. The second experiment, again with the nominal initial 
conditions, but this time with "block invariance" adaptive control. This 
time the output remains bounded and the parameter converges to its 
correct value as expected. In the other two experiments, we have changed 
the initial condition for the parameter estimation by f 1 percent. With this 
change and no block-invariance, we still got convergence and stability. 
This indicates that the instability occurs at singular points and the 
algorithm may otherwise be well behaved. 

The four experiments were repeated for RLS with covariance resetting. 
We had to recompute the external input and initial conditions to get the 
desired results which are presented in Figs. 4, 5, and 6 and are similar to 
those for the simple RLS. 
In conclusion, we have shown through an example that the "block 

invariance" feature is necessary for global convergence. A very simple 

nominal with 'block-invariance' 

-30 

r 

0 5 10 15 20 2 5  30 35 4 0  4 5  50 

r ig€  

Fig. 2. Output behavior (simple RLS). 
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nominal with 'block-invariance' 
1 . 3 -  

0.5- 

0.0-  

-0.5- 

- 1  .o- 

- I  .5 -  

-17 .5-  

V 
-20.0- 

-22. 5 -  

-25.0- 

-27 .5-  

-30.0- 

-32.5- 

ip 

0 5 IO 15 20 25 30 35 40 4 5  50 

T I M E  

Fig. 3. Estimated parameter (simple RLS). 

- 2 . 5 -  

-5.0- 

- 7 . 5 -  

1 - 1 2 . 5  

-31.0 

0 20 40 60 80 100 I 2 0  140 

T I M E  

Fig. 4 .  External input (RLS with covariance resetting). 
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250: 

200' 

1 1  

i I  
1 1  
i I  
I I nominal with 
I I 'block-invariance' 

8 ,  

3 5 10 15 20 25 30 35 40 4 5  50 

T l f l E  

Fig. 5. Output (RLS with covariance resetting). 

nominal w i t h  

1 
-1 

- 6 -  

-9- 

- 1 2 -  

-1s -  
1 :  H .  

E :  
1 -18 A 

-21  

-27 -  

-36 

3 5 t o  1s 20 2s  30 35 4 0  4 5  50 

1lnE 

Fig. 6. Estimated parameter (RLS with covariance resetting) 

control algorithm was used. It is, however, representative of most direct 
adaptive schemes. As for the estimation algorithm, both the "simple 
RLS" and the "RLS with covariance resetting" were considered, with 
similar results. 

APPENDIX 

A. Proof of Proposition 4.1: 

To prove the proposition, we substitute the state as given by (4.4) at 
time (t - 1) on the right-hand side of (4.1) to get the same state shifted by 
one time unit to t. We begin with (4.la): 

ay(t - 1) + bu(t - 1) 

=az(t - 1) + bw(t - 1) 

= n  . uf-u(u2+y2)-ly' 

/ 
+y* sin [ y-5) U t  lr 

= z ( f )  
= N I .  

Next, (4. lb): 

8 ( f  - I)Aav(f) + u(t) = p(f - I )Aat ( f )  + w ( f )  - p(t- l )Aa t ( f )  

= w ( t )  

= u ( t ) .  

Notice now that using (4.la), (4.ld) and (4.le) can be rewritten in the 
form (see [l]) 

8(t)=P(t)P(0)- ' (8(0)-  b-I) + b-'  

P( t ) - l=P( t - l ) - l+6 ( t -  1)2. 

Substitution of (4.4d) and (4.5) in (A.1) will immediately verify (4 .4~) .  
Also, since by (4.la), (4.lc), (4.'3b), and (4.4b), we have 

@(t - l )=bu( t - l )  

= bw(t - 1) 

a(t- 1) , = y f  sin - 
2 '  

hence, 

= Q(t)-' 

=P(t)-l 

and (A.2) is verified and so is (4.4d). 0 

B. Derivation of (4.6): 

We first evaluate the series in (4.3d) and substitute y2 = a-'. This 
gives 

u2- 1 
U2 

Q(t-l)=- [ l - ~ ' a ( t ) ] - '  (A.3) 
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where 

Therefore, from ( 4 . 3 ~ )  

a2 
p ( t -  1)= b-’ - Q(t-  1)+ b-’ 1 -a2 

a - ‘LY(t) 

