
Learning in Complex Systems Spring 2011

Lecture Notes Nahum Shimkin

8 Scaling Up: Value and Policy Approximations

8.1 Overview

When the state and action spaces are large, the previous methods ‘table-based’ methods,

that accounted for each state and/or action separately, are not feasible. One therefore

needs to resort to approximate methods.

In essence, large problems impose several difficulties, involving:

• Computation.

• Representation.

• Learning: generalization and exploration.

These issues are common to other AI /ML domains. Many heuristic and approximation

approaches have been developed to deal with these issues. These include (in the AI jargon):

• State abstraction (aggregation, feature-based mappings,....).

• Temporal abstraction (different time scales, high-level actions).

• Problem decomposition, hierarchical methods.

In the context of MDPs and RL, one can distinguish between

• Approximate Dynamic Programming (ADP): Focus on planning

• (Approximate) RL: Focus on learning.

This distinction is not strict, and both the terms and the relevant methods are used inter-

changeably.

In this chapter we focus on function approximation methods for the value function. In

general, function approximation addresses both issues of representation and learning gen-

eralization.

1

8.2 Function Approximation

RL involves several ‘large’ functions that may need to be approoximated:

• Value functions: V π(s), V ∗(s),Q(s, a)...

• Policies: π(s), π(a|s).
• Model: p(s′|s, a), r(s, a).

Function approximation methods can be classified into:

• Parametric methods: F (x) ≈ fθ(x), and parametric family, with θ ∈ Θ is a parameter

vector of fixed dimension.

• Non-parametric methods: F (x) ≈ fn(x), with fn depending on the size n of the data.

(E.g.: Kernel methods, lazy learning + nearest-neighbor).

The basic approximation problem is to minimize some distance metric between f(x) and

Fθ(x), for example

min
θ∈Θ

∫
‖F (x)− fθ(x)‖ .

In the learning context, we are given only noisy samples (xk, yk)
n
i=1 with yk ≈ Fk(x) (i.e.,

yk = F (xk) + nk). This is called the regression problem in statistics. We can then try to

minimize the empirical risk

min
θ∈Θ

∑

k

‖yk − fθ(xk)‖2 .

However, we must beware of overfitting the parameters to the data. A common approach

is to add a regularization term: E.g. λ
∫

(F ′′
θ (x))2, or simply λ‖θ‖α, α = 1 or 2. The pa-

rameters θ can be tuned (learned) using gradient methods, or more advanced optimization

schemes. See the basic Learning Systems course.

In RL the problem is usually more complicated. We are not directly given the values yk

(e.g., of the value function or the policy), but rather need to estimate those from the date.

Approximation Architectures: The functional form of the parametric family {fθ} is some-

times called the approximation architecture. Common choices include:

Nonlinear Neural Networks (feedforward, others...).

2

Linear function Architectures: Here ,

fθ(x) =
m∑

j=1

θjφj(x) ≡ θT φ(s) .

where (θj) are the weights, and (φj) are the basis functions. Some examples for basis

functions

1. Harmonic functions (Fourier series).

2. Polynomials / piecewize polynomial approximations (splines)

3. Radial basis functions (RBFs).

4. Piecewise constant functions (state aggregation).

5. ‘Tile coding’.

6. Features.

For RL, linear architectures are currently the best understood in terms of analysis, and

provide more predictable results. A basic problem is how to choose the basis functions.

Also, a linear representation is often not the most compact one.

8.3 Policy Evaluation

Consider the first problem of evaluating the value function V π(s) (or similarly Qπ(s, a)) for

a given policy. This is the simplest RL problem.

8.3.1 Simple Monte Carlo

Let {vθ(s)} be a parametric family of approximating value functions over the state space

S, with parameter θ.

As already discussed for basic RL, it is possible to obtain noisy samples vk of V π(sk) for

various visited states (sk), by applying the policy π to the process.

We now fact the standard regression problem of fitting vθ(s) to the data (sk, vk). This can

be done using gradient or Newton methods, in a batch or sequential (sample-by-sample)

fashion.

3

For example, consider the least-squares problem:

∑
s

(vθ(sk)− vk)
2

For the linear architecture vθ(s) = θT φ(s), we may obtain the solution explicitly as the

solution of the linear equation

(
∑

k

φ(sk)φ(sk)
T)θ =

∑

k

φ(sk)vk .

8.3.2 Temporal-Difference Methods

Here we adjust the TD(λ) algorithm to function approximation, in a gradient-based frame-

work. Recall that V = V π satisfies

V (s) =
∑

a,s′
π(a|s)(r(s, a) + γp(s′|s, a)V (s)

)

Known model: Suppose the model is know (ADP problem). We may attempt to minimize

the squared difference

∑
s

w(s)
(
vθ(s)−

∑

a,s′
π(a|s)(r(s, a) + γvθ(s

′)
))2

over θ. Here (w(s)) are some weights – perhaps the stationary state distribution pπ(s)

under π.

If S is large, we may instead minimize the above sum over a finite sample (sk) of states.

These can reasonably be obtained by observing a trajectory (sk) under π, leading to

min
θ

∑
sk

(
vθ(sk)−

∑

a,s′
π(a|sk)

(
r(sk, a) + γp(s′|sk, a)vθ(s

′)
))2

Learning: Given a sample (sk, ak, rk, s
′
k), with (ak, rk, s

′
k) obtained under the policy π for

each sk,, we can similarly attempt to minimize the empirical squared difference:

min
θ

∑

k

(vθ(sk)− (rk + γvθ(s
′
k)))

2 ≡ min
θ

∑

k

d2
k ,

4

where dk is the familiar temporal difference.

Partial Gradient Learning: Note that θ appears in two terms inside the square. Taking

the gradient with respect to both leads to a complicated scheme. Instead, we treat yk ,
rk + γvθ(s

′
k) as measurement, to which vθ(sk) should be fitted. Thus, with dk = yk− vθ(sk)

serving as the error, we obtain

∇θ(d
2
k) = −dk∇θvθ(sk) ,

and the gradient update rule

θk+1 = θk − α

2
∇θ = θk + α∇θvθ(sk)dk .

Here α is the gain, which can be fixed or time-varying. This is the analogue of the familiar

TD(0) algorithm.

TD(0) with linear function approximation: Suppose now that vθ(s) = θT φ(s). Here we

obtain,

θk+1 = θk + αφ(sk)dk ,

or in scalar form,

wk+1(j) = wk(j) + αφj(sk)dk ,

We can view φj(sk) as a measure for the relevance of φj (hence θ(j)) to state sk.

TD(λ) with linear function approximation: Recall the TD(λ) algorithm in the tabular case:

V̂k+1(s) = V̂k+1(s) + αzkdk

zk(s) = λγzk−1(s) + 1{sk = 1} .

Similar considerations lead to the following algorithm with linear function approximation:

θ(k + 1) = θ(k) + αzkdk

zk = λγzk−1 + φ(sk) .

Convergence of TD(λ) [Tsitsiklis and van Roy ’97]: Suppose the Markov chain induced by

π is irreducible (all states communicate), and let sequence (sk) be sampled according to π.

Then θk → θ∗(λ) (w.p. 1), where θ∗(λ) is defined as follows.

5

λ = 1 (pure Monte-Carlo): θ∗(1) is the solution of

min
w

∑
s

pπ(s)
(
vθ(s)− V π(s)

)2
.

0 ≤ λ < 1: w∗(λ) is the solution of A(λ)w = b(λ), where

A(λ) = E
(
zk

(
φ(sk)− γφ(sk+1)

)T
)
)

= . . .

b(λ) = E
(
zkr(sk, ak))

)
= . . .

where the expectation is taken with respect to the stationary distribution under π.

We note that θ∗(λ) is generally biased with respect to the “optimal” value θ(1), but con-

vergence may be faster.

Further note that the requirement that (sk) be sampled sequentially according to π is

essential here: otherwise convergence can fail. This is in contrast to the tabular case!

Least Squares Schemes: LSTD(λ): The solution w∗(λ) of TD(λ) can be arrived at more

quickly using the following scheme. Define

An =
1

n

n∑

k=1

zk

(
φ(sk)− γφ(sk−1)

)T

bn =
1

n

n∑

k=1

zkrk

θn = A−1
n bn

with zk defined as above. Then, by the Law of Large Numbers, θn → θ∗(λ) (w.p. 1).

Comments:

• LSTD(λ) typically converges much faster than TD(λ).

• LSTD(λ) makes full use of the data: It does not ‘forget’ earlier measurements.

• When φ(s) = es (tabular case), LSTD(λ) coincides with a model-based scheme (show

that for LSTD(0)).

• TD(λ) requires m = dim(θ) operations per sample. LSTD(λ) requires O(m2) opera-

tions per sample (to compute An), plus O(m3) operations for matrix inversion (when

needed). Alternatively, the θn can be calculated recursively, using RLS formulae,

which requires O(m2) operations per sample.

6