1 -a-‘a(t) . 
= -b-l ~ 

Substituting in (4.2) and recalling that a > 1, 0 < y < 1 gives 
immediately 

u( t )=  b-’a-‘cr(t)Aaa‘+’+E(t) 

=b-’Aa . U * cr ( t )+e ( t )  

E([) a linear combination of exponentially decaying terms. 0 
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The Interacting Multiple Model Algorithm for Systems 
with Markovian Switching Coefficients 

HENK A.  P. BLOM AND YAAKOV BAR-SHALOM 

Abstract-An important problem in filtering for linear systems with 
Markovian switching coefficients (dynamic multiple model systems) is the 
one of management of hypotheses, which is necessary to limit the 
computational requirements. A novel approach to hypotheses merging is 
presented for this problem. The novelty lies in the timing of hypotheses 
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merging. When applied to the problem of filtering for a linear system with 
Markovian coefficients this yields an elegant way to derive the interacting 
multiple model (IMM) algorithm. Evaluation of the IMM algorithm 
makes it clear that it performs very well at a relatively low computational 
load. These results imply a significant change in the state of the art of 
approximate Bayesian filtering for systems with Markovian coefficients. 

I. INTRODUCTION 

In this contribution we present a novel approach to the problem of 

x,=a(O,)x,-~ + b(OOwl (1) 

filtering for a linear system with Markovian coefficients 

with observations 

Y ,  = h w x ,  + g(o,) VI  (2) 

Or is a finite state Markov chain taking values in { 1, . . . , N }  according to 
a transition probability matrix H, and wI, ul are mutually independent 
white Gaussian processes. The exact filter consists of a growing number 
of linear Gaussian hypotheses, with the growth being exponential with the 
time. Obviously, for filtering we need recursive algorithms whose 
complexity does not grow with time. With this, the main problem is to 
avoid the exponential growth of the number of Gaussian hypotheses in an 
efficient way. 

This hypotheses management problem is also known for several other 
filtering situations [lo], [ 5 ] ,  [6], [9], and [4]. All these problems have 
stimulated during the last two decades the development of a large variety 
of approximation methods. For our problem the majority of these are 
techniques that reduce the number of Gaussian hypotheses, by pruning 
and/or merging of hypotheses. Well-known examples of this approach are 
the detection estimation (DE) algorithms and the generalized pseudo 
Bayes (GPB) algorithms. For overviews and comparisons see [14], [7], 
[12], and [17]. None of the algorithms discussed appeared to have good 
performance at modest computational load. Because of that, other 
approaches have been also developed, mainly by way of approximating 
the model (I) ,  (2). Examples are the modified multiple model (MM) 
algorithms [20], [?‘I, the modified gain extended Kalman (MGEK) filter of 
Song and Speyer [13], [7], and residual based methods [19], [2]. These 
algorithms, however, also lack good performance at modest computa- 
tional load in too many situations. In view of this unsatisfactory situation 
and the practical importance of better solutions, the filtering problem for 
the class of systems (l), (2) needed further study. 

One item that has not received much attention in the past is the timing of 
hypotheses reduction. It is common practice to reduce the number of 
Gaussian hypotheses immediately after a measurement update. Indeed, on 
first sight there does not seem to be a better moment. However, in two 
recent publications [3], [I], this point has been exploited to develop, 
respectively, the so-called IMM (interacting multiple model) and AFMM 
(adaptive forgetting through multiple models) algorithms. The latter 
exploits pruning to reduce the number of hypotheses, while the IMM 
exploits merging. The IMM algorithm was the reason for a further 
evaluation of the timing of hypotheses reduction. A novel approach to 
hypotheses merging is presented for a dynamic MM situation, which leads 
to an elegant derivation of the IMM algorithm. Next Monte Carlo 
simulations are presented to judge the state of the art in MM filtering after 
the introduction of the IMM algorithm. 

11. TIMING OF HYFQTHESES REDUCTION 

To show the possibilities of timing the hypothesis reduction, we start 
with a filter cycle from one measurement update up to and including the 
next measurement update. For this, we take a cycle of recursions for the 
evolution of the conditional probability measure of our hybrid state 
Markov process (x , ,  0,). This cycle reads as follows: 

(3) 
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